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Space vs Time

Pebbling games and computing (1/2)

A computation with input and output values can be modelled in
various ways: directed acyclic graph (DAG), straight-line
program (SLP).

By computation, we mean the execution of a program, not a program
itself, similarly to the instruction stream DAG of a Cilk++
program.

Thus, we assume that all operations (additions, multiplications) to be
performed are precisely known.
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Space vs Time

Pebbling games and computing (2/2)

Our purpose is then on how computer resources are used to realize
this computatiuon. To do so, we make use of pebbling games on
DAGs.

From now on we consider a connected directed acyclic graph
G = (V ,E ):

Each vertex represents an operation and its result.
An edge from a vertex v1 to a vertex v2 indicates that the result of v1

is needed for performing the operation of v2.
A vertex v of G is an input (resp. output) if it has no predecessors
(resp, no successors).
The sets of inputs and outputs are respectively denoted by I (G ) and
O(G ). Note that these sets are disjoint.
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Space vs Time

The red pebble game (1/2)

The red pebble game is played on a directed and connected acyclic graph
G = (V ,E ) using four rules:

(R1) Input rule: A pebble can be placed on an input vertex at any time.

(R2) Output rule: Each output vertex must be pebbled at least once.

(R3) Compute rule: A pebble can be placed on or moved to any
non-input vertex if all of its immediate predecessors carry pebbles.

(R4) Delete rule: pebble can be removed at any time.
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Space vs Time

The red pebble game (2/2)

A pebbling strategy determines sequence of rules invoked on
vertices of a graph.

A strategy uses space S if it uses at most S pebbles. It uses time T
if the input rule and compute rule are invoked T times in total.

The minimum space Smin to pebble the graph G is the smallest space
of any strategy that pebbles G .

We shall see that the FFT graph exhibits a tradeoff between space
and time: the time required when the minimum space is used is
strictly more than that required when more space is available.
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Space vs Time

FFT graph for 2 input nodes

What is Smin? What is T when S = Smin? What is T when S = Smin + 1?
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Space vs Time

FFT graph for 2 input nodes

We have Smin = 2. Moreover S = 2 =⇒ T ≥ 5 while S = 3 =⇒ T ≥ 4.
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Space vs Time

FFT graph for 4 input nodes

What is Smin?
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Space vs Time

FFT graph for 4 input nodes

We have Smin = 3.
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Space vs Time

FFT graph for 8 input nodes

What is Smin?
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Space vs Time

FFT graph for 8 input nodes

We have Smin = 4. More generally, for the FFT graph on n = 2k inputs
we have Smin = k + 1.
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Space vs Time

Pebbling a complete binary tree (1/4)
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What is Smin?
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Space vs Time

Pebbling a complete binary tree (2/4)
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Theorem. The complete balanced binary on n = 2k inputs has
Smin = k + 1 = log2(n) + 1. It can be pebbled in time T = 2n − 1 steps,
but no fewer.
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Space vs Time

Pebbling a complete binary tree (3/4)
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Proof (1/2).
1 Each path has k + 1 vertices.
2 Initially each path from an input to the output is free of pebbles.
3 Finally, a pebble is on the output and thus all paths contain a pebble.
4 Therefore, there is a last time at which a path is open.
5 When placing a pebble on last input, all paths from other inputs to

vertices on the path carry 1 pebble; moreover there are k such paths.
6 Therefore, we have Smin ≥ k + 1.
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Space vs Time

Pebbling a complete binary tree (4/4)
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Proof (2/2).
1 We prove by induction that Smin = k + 1 holds and that T = 2n − 1

holds for S = Smin.
2 The property is true for n = 1, that is, for k = 0.
3 Assume n ≥ 1. We do the left subtree in time 2(n/2)− 1 using k

pebbles (by induction) and leave one pebble at its root.
4 We do the rigth subtree in time 2(n/2)− 1 using k pebbles too.
5 Therefore, we have: T = 2((n/2)− 2 + 1.
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Space vs Time

Pebbling the pyramid graph (1/4)

What is Smin?
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Space vs Time

Pebbling the pyramid graph (2/4)

Theorem. For the pyramid graph P(m) on m inputs, we have Smin = m.
With S = Smin pebbles, the graph P(m) can be pebbled in time T = n,
where n = m(m + 1)/2 is the number of vertices of P(m).
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Space vs Time

Pebbling the pyramid graph (3/4)

Proof (1/2).

1 The last open path argument can be used to show that Smin ≥ m
holds.

2 To pebble P(m) with m pebbles, place pebbles on all inputs.

3 Move the leftmost pebble up one level.
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Space vs Time

Pebbling the pyramid graph (4/4)

Proof (2/2).

1 Now all vertices one level up can be pebbled using m − 1 pebbles.

2 Repeat this procedure at all subsequent levels.

3 Each vertex is pebbled once.

Observe that Smin is about
√

n, where n is the number of vertices of
P(m), which is much larger than for binary trees.
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Space vs Time

Extreme Tradeoffs (1/7)
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Space vs Time

Extreme Tradeoffs (2/7)
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For k ≥ 3, the grap Hk consists of a k- input tree T (k), a spine S(k) of k
vertices connected to the k outputs of Hk−1, an open vertex, and a
complete bipartite graph BP(k), with k inputs and k + 1 outputs.

(Moreno Maza) Space vs Time, Cache vs Main Memory CS 4435 - CS 9624 23 / 49

Space vs Time

Extreme Tradeoffs (3/7)
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What is Smin(H1)? Smin(H2)? Smin(Hk), for k ≥ 3?
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Space vs Time

Extreme Tradeoffs (4/7)
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Lemma. Smin(Hk) = k for all k ≥ 1.
Proof .

1 Since the tree T (k) needs k pebbles, we have Smin(Hk) ≥ k.
2 We show k pebbles suffice assuming outputs of Hk−1 can be pebbled in

succession with k − 1 pebbles.
3 Advance one pebble to tree output, then use k − 1 pebbles on Hk−1 to

pebble its k − 1 outputs and advance the k pebbles along the spine.
4 Advance one pebble to open vertex.
5 Put k pebbles on the BP(k) inputs and then pebble one output of

BP(k).
6 Repeat the whole process for each additional output of BP(k).

(Moreno Maza) Space vs Time, Cache vs Main Memory CS 4435 - CS 9624 25 / 49

Space vs Time

Extreme Tradeoffs (5/7)
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Lemma. Hk has N(k) = 2k2 + 5k − 6 vertices, for all k ≥ 2.

Proof .
1 Base case: N(2) = 12 = 8 + 10− 6.
2 By induction:

N(k) = N(k − 1) + (k + 1) + k + 1 + (k + k + 1)
= N(k − 1) + 4k + 3

= 2(k − 1)2 + 5(k − 1)− 6 + 4k + 3
= 2k2 + 5k − 6
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Space vs Time

Extreme Tradeoffs (6/7)
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Lemma. Hk requires at least (k + 1)! steps to be pebbled with
S = Smin(Hk) pebbles.

Proof .
1 When S = Smin(Hk), the subgraph Hk−1 must be repebbled k + 1

times.
2 Indeed, pebbling one output of BP(k), removes all pebbles from Hk−1.
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Space vs Time

Extreme Tradeoffs (7/7)
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Lemma. Hk can be pebbled in N(k) steps with k + 1 pebbles.

Proof .
1 Inductive Hypothesis: When k + 1 pebbles are used, assume all outputs

of Hk−1 can be pebbled in succession using k + 1 pebbles without
repebbling any vertices.

2 We advance k pebbles to the inputs of the BP(k) without repebbling
any vertices.

3 The remaining pebble is used to pebble outputs of the BP(k) in
succession.
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Cache vs Main Memory

The Red-Blue Pebble Game (1/3)

The red-blue pebble game is played on a directed and connected acyclic
graph G = (V ,E ).

At any point of the game, some vertices have red pebbles, others
have blue, others have pebbles of both types, others have no pebbles.

A configuration is a pair of subsets (R,B) of the vertex set V such
that any vertex v ∈ R (resp. v ∈ B) has a blue pebble (resp. red
pebble).

The initial configuration is the one given by (∅, I (G )).

The final configuration is the one given by (∅,O(G )).
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Cache vs Main Memory

The Red-Blue Pebble Game (2/3)

The rules of the red-blue pebble game are

(R1) Input rule: A red pebble may be placed on any vertex that has a
blue pebble.

(R2) Output rule: A blue pebble may be placed on any vertex that has a
red pebble.

(R3) Compute rule: If all immediate predecessors of a vertex v have red
pebbles then a red pebble may be placed on v .

(R4) Delete rule: A pebble red or blue may be removed at any time from
any vertex.
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Cache vs Main Memory

The Red-Blue Pebble Game (3/3)

Key concepts:

A transition is an ordered pair of configurations, the second of which
follows from the first according to one of the rules (R1) to (R4).

A caculation is a sequence of configurations, each successive pair of
which form a transition.

A complete caculation is one that begins with the initial
configuration and ends with the final configuration.
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Cache vs Main Memory

Application to cache complexity (1/7)

A graph on which the red-blue pebble game is played can model a
computation performed on a two-level memory structure, say, a fast
memory (or cache) and a slow memory.

Each vertex represents an operation and its result.

An edge from a vertex v1 to a vertex v2 indicates that the result of v1

is needed for performing the operation of v2.

An operation can be performed only if all operands reside in cache
(or fast memory).

The maximum allowable number of red (or blue) pebbles on the
graph at any point in the game corresponds to the number of words
available for use in the fast (or slow) memory, respectively.
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Cache vs Main Memory

Application to cache complexity (2/7)
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Cache vs Main Memory

Application to cache complexity (3/7)

Placing a red pebble using Rule (R3) corresponds to performing an
operation and storing the result in cache

Placing a blue pebble using Rule (R2) corresponds to storing a copy
of a result (currently in the fast memory) into the slow memory.

Placing a red pebble using Rule (R1) corresponds to retrieving a copy
of a result (currently in the slow memory) into the fast memory.

Removing a red or red or blue pebble using Rule (R4) means freeing
a memory location in the fast or slow memory respectively.
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Cache vs Main Memory

Application to cache complexity (4/7)

In what follows, the fast memory can only hold S words, where S is a
constant, while the slow memory is arbitrarily large.

For any given connected DAG, we are interested in the I/O time,
denoted by Q, which is the minimum number of transitions according
to Rules (R1) or (R2) required by any complete calculation.

In the original work of (J.W. Hong, H.T. Kung, 1981) a “static
problem” is associated with the red-blue pebble game, the
S-Partitioning Problem. Then lower bounds for the S-Partitioning
Problem lead to lower bounds for the red-blue pebble game.

To establish bounds like those (but weaker) of (J.W. Hong, H.T.
Kung, 1981) we will follow a simpler approach due to J.E. Savage (see
his book Models of Computations) reducing to the red pebble game.

(Moreno Maza) Space vs Time, Cache vs Main Memory CS 4435 - CS 9624 36 / 49



Cache vs Main Memory

Application to cache complexity (5/7)

Theorem. Assume S ≥ 3. For the n-point FFT graph we have
Q log(S) ∈ Ω(n log(n)). Moreover, there is a pebbling strategy for which
Q log(S) ∈ Θ(n log(n)) holds.
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Cache vs Main Memory

Application to cache complexity (6/7)

Decomposing the 16-point FFT graph with n = 16 and S = 4.
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Cache vs Main Memory

Application to cache complexity (7/7)

Theorem. For any DAG G encoding an algorithm multiplying two square
matrices of order n (based on an Θ(n3)-work algorithm) and for every
pebbling strategy P for G in the red-blue pebble game that uses S ≥ 3
red pebbles, the I/O-time satisfies the following lower bound:

QP ∈ Ω(n3/
√

S).

Furthermore, for S ≥ 3, there exists a pebbling strategy for which we have:

QP ∈ θ(n3/
√

S).
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Cache vs Main Memory

The S-Partitioning Problem (1/6)

Let G = (V ,E ) be a directed and connected acyclic graph. Let X ,Y ⊂ V
be two proper subsets of V , hence X 6= ∅ and Y 6= ∅ hold.

A subset D ⊂ V is a dominator set for X if for every path from a
vectex of I (G ) to a vertex of X has at least one vertex in D.

The minimum set of X is the set of vertices v ∈ X such that none
of the successors of v belongs to X .

We say that Y depends on X whenever there exists (v ,w) ∈ X × Y
such that (v ,w) ∈ E holds.
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Cache vs Main Memory

The S-Partitioning Problem (2/6)

Let G = (V ,E ) be a directed and connected acyclic graph and S be a
positive integer. A partition {V1, . . . ,Vh} of V is called an S-partition of
G if the following properties hold for each i = 1 · · · h:

1 Vi admits a dominator set Di with | Di |≤ S ,

2 the minimum set Mi of Vi satisfies | Mi |≤ S ,

3 There is no cyclic dependence among V1, . . . ,Vh.
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Cache vs Main Memory

The S-Partitioning Problem (3/6)

Consider a red-blue pebble game on G using at most S red pebbles.

Denote by C a complete calculation. There exists an integer h ≥ 2 and a
sequence of h consecutive subcalculations C1,C2, . . . ,Ch such that the
following holds:

for each i = 1 · · · (h − 1), the subcalculation Ci has exactly S
transitions using Rules (R1) or (R2),

Ch has at most S transitions using Rules (R1) or (R2),
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Cache vs Main Memory

The S-Partitioning Problem (4/6)

For each i = 1 · · · (h − 1), define Vi to be the largest subset of V with the
following properties:

During the subcalculation Ci each vertex of Vi receives a red pebble
thanks to Rules (R1) or (R3).

At the end of the subcalculation Ci each vertex of v ∈ Vi

either has red pebbles or blue pebbles that are placed on v during Ci ,
or v has a successor in Vi

v does not belong to any Vj for j = (i + 1) · · · h.

Lemma. The set {V1,V2, . . . ,Vh} is a 2S-partition of V .
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Cache vs Main Memory

The S-Partitioning Problem (5/6)

Theorem. Let G = (V ,E ) be a directed and connected acyclic graph.
Any complete calculation red-blue pebble game on G using at most S red
pebbles is associated with a 2S- partiton of G such that

S h ≥ q ≥ S (h − 1).

where q is the I/O time required by the calculation and h is the number of
parts in the 2S- partiton.

Sketch of proof.

1 {V1,V2, . . . ,Vh} (as defined before) is a 2S-partition of V ,

2 For each i = 1 · · · (h − 1), exactly S transitions with Rules (R1) or
(R2) correspond to Vi ,

3 No more than S transitions with Rules (R1) or (R2) correspond to Vh.

4 The inequalities follow.
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Cache vs Main Memory

The S-Partitioning Problem (6/6)

Corollary. Let G = (V ,E ) be a directed and connected acyclic graph. Let
P(2S) be the minimum number of parts in a 2S-partition of V . Then we
have:

Q ≥ S (P(2S)− 1).

Using this Corollary, lower bounds for P(2S) translate into lower bounds
for Q.
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Cache vs Main Memory

Reduction to the red pebble game (1/4)

The S-span of the DAG G = (V ,E ), denoted by ρ(S ,G ), is

the maximum number of vertices of G that can be pebbled with S
red pebbles in the red pebble game,

maximized over all initial placements of S red pebbles,

which means that the initialization rule is disallowed.

Theorem. We have: dQ/Se ρ(2S ,G ) ≥ | V | − | I (G ) |.

(Moreno Maza) Space vs Time, Cache vs Main Memory CS 4435 - CS 9624 46 / 49

Cache vs Main Memory

Reduction to the red pebble game (2/4)

Theorem. We have: dQ/Se ρ(2S ,G ) ≥ | V | − | I (G ) |.

Sketch of proof (1/3).

1 Let P be a pebbling strategy with S pebbles.

2 Divide P into consecutive sequential sub-pebblings (or calculations)
P1,P2, ...,Ph, where each sub-pebbling has S I/O operations (rules
(R1) and (R2)) except possibly the last one.

3 Thus we have h = dQ/Se.
4 We shall exhibit an upper bound R to the number of vertices of G

pebbled with red pebbles in any sub-pebbling Pj

5 This will satisfy h R ≥| V |.
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Cache vs Main Memory

Reduction to the red pebble game (3/4)

Theorem. We have: dQ/Se ρ(2S ,G ) ≥ | V | − | I (G ) |.

Sketch of proof (2/3).

1 The upper bound on R is developed by adding S new red pebbles and
showing that we may use these new pebbles to move all I/O
operations in each sub-pebbling Pj to either the beginning or the end
of the sub-pebbling without changing the number of computation
steps or I/O operations.

2 Consider a vertex v carrying a red pebble at some time during Pj and
which is pebbled for the first time with a blue pebble during Pj .

3 Instead of pebbling v with a blue pebble, we use a new red pebble to
keep red until its last output operation which is preserved and moved
to the end of Pj ,.
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Cache vs Main Memory

Reduction to the red pebble game (4/4)

Theorem. We have: dQ/Se ρ(2S ,G ) ≥ | V | − | I (G ) |.

Sketch of proof (3/3).

1 Consider a vertex v carrying a blue pebble at the start of Pj and that
is given a red during Pj ; consider the first pebbling of this kind for v .

2 Then, we use a new red pebble instead.

3 This allows us to move this input operation at the beginning of Pj ,
without violating the precedence conditions of G .

4 It follows that that the number of vertices that are pebbled with red
pebbles during any computations of Pj is at most ρ(2S ,G ).

5 Therefore, by definition of a pebbling strategy, we have
hρ(2S ,G ) ≥ | V | − | I (G ) |.
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