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From Cilk to Cilk++, CilkPlus and OpenCilk

∎ Cilk has been developed since 1994 at the MIT Laboratory for
Computer Science by Prof. Charles E. Leiserson and his group, in
particular by Matteo Frigo and Tao Benjamin Schardl.

∎ Besides being used for research and teaching, Cilk was the system
used to code the three world-class chess programs: Tech, Socrates, and
Cilkchess.

∎ Over the years, the implementations of Cilk have run on computers
ranging from networks of Linux laptops to an 1824-nodes Intel Paragon.

∎ From 2007 to 2009 Cilk has lead to Cilk++, developed by Cilk Arts, an
MIT spin-off, acquired by Intel in July 2009 and became CilkPlus.

∎ I recommend the following CilkPlus documentation
https://www.clear.rice.edu/comp422/resources/Intel_Cilk++_Programmers_Guide.pdf

∎ Cilk is still now developed at MIT with NSF support
https://cilk.mit.edu

∎ In this course, we will be using OpenCilk which is freely available in
source from the above URL.
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Cilk

∎ Cilk is a small set of linguistic extensions to C++ (resp. C) supporting
fork-join parallelism

∎ Cilk’s runtime features a provably efficient work-stealing scheduler.

∎ A number third-party libraries are known to work with OpenCilk out
of the box for parallel execution, see OpenCilk-powered libraries.

∎ OpenCilk includes the Cilkscale performance analyzer.
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Nested Parallelism in Cilk

int fib(int n)
{

if (n < 2) return n;
int x, y;
x = cilk_spawn fib(n-1);
y = fib(n-2);
cilk_sync;
return x+y;

}

∎ The named child function cilk_spawn fib(n-1) may execute in
parallel with its parent executes fib(n-2).

∎ Cilk++ keywords cilk_spawn and cilk_sync grant permissions for
parallel execution. They do not command parallel execution.
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Loop Parallelism in Cilk

a11 a12 ⋯ a1n
a21 a22 ⋯ a2n

a11 a21 ⋯ an1
a12 a22 ⋯ an221 22 2n

⋮ ⋮ ⋱ ⋮
an1 an2 ⋯ ann

12 22 n2

⋮ ⋮ ⋱ ⋮
a1n a2n ⋯ annn1 n2 nn 1n 2n nn

A AT

// indices run from 0, not 1
cilk_for (int i=1; i<n; ++i) {

for (int j=0; j<i; ++j) {
d bl [i][j]double temp = A[i][j];
A[i][j] = A[j][i];
A[j][i] = temp;

}}
}

The iterations of a cilk_for loop may execute in parallel.
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Serial Semantics (1/2)

∎ Cilk is a multithreaded language for parallel programming that
generalizes the semantics of C by introducing linguistic constructs for
parallel control.

∎ Cilk is a faithful extension of C (resp. C++):

ë The C elision of a Cilk (resp. Cilk++) is a correct implementation of
the semantics of the program.

ë Moreover, on one processor, a parallel Cilk program scales down to
run nearly as fast as its C elision.

∎ To obtain the serialization of a Cilk program
#define cilk_for for
#define cilk_spawn
#define cilk_sync
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Serial Semantics (2/2)

int fib (int n) {
if (n<2) return (n);
else {

int x,y;
x = cilk spawn fib(n-1);

Cilk++ source

x  cilk_spawn fib(n 1);
y = fib(n-2);
cilk_sync;
return (x+y);

}
}

int fib (int n) {
if (n<2) return (n);

else {
int x,y;
x  fib(n 1);x = fib(n-1);
y = fib(n-2);
return (x+y);

}
} Serialization
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Scheduling (1/2)

int fib (int n) {
if (n<2) return (n);
else {
int x,y;
  ilk fib( 1)x = cilk_spawn fib(n-1);
y = fib(n-2);
cilk_sync;
return (x+y);

}
}}

Memory I/O

Network

…P
P P P
$ $ $
P P P
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Scheduling (2/2)

∎ Cilk randomized work-stealing scheduler load-balances the
computation at run-time. Each processor maintains a ready deque:

ë A ready deque is a double ended queue, where each entry is a
procedure instance that is ready to execute.

ë Adding a procedure instance to the bottom of the deque represents a
procedure call being spawned.

ë A procedure instance being deleted from the bottom of the deque
represents the processor beginning/resuming execution on that
procedure.

ë Deletion from the top of the deque corresponds to that procedure
instance being stolen.

∎ A mathematical proof guarantees near-perfect linear speed-up on
applications with sufficient parallelism, as long as the architecture has
sufficient memory bandwidth.

∎ A spawn/return in Cilk is over 100 times faster than a Pthread
create/exit and less than 3 times slower than an ordinary C
function call on a modern Intel processor.
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template<typename T> void multiply_iter_par(int ii, int jj, int kk, T* A, T* B,
T* C)

{
cilk_for(int i = 0; i < ii; ++i)

cilk_for(int j = 0; j < jj; ++j)
for (int k = 0; k < kk; ++k)

C[i * jj + j] += A[i * kk + k] + B[k * jj + j];
}

Does not scale up well due to a poor locality and uncontrolled granularity.
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template<typename T> void multiply_rec_seq_helper(int i0, int i1, int j0,
int j1, int k0, int k1, T* A, ptrdiff_t lda, T* B, ptrdiff_t ldb, T* C,
ptrdiff_t ldc)

{
int di = i1 - i0;
int dj = j1 - j0;
int dk = k1 - k0;
if (di >= dj && di >= dk && di >= RECURSION_THRESHOLD) {

int mi = i0 + di / 2;
multiply_rec_seq_helper(i0, mi, j0, j1, k0, k1, A, lda, B, ldb, C, ldc);
multiply_rec_seq_helper(mi, i1, j0, j1, k0, k1, A, lda, B, ldb, C, ldc);

} else if (dj >= dk && dj >= RECURSION_THRESHOLD) {
int mj = j0 + dj / 2;
multiply_rec_seq_helper(i0, i1, j0, mj, k0, k1, A, lda, B, ldb, C, ldc);
multiply_rec_seq_helper(i0, i1, mj, j1, k0, k1, A, lda, B, ldb, C, ldc);

} else if (dk >= RECURSION_THRESHOLD) {
int mk = k0 + dk / 2;
multiply_rec_seq_helper(i0, i1, j0, j1, k0, mk, A, lda, B, ldb, C, ldc);
multiply_rec_seq_helper(i0, i1, j0, j1, mk, k1, A, lda, B, ldb, C, ldc);

} else {
for (int i = i0; i < i1; ++i)

for (int k = k0; k < k1; ++k)
for (int j = j0; j < j1; ++j)

C[i * ldc + j] += A[i * lda + k] * B[k * ldb + j];
}

}
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template<typename T> inline void multiply_rec_seq(int ii, int jj, int kk, T* A,
T* B, T* C)

{
multiply_rec_seq_helper(0, ii, 0, jj, 0, kk, A, kk, B, jj, C, jj);

}

Multiplying a 4000x8000 matrix by a 8000x4000 matrix
∎ on 32 cores = 8 sockets x 4 cores (Quad Core AMD Opteron 8354)

per socket.
∎ The 32 cores share a L3 32-way set-associative cache of 2 Mbytes.

#core Elision (s) Parallel (s) speedup
8 420.906 51.365 8.19

16 432.419 25.845 16.73
24 413.681 17.361 23.83
32 389.300 13.051 29.83
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Outline

1. Cilk: the fork-join model in action
1.1 The language and the compiler
1.2 The runtime system
1.3 Matrix multiplication in Cilk

2. The Fork-Join Model

3. Scheduling Theory and Implementation

4. Analysis of Multithreaded Algorithms
4.1 Review of Complexity Notions
4.2 Divide-and-Conquer Recurrences
4.3 Matrix Multiplication
4.4 Merge Sort
4.5 Tableau Construction
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The fork-join parallelism model

int fib (int n) {
if (n<2) return (n);

int fib (int n) {
if (n<2) return (n);

Example:
fib(4)( ) ( );

else {
int x,y;
x = cilk_spawn fib(n-1);
y  fib(n 2);

( ) ( );
else {

int x,y;
x = cilk_spawn fib(n-1);
y  fib(n 2);

fib(4)

4
y = fib(n-2);
cilk_sync;
return (x+y);

}

y = fib(n-2);
cilk_sync;
return (x+y);

} 3 2}
}

}
}

2 1 1 0

“Processor 
oblivious”

2

1

1 1 0

0 The computation dag
unfolds dynamically.

1 0

We shall also call this model multithreaded parallelism.
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Terminology

initial strand final strand

strand

spawn edge return edge
continue edge strand

spawn edge
call edge

∎ a strand is a maximal sequence of instructions that ends with a
spawn, sync, or return (either explicit or implicit) statement.

∎ At runtime, the spawn relation causes procedure instances to be
structured as a rooted tree, called spawn tree or parallel instruction
stream, where dependencies among strands form a dag.
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Work and span

We define several performance measures. We assume an ideal situation:
no cache issues, no interprocessor costs:

𝑇𝑝 is the minimum running time on 𝑝 processors
𝑇1 is called the work, that is, the sum of the number of instructions at

each node.
𝑇∞ is the minimum running time with infinitely many processors, called

the span
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The critical path length

Assuming all strands run in unit time, the longest path in the DAG is equal
to 𝑇∞. For this reason, 𝑇∞ is also referred to as the critical path length.
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Work law

∎ We have: 𝑇𝑝 ≥ 𝑇1⇑𝑝.
∎ Indeed, in the best case, 𝑝 processors can do 𝑝 works per unit of time.

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 24 / 107



Work law

∎ We have: 𝑇𝑝 ≥ 𝑇1⇑𝑝.

∎ Indeed, in the best case, 𝑝 processors can do 𝑝 works per unit of time.

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 24 / 107



Work law

∎ We have: 𝑇𝑝 ≥ 𝑇1⇑𝑝.
∎ Indeed, in the best case, 𝑝 processors can do 𝑝 works per unit of time.

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 24 / 107



Span law

∎ We have: 𝑇𝑝 ≥ 𝑇∞.
∎ Indeed, 𝑇𝑝 < 𝑇∞ contradicts the definitions of 𝑇𝑝 and 𝑇∞.
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Speedup on 𝑝 processors

∎ 𝑇1⇑𝑇𝑝 is called the speedup on 𝑝 processors

∎ A parallel program execution can have:

ë linear speedup: 𝑇1⇑𝑇𝑃 = Θ(𝑝)

ë superlinear speedup: 𝑇1⇑𝑇𝑃 = 𝜔(𝑝) (not possible in this model,
though it is possible in others)

ë sublinear speedup: 𝑇1⇑𝑇𝑃 = 𝑜(𝑝)
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Parallelism

Because the Span Law dictates 
that T ≥ T the maximumthat TP ≥ T∞, the maximum 
possible speedup given T1and T∞ is
T /T ll liT1/T∞ = parallelism

= the average 
amount of workamount of work 
per step along 
the span.
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The Fibonacci example (1/2)

1

2 7

8

4 6

2 7

3

5

∎ For Fib(4), we have 𝑇1 = 17 and 𝑇∞ = 8 and thus 𝑇1⇑𝑇∞ = 2.125.
∎ What about 𝑇1(Fib(𝑛)) and 𝑇∞(Fib(𝑛))?
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The Fibonacci example (2/2)

∎ We have 𝑇1(𝑛) = 𝑇1(𝑛 − 1) + 𝑇1(𝑛 − 2) +Θ(1). Let’s solve it.

ë One can verify by induction that 𝑇 (𝑛) ≤ 𝑎𝐹𝑛 − 𝑏 for 𝑏 > 0 large enough
to dominate Θ(1) and 𝑎 > 1.

ë We can then choose 𝑎 large enough to satisfy the initial condition,
whatever that is.

ë On the other hand we also have 𝐹𝑛 ≤ 𝑇 (𝑛).
ë Therefore 𝑇1(𝑛) = Θ(𝐹𝑛) = Θ(𝜓𝑛) with 𝜓 = (1 +

⌋︂
5)⇑2.

∎ We have 𝑇∞(𝑛) = max(𝑇∞(𝑛 − 1), 𝑇∞(𝑛 − 2)) +Θ(1).

ë We easily check 𝑇∞(𝑛 − 1) ≥ 𝑇∞(𝑛 − 2).
ë This implies 𝑇∞(𝑛) = 𝑇∞(𝑛 − 1) +Θ(1).
ë Therefore 𝑇∞(𝑛) = Θ(𝑛).

∎ Consequently the parallelism is Θ(𝜓𝑛⇑𝑛).

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 29 / 107



The Fibonacci example (2/2)

∎ We have 𝑇1(𝑛) = 𝑇1(𝑛 − 1) + 𝑇1(𝑛 − 2) +Θ(1). Let’s solve it.
ë One can verify by induction that 𝑇 (𝑛) ≤ 𝑎𝐹𝑛 − 𝑏 for 𝑏 > 0 large enough

to dominate Θ(1) and 𝑎 > 1.

ë We can then choose 𝑎 large enough to satisfy the initial condition,
whatever that is.

ë On the other hand we also have 𝐹𝑛 ≤ 𝑇 (𝑛).
ë Therefore 𝑇1(𝑛) = Θ(𝐹𝑛) = Θ(𝜓𝑛) with 𝜓 = (1 +

⌋︂
5)⇑2.

∎ We have 𝑇∞(𝑛) = max(𝑇∞(𝑛 − 1), 𝑇∞(𝑛 − 2)) +Θ(1).

ë We easily check 𝑇∞(𝑛 − 1) ≥ 𝑇∞(𝑛 − 2).
ë This implies 𝑇∞(𝑛) = 𝑇∞(𝑛 − 1) +Θ(1).
ë Therefore 𝑇∞(𝑛) = Θ(𝑛).

∎ Consequently the parallelism is Θ(𝜓𝑛⇑𝑛).

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 29 / 107



The Fibonacci example (2/2)

∎ We have 𝑇1(𝑛) = 𝑇1(𝑛 − 1) + 𝑇1(𝑛 − 2) +Θ(1). Let’s solve it.
ë One can verify by induction that 𝑇 (𝑛) ≤ 𝑎𝐹𝑛 − 𝑏 for 𝑏 > 0 large enough

to dominate Θ(1) and 𝑎 > 1.
ë We can then choose 𝑎 large enough to satisfy the initial condition,

whatever that is.

ë On the other hand we also have 𝐹𝑛 ≤ 𝑇 (𝑛).
ë Therefore 𝑇1(𝑛) = Θ(𝐹𝑛) = Θ(𝜓𝑛) with 𝜓 = (1 +

⌋︂
5)⇑2.

∎ We have 𝑇∞(𝑛) = max(𝑇∞(𝑛 − 1), 𝑇∞(𝑛 − 2)) +Θ(1).

ë We easily check 𝑇∞(𝑛 − 1) ≥ 𝑇∞(𝑛 − 2).
ë This implies 𝑇∞(𝑛) = 𝑇∞(𝑛 − 1) +Θ(1).
ë Therefore 𝑇∞(𝑛) = Θ(𝑛).

∎ Consequently the parallelism is Θ(𝜓𝑛⇑𝑛).

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 29 / 107



The Fibonacci example (2/2)

∎ We have 𝑇1(𝑛) = 𝑇1(𝑛 − 1) + 𝑇1(𝑛 − 2) +Θ(1). Let’s solve it.
ë One can verify by induction that 𝑇 (𝑛) ≤ 𝑎𝐹𝑛 − 𝑏 for 𝑏 > 0 large enough

to dominate Θ(1) and 𝑎 > 1.
ë We can then choose 𝑎 large enough to satisfy the initial condition,

whatever that is.
ë On the other hand we also have 𝐹𝑛 ≤ 𝑇 (𝑛).

ë Therefore 𝑇1(𝑛) = Θ(𝐹𝑛) = Θ(𝜓𝑛) with 𝜓 = (1 +
⌋︂

5)⇑2.

∎ We have 𝑇∞(𝑛) = max(𝑇∞(𝑛 − 1), 𝑇∞(𝑛 − 2)) +Θ(1).

ë We easily check 𝑇∞(𝑛 − 1) ≥ 𝑇∞(𝑛 − 2).
ë This implies 𝑇∞(𝑛) = 𝑇∞(𝑛 − 1) +Θ(1).
ë Therefore 𝑇∞(𝑛) = Θ(𝑛).

∎ Consequently the parallelism is Θ(𝜓𝑛⇑𝑛).

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 29 / 107



The Fibonacci example (2/2)

∎ We have 𝑇1(𝑛) = 𝑇1(𝑛 − 1) + 𝑇1(𝑛 − 2) +Θ(1). Let’s solve it.
ë One can verify by induction that 𝑇 (𝑛) ≤ 𝑎𝐹𝑛 − 𝑏 for 𝑏 > 0 large enough

to dominate Θ(1) and 𝑎 > 1.
ë We can then choose 𝑎 large enough to satisfy the initial condition,

whatever that is.
ë On the other hand we also have 𝐹𝑛 ≤ 𝑇 (𝑛).
ë Therefore 𝑇1(𝑛) = Θ(𝐹𝑛) = Θ(𝜓𝑛) with 𝜓 = (1 +

⌋︂
5)⇑2.

∎ We have 𝑇∞(𝑛) = max(𝑇∞(𝑛 − 1), 𝑇∞(𝑛 − 2)) +Θ(1).

ë We easily check 𝑇∞(𝑛 − 1) ≥ 𝑇∞(𝑛 − 2).
ë This implies 𝑇∞(𝑛) = 𝑇∞(𝑛 − 1) +Θ(1).
ë Therefore 𝑇∞(𝑛) = Θ(𝑛).

∎ Consequently the parallelism is Θ(𝜓𝑛⇑𝑛).

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 29 / 107



The Fibonacci example (2/2)

∎ We have 𝑇1(𝑛) = 𝑇1(𝑛 − 1) + 𝑇1(𝑛 − 2) +Θ(1). Let’s solve it.
ë One can verify by induction that 𝑇 (𝑛) ≤ 𝑎𝐹𝑛 − 𝑏 for 𝑏 > 0 large enough

to dominate Θ(1) and 𝑎 > 1.
ë We can then choose 𝑎 large enough to satisfy the initial condition,

whatever that is.
ë On the other hand we also have 𝐹𝑛 ≤ 𝑇 (𝑛).
ë Therefore 𝑇1(𝑛) = Θ(𝐹𝑛) = Θ(𝜓𝑛) with 𝜓 = (1 +

⌋︂
5)⇑2.

∎ We have 𝑇∞(𝑛) = max(𝑇∞(𝑛 − 1), 𝑇∞(𝑛 − 2)) +Θ(1).

ë We easily check 𝑇∞(𝑛 − 1) ≥ 𝑇∞(𝑛 − 2).
ë This implies 𝑇∞(𝑛) = 𝑇∞(𝑛 − 1) +Θ(1).
ë Therefore 𝑇∞(𝑛) = Θ(𝑛).

∎ Consequently the parallelism is Θ(𝜓𝑛⇑𝑛).

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 29 / 107



The Fibonacci example (2/2)

∎ We have 𝑇1(𝑛) = 𝑇1(𝑛 − 1) + 𝑇1(𝑛 − 2) +Θ(1). Let’s solve it.
ë One can verify by induction that 𝑇 (𝑛) ≤ 𝑎𝐹𝑛 − 𝑏 for 𝑏 > 0 large enough

to dominate Θ(1) and 𝑎 > 1.
ë We can then choose 𝑎 large enough to satisfy the initial condition,

whatever that is.
ë On the other hand we also have 𝐹𝑛 ≤ 𝑇 (𝑛).
ë Therefore 𝑇1(𝑛) = Θ(𝐹𝑛) = Θ(𝜓𝑛) with 𝜓 = (1 +

⌋︂
5)⇑2.

∎ We have 𝑇∞(𝑛) = max(𝑇∞(𝑛 − 1), 𝑇∞(𝑛 − 2)) +Θ(1).
ë We easily check 𝑇∞(𝑛 − 1) ≥ 𝑇∞(𝑛 − 2).

ë This implies 𝑇∞(𝑛) = 𝑇∞(𝑛 − 1) +Θ(1).
ë Therefore 𝑇∞(𝑛) = Θ(𝑛).

∎ Consequently the parallelism is Θ(𝜓𝑛⇑𝑛).

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 29 / 107



The Fibonacci example (2/2)

∎ We have 𝑇1(𝑛) = 𝑇1(𝑛 − 1) + 𝑇1(𝑛 − 2) +Θ(1). Let’s solve it.
ë One can verify by induction that 𝑇 (𝑛) ≤ 𝑎𝐹𝑛 − 𝑏 for 𝑏 > 0 large enough

to dominate Θ(1) and 𝑎 > 1.
ë We can then choose 𝑎 large enough to satisfy the initial condition,

whatever that is.
ë On the other hand we also have 𝐹𝑛 ≤ 𝑇 (𝑛).
ë Therefore 𝑇1(𝑛) = Θ(𝐹𝑛) = Θ(𝜓𝑛) with 𝜓 = (1 +

⌋︂
5)⇑2.

∎ We have 𝑇∞(𝑛) = max(𝑇∞(𝑛 − 1), 𝑇∞(𝑛 − 2)) +Θ(1).
ë We easily check 𝑇∞(𝑛 − 1) ≥ 𝑇∞(𝑛 − 2).
ë This implies 𝑇∞(𝑛) = 𝑇∞(𝑛 − 1) +Θ(1).

ë Therefore 𝑇∞(𝑛) = Θ(𝑛).

∎ Consequently the parallelism is Θ(𝜓𝑛⇑𝑛).

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 29 / 107



The Fibonacci example (2/2)

∎ We have 𝑇1(𝑛) = 𝑇1(𝑛 − 1) + 𝑇1(𝑛 − 2) +Θ(1). Let’s solve it.
ë One can verify by induction that 𝑇 (𝑛) ≤ 𝑎𝐹𝑛 − 𝑏 for 𝑏 > 0 large enough

to dominate Θ(1) and 𝑎 > 1.
ë We can then choose 𝑎 large enough to satisfy the initial condition,

whatever that is.
ë On the other hand we also have 𝐹𝑛 ≤ 𝑇 (𝑛).
ë Therefore 𝑇1(𝑛) = Θ(𝐹𝑛) = Θ(𝜓𝑛) with 𝜓 = (1 +

⌋︂
5)⇑2.

∎ We have 𝑇∞(𝑛) = max(𝑇∞(𝑛 − 1), 𝑇∞(𝑛 − 2)) +Θ(1).
ë We easily check 𝑇∞(𝑛 − 1) ≥ 𝑇∞(𝑛 − 2).
ë This implies 𝑇∞(𝑛) = 𝑇∞(𝑛 − 1) +Θ(1).
ë Therefore 𝑇∞(𝑛) = Θ(𝑛).

∎ Consequently the parallelism is Θ(𝜓𝑛⇑𝑛).

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 29 / 107



The Fibonacci example (2/2)
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Series composition

A B

∎ Work?

∎ Span?
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Parallel composition
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Some results in the fork-join parallelism model

Algorithm Work Spang p
Merge sort Θ(n lg n) Θ(lg3n)
Matrix multiplication Θ(n3) Θ(lg n)
Strassen Θ(nlg7) Θ(lg2n)
LU-decomposition Θ(n3) Θ(n lg n)
Tableau construction Θ(n2) Ω(nlg3)
FFT Θ(n lg n) Θ(lg2n)
B d h fi h Θ(E) Θ(d l V)Breadth-first search Θ(E) Θ(d lg V)

We shall prove most of these results in the next sections.
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For loop parallelism in Cilk++

a11 a12 ⋯ a1n
a21 a22 ⋯ a2n

a11 a21 ⋯ an1
a12 a22 ⋯ an221 22 2n

⋮ ⋮ ⋱ ⋮
an1 an2 ⋯ ann

12 22 n2

⋮ ⋮ ⋱ ⋮
a1n a2n ⋯ annn1 n2 nn 1n 2n nn

A AT

cilk_for (int i=1; i<n; ++i) {
for (int j=0; j<i; ++j) {

double temp = A[i][j];
A[i][j] = A[j][i];
A[j][i] = temp;

}
}

The iterations of a cilk_for loop execute in parallel.
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Implementation of for loops in Cilk++

Up to details the previous loop is compiled as follows, using a
divide-and-conquer implementation:
void recur(int lo, int hi) {

if (hi > lo) { // coarsen
int mid = lo + (hi - lo)/2;
cilk_spawn recur(lo, mid);
recur(mid+1, hi);
cilk_sync;

} else
for (int j=lo; j<hi+1; ++j) {

double temp = A[hi][j];
A[hi][j] = A[j][hi];
A[j][hi] = temp;

}
}

}
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Analysis of parallel for loops

1 2 3 41 2 3 4 5 6 7 8

Here we do not assume that each strand runs in unit time.

∎ Span of loop control: Θ(log(𝑛))
∎ Max span of an iteration: Θ(𝑛)

∎ Span: Θ(𝑛)

∎ Work: Θ(𝑛2)

∎ Parallelism: Θ(𝑛)
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Analysis of parallel for loops

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 38 / 107



Parallelizing the inner loop
This would yield the following code

cilk_for (int i=1; i<n; ++i) {
cilk_for (int j=0; j<i; ++j) {

double temp = A[i][j];
A[i][j] = A[j][i];
A[j][i] = temp;

}
}

∎ Span of outer loop control: Θ(log(𝑛))
∎ Max span of an inner loop control: Θ(log(𝑛))
∎ Span of an iteration: Θ(1)
∎ Span: Θ(log(𝑛))
∎ Work: Θ(𝑛2)
∎ Parallelism: Θ(𝑛2⇑log(𝑛))

In practice, parallelizing the inner loop would increase the memory footprint
(allocation of the temporaries) and increase parallelism overheads. So, this is
not a good idea.
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Scheduling

Memory I/O

Network

P$ $ $…P
P P P
$ $ $

A scheduler’s job is to map a computation to particular processors. Such
a mapping is called a schedule.

∎ If decisions are made at runtime, the scheduler is online, otherwise, it
is offline

∎ Cilk++’s scheduler maps strands onto processors dynamically at
runtime.
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Greedy scheduling (1/2)

∎ A strand is ready if all its predecessors have executed

∎ A scheduler is greedy if it attempts to do as much work as possible
at every step.
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Greedy scheduling (2/2)

P = 3

∎ In any greedy schedule, there are two types of steps:

ë complete step: There are at least 𝑝 strands that are ready to run.
The greedy scheduler selects any 𝑝 of them and runs them.

ë incomplete step: There are strictly less than 𝑝 strands that are ready
to run. The greedy scheduler runs them all.
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Theorem of Graham and Brent

P = 3

For any greedy schedule, we have 𝑇𝑝 ≤ 𝑇1⇑𝑝 + 𝑇∞
∎ #complete steps ≤ 𝑇1⇑𝑝, by definition of 𝑇1.

∎ #incomplete steps ≤ 𝑇∞. Indeed, let 𝐺′ be the subgraph of 𝐺 that
remains to be executed immediately prior to an incomplete step.

(𝑖) During this incomplete step, all strands that can be run are actually run
(𝑖𝑖) Hence removing this incomplete step from 𝐺′ reduces 𝑇∞ by one.
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Corollary 1

A greedy scheduler is always within a factor of 2 of optimal.

From the work and span laws, we have:

𝑇𝑃 ≥ max(𝑇1⇑𝑝, 𝑇∞) (1)

In addition, we can trivially express:

𝑇1⇑𝑝 ≤ max(𝑇1⇑𝑝, 𝑇∞) (2)

𝑇∞ ≤ max(𝑇1⇑𝑝, 𝑇∞) (3)
From Graham - Brent Theorem, we deduce:

𝑇𝑃 ≤ 𝑇1⇑𝑝 + 𝑇∞ (4)
≤ max(𝑇1⇑𝑝, 𝑇∞) +max(𝑇1⇑𝑝, 𝑇∞) (5)
≤ 2 max(𝑇1⇑𝑝, 𝑇∞) (6)

which concludes the proof.
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≤ 2 max(𝑇1⇑𝑝, 𝑇∞) (6)

which concludes the proof.
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Corollary 2

The greedy scheduler achieves linear speedup whenever 𝑇∞ = 𝑂(𝑇1⇑𝑝).

From Graham - Brent Theorem, we deduce:

𝑇𝑝 ≤ 𝑇1⇑𝑝 + 𝑇∞ (7)
= 𝑇1⇑𝑝 +𝑂(𝑇1⇑𝑝) (8)
= Θ(𝑇1⇑𝑝) (9)

∎ This result suggests to operate in the range where 𝑇1⇑𝑝 dominates
𝑇∞.

∎ As long as 𝑇1⇑𝑝 dominates 𝑇∞, all processors can be used efficiently.
∎ The quantity 𝑇1⇑𝑝𝑇∞ is called the parallel slackness.
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The work-stealing scheduler (1/9)

∎ Cilk/Cilk++ randomized work-stealing scheduler load-balances the
computation at run-time. Each processor maintains a ready deque:

ë A ready deque is a double ended queue, where each entry is a
procedure instance that is ready to execute.

ë Adding a procedure instance to the bottom of the deque represents a
procedure call being spawned.

ë A procedure instance being deleted from the bottom of the deque
represents the processor beginning/resuming execution on that
procedure.

ë Deletion from the top of the deque corresponds to that procedure
instance being stolen.

∎ A mathematical proof guarantees near-perfect linear speed-up on
applications with sufficient parallelism, as long as the architecture has
sufficient memory bandwidth.

∎ A spawn/return in Cilk is over 100 times faster than a Pthread
create/exit and less than 3 times slower than an ordinary C
function call on a modern Intel processor.
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The work-stealing scheduler (2/9)

Each processor possesses a deque
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The work-stealing scheduler (3/9)
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The work-stealing scheduler (4/9)

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 50 / 107



The work-stealing scheduler (4/9)

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 50 / 107



The work-stealing scheduler (5/9)
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The work-stealing scheduler (7/9)
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The work-stealing scheduler (8/9)
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The work-stealing scheduler (9/9)
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Performances of the work-stealing scheduler
Assume that
∎ each strand executes in unit time,

∎ for almost all “parallel steps” there are at least 𝑝 strands to run,
∎ each processor is either working or stealing.

Then, the randomized work-stealing scheduler is expected to run in

𝑇𝑃 = 𝑇1⇑𝑝 +𝑂(𝑇∞)

∎ A processor is either working or stealing.
∎ The total time all processors spend working is 𝑇1, by definition of 𝑇1.
∎ Each stealing processor has a probability of 1⇑𝑝 to reduce the span by

1.
∎ Thus, the expected number of steals is 𝑂(𝑝𝑇∞).
∎ Since 𝑝 processors are working/stealing together, the expected running

time

𝑇𝑃 = #steps without steal +#steps with steal = 𝑇1⇑𝑝 + 𝑂(𝑝𝑇∞)⇑𝑝.
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Overheads and burden

∎ Obviously 𝑇1⇑𝑝 + 𝑇∞ will under-estimate 𝑇𝑝 in practice.

∎ Many factors (simplification assumptions of the fork-join parallelism
model, architecture limitation, costs of executing the parallel
constructs, overheads of scheduling) will make 𝑇𝑝 larger in practice.

∎ One may want to estimate the impact of those factors:

1 by improving the estimate of the randomized work-stealing complexity
result

2 by comparing a Cilk program with its C elision
3 by estimating the costs of spawning and synchronizing

∎ Cilk estimates 𝑇𝑝 as 𝑇𝑝 = 𝑇1⇑𝑝 + 1.7 burden_span, where
burden_span is 15000 instructions times the number of continuation
edges along the critical path.
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Span overhead

∎ Let 𝑇1, 𝑇∞, 𝑇𝑝 be given. We want to refine the randomized
work-stealing complexity result.

∎ The span overhead is the smallest constant 𝑐∞ such that

𝑇𝑝 ≤ 𝑇1⇑𝑝 + 𝑐∞𝑇∞.

∎ Recall that 𝑇1⇑𝑇∞ is the maximum possible speed-up that the
application can obtain.

∎ We call parallel slackness assumption the following property

𝑇1⇑𝑇∞ >> 𝑐∞𝑝 (10)

that is, 𝑐∞ 𝑝 is much smaller than the average parallelism .

∎ Under this assumption it follows that 𝑇1⇑𝑝 >> 𝑐∞𝑇∞ holds, thus 𝑐∞
has little effect on performance when sufficiently slackness exists.
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Work overhead

∎ Let 𝑇𝑠 be the running time of the C++ elision of a Cilk++ program.

∎ We denote by 𝑐1 the work overhead

𝑐1 = 𝑇1⇑𝑇𝑠

∎ Recall the expected running time: 𝑇𝑃 ≤ 𝑇1⇑𝑃 + 𝑐∞𝑇∞. Thus with the
parallel slackness assumption we get

𝑇𝑃 ≤ 𝑐1𝑇𝑠⇑𝑝 + 𝑐∞𝑇∞ ≃ 𝑐1𝑇𝑠⇑𝑝. (11)

∎ We can now state the work first principle precisely
Minimize 𝑐1 , even at the expense of a larger 𝑐∞.

This is a key feature since it is conceptually easier to minimize 𝑐1
rather than minimizing 𝑐∞.

∎ Cilk++ estimates 𝑇𝑝 as 𝑇𝑝 = 𝑇1⇑𝑝 + 1.7 burden_span, where
burden_span is 15000 instructions times the number of continuation
edges along the critical path.
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Orders of magnitude
Let 𝑓 , 𝑔 et ℎ be functions from N to R.

∎ We say that 𝑔(𝑛) is in the order of magnitude of 𝑓(𝑛) and we write
𝑓(𝑛) ∈ Θ(𝑔(𝑛)) if there exist two strictly positive constants 𝑐1 and 𝑐2
such that for 𝑛 big enough we have

0 ≤ 𝑐1 𝑔(𝑛) ≤ 𝑓(𝑛) ≤ 𝑐2 𝑔(𝑛). (12)

∎ We say that 𝑔(𝑛) is an asymptotic upper bound of 𝑓(𝑛) and we
write 𝑓(𝑛) ∈ 𝒪(𝑔(𝑛)) if there exists a strictly positive constants 𝑐2
such that for 𝑛 big enough we have

0 ≤ 𝑓(𝑛) ≤ 𝑐2 𝑔(𝑛). (13)

∎ We say that 𝑔(𝑛) is an asymptotic lower bound of 𝑓(𝑛) and we
write 𝑓(𝑛) ∈ Ω(𝑔(𝑛)) if there exists a strictly positive constants 𝑐1
such that for 𝑛 big enough we have

0 ≤ 𝑐1 𝑔(𝑛) ≤ 𝑓(𝑛). (14)
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Examples
∎ With 𝑓(𝑛) = 1

2𝑛
2 − 3𝑛 and 𝑔(𝑛) = 𝑛2 we have 𝑓(𝑛) ∈ Θ(𝑔(𝑛)). Indeed we

have
𝑐1 𝑛

2
≤

1
2
𝑛2

− 3𝑛 ≤ 𝑐2 𝑛
2. (15)

for 𝑛 ≥ 12 with 𝑐1 =
1
4 and 𝑐2 =

1
2 .

∎ Assume that there exists a positive integer 𝑛0 such that 𝑓(𝑛) > 0 and
𝑔(𝑛) > 0 for every 𝑛 ≥ 𝑛0. Then we have

𝑚𝑎𝑥(𝑓(𝑛), 𝑔(𝑛)) ∈ Θ(𝑓(𝑛) + 𝑔(𝑛)). (16)

Indeed we have
1
2
(𝑓(𝑛) + 𝑔(𝑛)) ≤ 𝑚𝑎𝑥(𝑓(𝑛), 𝑔(𝑛)) ≤ (𝑓(𝑛) + 𝑔(𝑛)). (17)

∎ Assume 𝑎 and 𝑏 are positive real constants. Then we have

(𝑛 + 𝑎)𝑏
∈ Θ(𝑛𝑏

). (18)

Indeed for 𝑛 ≥ 𝑎 we have

0 ≤ 𝑛𝑏
≤ (𝑛 + 𝑎)𝑏

≤ (2𝑛)𝑏. (19)

Hence we can choose 𝑐1 = 1 and 𝑐2 = 2𝑏.
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Properties

∎ 𝑓(𝑛) ∈ Θ(𝑔(𝑛)) holds iff 𝑓(𝑛) ∈ 𝒪(𝑔(𝑛)) and 𝑓(𝑛) ∈ Ω(𝑔(𝑛)) hold
together.

∎ Each of the predicates 𝑓(𝑛) ∈ Θ(𝑔(𝑛)), 𝑓(𝑛) ∈ 𝒪(𝑔(𝑛)) and
𝑓(𝑛) ∈ Ω(𝑔(𝑛)) define a reflexive and transitive binary relation among
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Another example

Let us give another fundamental example.

Let 𝑝(𝑛) be a (univariate) polynomial with degree 𝑑 > 0. Let 𝑎𝑑 be its
leading coefficient and assume 𝑎𝑑 > 0. Let 𝑘 be an integer. Then we have:
(1) if 𝑘 ≥ 𝑑 then 𝑝(𝑛) ∈ 𝒪(𝑛𝑘),
(2) if 𝑘 ≤ 𝑑 then 𝑝(𝑛) ∈ Ω(𝑛𝑘),
(3) if 𝑘 = 𝑑 then 𝑝(𝑛) ∈ Θ(𝑛𝑘).
Exercise: Prove the following

Σ𝑘=𝑛
𝑘=1 𝑘 ∈ Θ(𝑛2

). (23)
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Divide-and-Conquer Algorithms
Divide-and-conquer algorithms proceed as follows.

Divide the input problem into sub-problems.
Conquer on the sub-problems by solving them directly if they are

small enough or proceed recursively.
Combine the solutions of the sub-problems to obtain the solution of

the input problem.
Equation satisfied by 𝑇 (𝑛).
∎ Assume that the size of the input problem increases with an integer 𝑛.
∎ Let 𝑇 (𝑛) be the time complexity of a divide-and-conquer algorithm to

solve this problem.
∎ Then 𝑇 (𝑛) satisfies an equation of the form:

𝑇 (𝑛) = 𝑎𝑇 (𝑛⇑𝑏) + 𝑓(𝑛). (24)

where 𝑓(𝑛) is the cost of the combine-part, 𝑎 ≥ 1 is the number of
recursively calls and 𝑛⇑𝑏 with 𝑏 > 1 is the size of a sub-problem.
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Tree associated with a divide-and-conquer recurrence

Labeled tree associated with the equation. Assume 𝑛 is a power of 𝑏,
say 𝑛 = 𝑏𝑝.

To solve the equation

𝑇 (𝑛) = 𝑎𝑇 (𝑛⇑𝑏) + 𝑓(𝑛).

we can associate a labeled tree 𝒜(𝑛) to it as follows.
(1) If 𝑛 = 1, then 𝒜(𝑛) is reduced to a single leaf labeled 𝑇 (1).
(2) If 𝑛 > 1, then the root of 𝒜(𝑛) is labeled by 𝑓(𝑛) and 𝒜(𝑛)

possesses 𝑎 labeled sub-trees all equal to 𝒜(𝑛⇑𝑏).

The labeled tree 𝒜(𝑛) associated with 𝑇 (𝑛) = 𝑎𝑇 (𝑛⇑𝑏) + 𝑓(𝑛) has height
𝑝 + 1. Moreover the sum of its labels is 𝑇 (𝑛).
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(2) If 𝑛 > 1, then the root of 𝒜(𝑛) is labeled by 𝑓(𝑛) and 𝒜(𝑛)

possesses 𝑎 labeled sub-trees all equal to 𝒜(𝑛⇑𝑏).

The labeled tree 𝒜(𝑛) associated with 𝑇 (𝑛) = 𝑎𝑇 (𝑛⇑𝑏) + 𝑓(𝑛) has height
𝑝 + 1. Moreover the sum of its labels is 𝑇 (𝑛).
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Solving divide-and-conquer recurrences (1/2)

T(n)

T(n)

T( /b)T( /b) T( /b)
af(n)

T(n/b)T(n/b) T(n/b)…

a
T( /b)T( /b) T( /b)f( /b) f( /b)

f(n)

f( /b) …

T( /b2)T( /b2) T( /b2)
a

T(n/b)T(n/b) T(n/b)f(n/b) f(n/b)f(n/b)

T(n/b2)T(n/b2) T(n/b2)…

f( /b)
a

f( /b)f( /b)

f(n)

f(n/b)…
a

T( /b2)T( /b2) T( /b2)f( /b2) f( /b2)f( /b2)

f(n/b)f(n/b)

…T(n/b2)T(n/b2) T(n/b2)f(n/b2) f(n/b2)f(n/b2)

T(1)
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Solving divide-and-conquer recurrences (2/2)

f( /b)
a f(n)

f( /b)f( /b)f( /b)

f(n)

f(n/b)…

f( /b2) f( /b2) 2 f( /b2)

h = logbn

f( /b2)

a f(n/b)f(n/b)f(n/b)
a

f(n/b2) f(n/b2)…

…

a2 f(n/b2)f(n/b2)

…

alogbn T(1)T(1)
= Θ(nlogba)

I C log a ith f( )IDEA: Compare nlogba with f(n) .
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Master Theorem: case 𝑛log𝑏𝑎 ≫ 𝑓(𝑛)

f(n/b)
a f(n)

a f(n/b)f(n/b)f(n/b)

f(n)

f(n/b)…

f(n/b2) f(n/b2)

a

a2

f(n/b)

f(n/b2)

h = logbn

f(n/b2)

f(n/b)f(n/b)
anlogba ≫ f(n)

GEOMETRICALLYf(n/b2) f(n/b2)… a2

…

f(n/b2)f(n/b2) GEOMETRICALLY 
INCREASING

Specifically f(n) O(nlogba – ε)

alogbn T(1)

…

T(1)

Specifically, f(n) = O(nlogba ε)
for some constant ε > 0 .

= Θ(nlogba)

T(n) = Θ(nlogba)T(n) = Θ(n gb )
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Master Theorem: case 𝑓(𝑛) ∈ Θ(𝑛log𝑏𝑎log𝑘𝑛)

f(n/b)
a f(n)

a f(n/b)f(n/b)f(n/b)

f(n)

nlogba ≈ f(n)f(n/b)…

f(n/b2) f(n/b2)

a

a2

f(n/b)

f(n/b2)

h = logbn

f(n/b2)

f(n/b)f(n/b)
a

nlogba ≈ f(n)

ARITHMETICALLY 
f(n/b2) f(n/b2)… a2

…

f(n/b2)f(n/b2) INCREASING

Specifically, f(n) = Θ(nlogbalgkn)

alogbn T(1)

…

T(1)

p y, ( ) ( g )
for some constant k ≥ 0.

= Θ(nlogba)

T(n) = Θ(nlogbalgk+1n))T(n)  Θ(n b lg n))
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Master Theorem: case where 𝑓(𝑛) ≫ 𝑛log𝑏𝑎

f(n/b)
a f(n)

a f(n/b)f(n/b)f(n/b)

f(n)nlogba ≪ f(n)
GEOMETRICALLYf(n/b)…

f(n/b2) f(n/b2)

a

a2

f(n/b)

f(n/b2)

h = logbn

f(n/b2)

f(n/b)f(n/b)
a

GEOMETRICALLY 
DECREASING

S ifi ll f( )f(n/b2) f(n/b2)… a2

…

f(n/b2)f(n/b2) Specifically, f(n) = 
Ω(nlogba + ε) for some 

constant ε > 0 .*

alogbn T(1)

…

T(1)
= Θ(nlogba)T(n) = Θ(f(n))

*and f(n) satisfies the regularity condition that 
a  f(n/b) ≤ c f(n) for some constant c < 1.
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More examples

∎ Consider the relation:

𝑇 (𝑛) = 2𝑇 (𝑛⇑2) + 𝑛2. (25)

We obtain:

𝑇 (𝑛) = 𝑛2
+
𝑛2

2
+
𝑛2

4
+
𝑛2

8
+⋯ +

𝑛2

2𝑝
+ 𝑛𝑇 (1). (26)

Hence we have:
𝑇 (𝑛) ∈ Θ(𝑛2

). (27)

∎ Consider the relation:

𝑇 (𝑛) = 3𝑇 (𝑛⇑3) + 𝑛. (28)

We obtain:
𝑇 (𝑛) ∈ Θ(log3(𝑛)𝑛). (29)
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Master Theorem when 𝑏 = 2
Let 𝑎 > 0 be an integer and let 𝑓, 𝑇 ∶ NÐ→ R+ be functions such that

(𝑖) 𝑓(2𝑛) ≥ 2 𝑓(𝑛) and 𝑓(𝑛) ≥ 𝑛.
(𝑖𝑖) If 𝑛 = 2𝑝 then 𝑇 (𝑛) ≤ 𝑎𝑇 (𝑛⇑2) + 𝑓(𝑛).
Then for 𝑛 = 2𝑝 we have:
(1) if 𝑎 = 1 then

𝑇 (𝑛) ≤ (2 − 2⇑𝑛) 𝑓(𝑛) + 𝑇 (1) ∈ 𝒪(𝑓(𝑛)), (30)

(2) if 𝑎 = 2 then

𝑇 (𝑛) ≤ 𝑓(𝑛) log2(𝑛) + 𝑇 (1)𝑛 ∈ 𝒪(log2(𝑛) 𝑓(𝑛)), (31)

(3) if 𝑎 ≥ 3 then

𝑇 (𝑛) ≤
2

𝑎 − 2
(𝑛log2(𝑎)−1

− 1) 𝑓(𝑛)+𝑇 (1)𝑛log2(𝑎) ∈ 𝒪(𝑓(𝑛)𝑛log2(𝑎)−1
).

(32)
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Master Theorem when 𝑏 = 2

Indeed

𝑇 (2𝑝) ≤ 𝑎𝑇 (2𝑝−1) + 𝑓(2𝑝)

≤ 𝑎 )︀𝑎𝑇 (2𝑝−2) + 𝑓(2𝑝−1)⌈︀ + 𝑓(2𝑝)

= 𝑎2 𝑇 (2𝑝−2) + 𝑎𝑓(2𝑝−1) + 𝑓(2𝑝)

≤ 𝑎2 )︀𝑎𝑇 (2𝑝−3) + 𝑓(2𝑝−2)⌈︀ + 𝑎𝑓(2𝑝−1) + 𝑓(2𝑝)

= 𝑎3 𝑇 (2𝑝−3) + 𝑎2 𝑓(2𝑝−2) + 𝑎𝑓(2𝑝−1) + 𝑓(2𝑝)

≤ 𝑎𝑝 𝑇 (𝑠1) + 𝜎𝑗=𝑝−1
𝑗=0 𝑎𝑗 𝑓(2𝑝−𝑗)

(33)
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Master Theorem when 𝑏 = 2

Moreover
𝑓(2𝑝) ≥ 2 𝑓(2𝑝−1)
𝑓(2𝑝) ≥ 22 𝑓(2𝑝−2)

⋮ ⋮ ⋮

𝑓(2𝑝) ≥ 2𝑗 𝑓(2𝑝−𝑗)

(34)

Thus
Σ𝑗=𝑝−1

𝑗=0 𝑎𝑗 𝑓(2𝑝−𝑗
) ≤ 𝑓(2𝑝

)Σ𝑗=𝑝−1
𝑗=0 (

𝑎

2
)

𝑗

. (35)
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Master Theorem when 𝑏 = 2

Hence
𝑇 (2𝑝

) ≤ 𝑎𝑝 𝑇 (1) + 𝑓(2𝑝
)Σ𝑗=𝑝−1

𝑗=0 (
𝑎

2
)

𝑗

. (36)

For 𝑎 = 1 we obtain

𝑇 (2𝑝) ≤ 𝑇 (1) + 𝑓(2𝑝)Σ𝑗=𝑝−1
𝑗=0 (1

2)
𝑗

= 𝑇 (1) + 𝑓(2𝑝)
1

2𝑝 −1
1
2−1

= 𝑇 (1) + 𝑓(𝑛) (2 − 2⇑𝑛).

(37)

For 𝑎 = 2 we obtain

𝑇 (2𝑝) ≤ 2𝑝 𝑇 (1) + 𝑓(2𝑝)𝑝
= 𝑛𝑇 (1) + 𝑓(𝑛) log2(𝑛).

(38)
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Master Theorem cheat sheet
For 𝑎 ≥ 1 and 𝑏 > 1, consider again the equation

𝑇 (𝑛) = 𝑎𝑇 (𝑛⇑𝑏) + 𝑓(𝑛). (39)

∎ We have:

(∃𝜀 > 0) 𝑓(𝑛) ∈ 𝑂(𝑛log𝑏𝑎−𝜀
) Ô⇒ 𝑇 (𝑛) ∈ Θ(𝑛log𝑏𝑎

) (40)

∎ We have:

(∃𝜀 > 0) 𝑓(𝑛) ∈ Θ(𝑛log𝑏𝑎 log𝑘𝑛) Ô⇒ 𝑇 (𝑛) ∈ Θ(𝑛log𝑏𝑎 log𝑘+1𝑛) (41)

∎ We have:

(∃𝜀 > 0) 𝑓(𝑛) ∈ Ω(𝑛log𝑏𝑎+𝜀
) Ô⇒ 𝑇 (𝑛) ∈ Θ(𝑓(𝑛)) (42)
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) Ô⇒ 𝑇 (𝑛) ∈ Θ(𝑛log𝑏𝑎

) (40)

∎ We have:

(∃𝜀 > 0) 𝑓(𝑛) ∈ Θ(𝑛log𝑏𝑎 log𝑘𝑛) Ô⇒ 𝑇 (𝑛) ∈ Θ(𝑛log𝑏𝑎 log𝑘+1𝑛) (41)
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) Ô⇒ 𝑇 (𝑛) ∈ Θ(𝑓(𝑛)) (42)
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Master Theorem quizz!

∎ 𝑇 (𝑛) = 4𝑇 (𝑛⇑2) + 𝑛

∎ 𝑇 (𝑛) = 4𝑇 (𝑛⇑2) + 𝑛2

∎ 𝑇 (𝑛) = 4𝑇 (𝑛⇑2) + 𝑛3

∎ 𝑇 (𝑛) = 4𝑇 (𝑛⇑2) + 𝑛2⇑log𝑛
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Matrix multiplication

c11 c12 ⋯ c1n
c c c

a11 a12 ⋯ a1n
a a a

b11 b12 ⋯ b1n
b b bc21 c22 ⋯ c2n

⋮ ⋮ ⋱ ⋮
c 1 c 2 c

a21 a22 ⋯ a2n
⋮ ⋮ ⋱ ⋮
a 1 a 2 a

b21 b22 ⋯ b2n
⋮ ⋮ ⋱ ⋮
b 1 b 2 b

= ·
cn1 cn2 ⋯ cnn an1 an2 ⋯ ann bn1 bn2 ⋯ bnn

C A B
We will study three approaches:

∎ a naive and iterative one
∎ a divide-and-conquer one
∎ a divide-and-conquer one with memory management consideration
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Naive iterative matrix multiplication

cilk_for (int i=1; i<n; ++i) {
cilk_for (int j=0; j<n; ++j) {

for (int k=0; k<n; ++k {
C[i][j] += A[i][k] * B[k][j];

}
}

∎ Work: ?
∎ Span: ?
∎ Parallelism: ?
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Naive iterative matrix multiplication
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Matrix multiplication based on block decomposition

C C A A B BC11 C12

C C
= ·

A11 A12

A A

B11 B12

B BC21 C22 A21 A22 B21 B22

A11B11 A11B12 A12B21 A12B22= +
A11B11 A11B12

A21B11 A21B12

A12B21 A12B22

A22B21 A22B2221 11 21 12 22 21 22 22

The divide-and-conquer approach is simply the one based on blocking,
presented in the previous lecture.
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Divide-and-conquer matrix multiplication

// C <- C + A * B
void MMult(T *C, T *A, T *B, int n, int size) {

T *D = new T[n*n];
//base case & partition matrices
cilk_spawn MMult(C11, A11, B11, n/2, size);
cilk_spawn MMult(C12, A11, B12, n/2, size);
cilk_spawn MMult(C22, A21, B12, n/2, size);
cilk_spawn MMult(C21, A21, B11, n/2, size);
cilk_spawn MMult(D11, A12, B21, n/2, size);
cilk_spawn MMult(D12, A12, B22, n/2, size);
cilk_spawn MMult(D22, A22, B22, n/2, size);

MMult(D21, A22, B21, n/2, size);
cilk_sync;
MAdd(C, D, n, size); // C += D;
delete[] D;

}

Work ? Span ? Parallelism ?
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Divide-and-conquer matrix multiplication

void MMult(T *C, T *A, T *B, int n, int size) {
T *D = new T[n*n];
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cilk_spawn MMult(D22, A22, B22, n/2, size);

MMult(D21, A22, B21, n/2, size);
cilk_sync; MAdd(C, D, n, size); // C += D;
delete[] D; }

∎ 𝐴𝑝(𝑛) and 𝑀𝑝(𝑛): times on 𝑝 proc. for 𝑛 × 𝑛 Add and Mult.

∎ 𝐴1(𝑛) = 4𝐴1(𝑛⇑2) +Θ(1) = Θ(𝑛2)

∎ 𝐴∞(𝑛) = 𝐴∞(𝑛⇑2) +Θ(1) = Θ(lg𝑛)
∎ 𝑀1(𝑛) = 8𝑀1(𝑛⇑2) +𝐴1(𝑛) = 8𝑀1(𝑛⇑2) +Θ(𝑛2) = Θ(𝑛3)

∎ 𝑀∞(𝑛) =𝑀∞(𝑛⇑2) +Θ(lg𝑛) = Θ(lg2 𝑛)

∎ 𝑀1(𝑛)⇑𝑀∞(𝑛) = Θ(𝑛3⇑ lg2 𝑛)
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Divide-and-conquer matrix multiplication: No temporaries!

template <typename T>
void MMult2(T *C, T *A, T *B, int n, int size) {

//base case & partition matrices
cilk_spawn MMult2(C11, A11, B11, n/2, size);
cilk_spawn MMult2(C12, A11, B12, n/2, size);
cilk_spawn MMult2(C22, A21, B12, n/2, size);

MMult2(C21, A21, B11, n/2, size);
cilk_sync;
cilk_spawn MMult2(C11, A12, B21, n/2, size);
cilk_spawn MMult2(C12, A12, B22, n/2, size);
cilk_spawn MMult2(C22, A22, B22, n/2, size);

MMult2(C21, A22, B21, n/2, size);
cilk_sync; }

Work ? Span ? Parallelism ?
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∎ 𝑀𝐴𝑝(𝑛): time on 𝑝 proc. for 𝑛 × 𝑛 Mult-Add.

∎ 𝑀𝐴1(𝑛) = Θ(𝑛3)

∎ 𝑀𝐴∞(𝑛) = 2𝑀𝐴∞(𝑛⇑2) +Θ(1) = Θ(𝑛)

∎ 𝑀𝐴1(𝑛)⇑𝑀𝐴∞(𝑛) = Θ(𝑛2)

∎ Besides, saving space often saves time due to hierarchical memory.
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Merging two sorted arrays

void Merge(T *C, T *A, T *B, int na, int nb) {
while (na>0 && nb>0) {

if (*A <= *B) {
*C++ = *A++; na--;

} else {
*C++ = *B++; nb--;

}
}
while (na>0) {

*C++ = *A++; na--;
}
while (nb>0) {

*C++ = *B++; nb--;
}

}

Time for merging 𝑛 elements is Θ(𝑛).
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Merge sort
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Parallel merge sort with serial merge

template <typename T>
void MergeSort(T *B, T *A, int n) {

if (n==1) {
B[0] = A[0];

} else {
T* C[n];
cilk_spawn MergeSort(C, A, n/2);

MergeSort(C+n/2, A+n/2, n-n/2);
cilk_sync;
Merge(B, C, C+n/2, n/2, n-n/2);

}

∎ Work?
∎ Span?
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Parallel merge sort with serial merge

template <typename T>
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}

∎ 𝑇1(𝑛) = 2𝑇1(𝑛⇑2) +Θ(𝑛) thus 𝑇1(𝑛) = Θ(𝑛 lg𝑛).
∎ 𝑇∞(𝑛) = 𝑇∞(𝑛⇑2) +Θ(𝑛) thus 𝑇∞(𝑛) = Θ(𝑛).
∎ 𝑇1(𝑛)⇑𝑇∞(𝑛) = Θ(lg𝑛). Puny parallelism!
∎ We need to parallelize the merge!

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 94 / 107



Parallel merge sort with serial merge

template <typename T>
void MergeSort(T *B, T *A, int n) {

if (n==1) {
B[0] = A[0];

} else {
T* C[n];
cilk_spawn MergeSort(C, A, n/2);

MergeSort(C+n/2, A+n/2, n-n/2);
cilk_sync;
Merge(B, C, C+n/2, n/2, n-n/2);

}

∎ 𝑇1(𝑛) = 2𝑇1(𝑛⇑2) +Θ(𝑛) thus 𝑇1(𝑛) = Θ(𝑛 lg𝑛).

∎ 𝑇∞(𝑛) = 𝑇∞(𝑛⇑2) +Θ(𝑛) thus 𝑇∞(𝑛) = Θ(𝑛).
∎ 𝑇1(𝑛)⇑𝑇∞(𝑛) = Θ(lg𝑛). Puny parallelism!
∎ We need to parallelize the merge!

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 94 / 107



Parallel merge sort with serial merge

template <typename T>
void MergeSort(T *B, T *A, int n) {

if (n==1) {
B[0] = A[0];

} else {
T* C[n];
cilk_spawn MergeSort(C, A, n/2);

MergeSort(C+n/2, A+n/2, n-n/2);
cilk_sync;
Merge(B, C, C+n/2, n/2, n-n/2);

}

∎ 𝑇1(𝑛) = 2𝑇1(𝑛⇑2) +Θ(𝑛) thus 𝑇1(𝑛) = Θ(𝑛 lg𝑛).
∎ 𝑇∞(𝑛) = 𝑇∞(𝑛⇑2) +Θ(𝑛) thus 𝑇∞(𝑛) = Θ(𝑛).

∎ 𝑇1(𝑛)⇑𝑇∞(𝑛) = Θ(lg𝑛). Puny parallelism!
∎ We need to parallelize the merge!

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 94 / 107



Parallel merge sort with serial merge

template <typename T>
void MergeSort(T *B, T *A, int n) {

if (n==1) {
B[0] = A[0];

} else {
T* C[n];
cilk_spawn MergeSort(C, A, n/2);

MergeSort(C+n/2, A+n/2, n-n/2);
cilk_sync;
Merge(B, C, C+n/2, n/2, n-n/2);

}

∎ 𝑇1(𝑛) = 2𝑇1(𝑛⇑2) +Θ(𝑛) thus 𝑇1(𝑛) = Θ(𝑛 lg𝑛).
∎ 𝑇∞(𝑛) = 𝑇∞(𝑛⇑2) +Θ(𝑛) thus 𝑇∞(𝑛) = Θ(𝑛).
∎ 𝑇1(𝑛)⇑𝑇∞(𝑛) = Θ(lg𝑛). Puny parallelism!

∎ We need to parallelize the merge!

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 94 / 107



Parallel merge sort with serial merge

template <typename T>
void MergeSort(T *B, T *A, int n) {

if (n==1) {
B[0] = A[0];

} else {
T* C[n];
cilk_spawn MergeSort(C, A, n/2);

MergeSort(C+n/2, A+n/2, n-n/2);
cilk_sync;
Merge(B, C, C+n/2, n/2, n-n/2);

}

∎ 𝑇1(𝑛) = 2𝑇1(𝑛⇑2) +Θ(𝑛) thus 𝑇1(𝑛) = Θ(𝑛 lg𝑛).
∎ 𝑇∞(𝑛) = 𝑇∞(𝑛⇑2) +Θ(𝑛) thus 𝑇∞(𝑛) = Θ(𝑛).
∎ 𝑇1(𝑛)⇑𝑇∞(𝑛) = Θ(lg𝑛). Puny parallelism!
∎ We need to parallelize the merge!

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 94 / 107



Parallel merge

A
0 nama = na/2

≤ A[ma] ≥ A[ma]A

Binary SearchRecursive Recursive

≤ A[ma] ≥ A[ma]

B na ≥ nb≤ A[ma] ≥ A[ma]

Binary SearchP_Merge P_Merge

B
0 nb

na ≥ nb≤ A[ma] ≥ A[ma]
mb-1 mb

Idea: if the total number of elements to be sorted in 𝑛 = 𝑛𝑎 + 𝑛𝑏 then the
maximum number of elements in any of the two merges is at most 3𝑛⇑4.
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Parallel merge

template <typename T>
void P_Merge(T *C, T *A, T *B, int na, int nb) {

if (na < nb) {
P_Merge(C, B, A, nb, na);

} else if (na==0) {
return;

} else {
int ma = na/2;
int mb = BinarySearch(A[ma], B, nb);
C[ma+mb] = A[ma];
cilk_spawn P_Merge(C, A, B, ma, mb);
P_Merge(C+ma+mb+1, A+ma+1, B+mb, na-ma-1, nb-mb);
cilk_sync;

}
}

∎ One should coarsen the base case for efficiency.
∎ Work? Span?
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Parallel merge

template <typename T>
void P_Merge(T *C, T *A, T *B, int na, int nb) {
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P_Merge(C, B, A, nb, na);
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return;

} else {
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P_Merge(C+ma+mb+1, A+ma+1, B+mb, na-ma-1, nb-mb);
cilk_sync; } }

∎ Let 𝑃𝑀𝑝(𝑛) be the 𝑝-processor running time of P-Merge.
∎ In the worst case, the span of P-Merge is

𝑃𝑀∞(𝑛) ≤ 𝑃𝑀∞(3𝑛⇑4) +Θ(lg𝑛) = 𝑂(lg2 𝑛)

∎ The worst-case work of P-Merge satisfies the recurrence
𝑃𝑀1(𝑛) ≤ 𝑃𝑀1(𝛼𝑛) + 𝑃𝑀1((1 − 𝛼)𝑛) +Θ(lg𝑛)

, where 𝛼 is a constant in the range 1⇑4 ≤ 𝛼 ≤ 3⇑4.
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∎ The worst-case work of P-Merge satisfies the recurrence
𝑃𝑀1(𝑛) ≤ 𝑃𝑀1(𝛼𝑛) + 𝑃𝑀1((1 − 𝛼)𝑛) +Θ(lg𝑛)
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Analyzing parallel merge

∎ Recall 𝑃𝑀1(𝑛) ≤ 𝑃𝑀1(𝛼𝑛) + 𝑃𝑀1((1 − 𝛼)𝑛) +Θ(lg𝑛) for some
1⇑4 ≤ 𝛼 ≤ 3⇑4.

∎ To solve this hairy equation we use the substitution method.
∎ We assume there exist some constants 𝑎, 𝑏 > 0 such that
𝑃𝑀1(𝑛) ≤ 𝑎𝑛 − 𝑏 lg𝑛 holds for all 1⇑4 ≤ 𝛼 ≤ 3⇑4 and all 𝑛 > 1.

∎ After substitution, this hypothesis implies:
𝑃𝑀1(𝑛) ≤ 𝑎(𝛼 + (1 − 𝛼)𝑛 − 𝑏 lg(𝛼𝑛) − 𝑏 lg𝑛 +Θ(lg𝑛).

∎ We can pick 𝑏 large enough such that we have 𝑃𝑀1(𝑛) ≤ 𝑎𝑛 − 𝑏 lg𝑛
for all 1⇑4 ≤ 𝛼 ≤ 3⇑4 and all 𝑛 > 1.

∎ Then pick 𝑎 large enough to satisfy the base conditions, leading to
𝑃𝑀1(𝑛) ∈ 𝑂(𝑛).

∎ Since we clearly have 𝑃𝑀1(𝑛) ∈ Ω(𝑛) (because 𝑛 array elements are
accessed anyway), we finally have 𝑃𝑀1(𝑛) = Θ(𝑛).
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Parallel merge sort with parallel merge

template <typename T>
void P_MergeSort(T *B, T *A, int n) {

if (n==1) {
B[0] = A[0];

} else {
T C[n];
cilk_spawn P_MergeSort(C, A, n/2);
P_MergeSort(C+n/2, A+n/2, n-n/2);
cilk_sync;

P_Merge(B, C, C+n/2, n/2, n-n/2);
}

}

∎ Work?
∎ Span?
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Parallel merge sort with parallel merge
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cilk_sync;

P_Merge(B, C, C+n/2, n/2, n-n/2);
}

}

∎ The work satisfies 𝑇1(𝑛) = 2𝑇1(𝑛⇑2) +Θ(𝑛) (as usual) and we have
𝑇1(𝑛) = Θ(𝑛log(𝑛)).

∎ The worst case critical-path length of the Merge-Sort now satisfies
𝑇∞(𝑛) = 𝑇∞(𝑛⇑2) +Θ(lg2 𝑛) = Θ(lg3 𝑛)

.
∎ The parallelism is now Θ(𝑛 lg𝑛)⇑Θ(lg3 𝑛) = Θ(𝑛⇑ lg2 𝑛).
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Tableau construction

00 01 02 03 04 05 06 07
10 11 12 13 14 15 16 1710 11 12 13 14 15 16 17
20 21 22 23 24 25 26 27
30 31 32 33 34 35 36 3730 31 32 33 34 35 36 37
40 41 42 43 44 45 46 47
50 51 52 53 54 55 56 57
60 61 62 63 64 65 66 67
70 71 72 73 74 75 76 77

Constructing a tableau 𝐴 satisfying a relation of the form:

𝐴(︀𝑖, 𝑗⌋︀ = 𝑅(𝐴(︀𝑖 − 1, 𝑗⌋︀,𝐴(︀𝑖 − 1, 𝑗 − 1⌋︀,𝐴(︀𝑖, 𝑗 − 1⌋︀). (43)

The work is Θ(𝑛2).
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Recursive construction

n Parallel code
I;
cilk_spawn II;
III;I II

n

;
cilk_sync;
IV;

I II

III IV

∎ 𝑇1(𝑛) = 4𝑇1(𝑛⇑2) +Θ(1), thus 𝑇1(𝑛) = Θ(𝑛2).
∎ 𝑇∞(𝑛) = 3𝑇∞(𝑛⇑2) +Θ(1), thus 𝑇∞(𝑛) = Θ(𝑛log2 3).
∎ Parallelism: Θ(𝑛2−log2 3) = Ω(𝑛0.41).

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 103 / 107



Recursive construction

n Parallel code
I;
cilk_spawn II;
III;I II

n

;
cilk_sync;
IV;

I II

III IV

∎ 𝑇1(𝑛) = 4𝑇1(𝑛⇑2) +Θ(1), thus 𝑇1(𝑛) = Θ(𝑛2).

∎ 𝑇∞(𝑛) = 3𝑇∞(𝑛⇑2) +Θ(1), thus 𝑇∞(𝑛) = Θ(𝑛log2 3).
∎ Parallelism: Θ(𝑛2−log2 3) = Ω(𝑛0.41).

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 103 / 107



Recursive construction

n Parallel code
I;
cilk_spawn II;
III;I II

n

;
cilk_sync;
IV;

I II

III IV

∎ 𝑇1(𝑛) = 4𝑇1(𝑛⇑2) +Θ(1), thus 𝑇1(𝑛) = Θ(𝑛2).
∎ 𝑇∞(𝑛) = 3𝑇∞(𝑛⇑2) +Θ(1), thus 𝑇∞(𝑛) = Θ(𝑛log2 3).

∎ Parallelism: Θ(𝑛2−log2 3) = Ω(𝑛0.41).

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 103 / 107



Recursive construction

n Parallel code
I;
cilk_spawn II;
III;I II

n

;
cilk_sync;
IV;

I II

III IV

∎ 𝑇1(𝑛) = 4𝑇1(𝑛⇑2) +Θ(1), thus 𝑇1(𝑛) = Θ(𝑛2).
∎ 𝑇∞(𝑛) = 3𝑇∞(𝑛⇑2) +Θ(1), thus 𝑇∞(𝑛) = Θ(𝑛log2 3).
∎ Parallelism: Θ(𝑛2−log2 3) = Ω(𝑛0.41).

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 103 / 107



A more parallel construction

I;
ilk II

n

cilk_spawn II;
III;
cilk_sync;
cilk spawn IV;

I II IV
cilk_spawn IV;
cilk_spawn V;
VI;
cilk sync;

III V VIIn
cilk_sync;
cilk_spawn VII;
VIII;
cilk_sync;
IX

VI VIII IX
IX;

∎ 𝑇1(𝑛) = 9𝑇1(𝑛⇑3) +Θ(1), thus 𝑇1(𝑛) = Θ(𝑛2).
∎ 𝑇∞(𝑛) = 5𝑇∞(𝑛⇑3) +Θ(1), thus 𝑇∞(𝑛) = Θ(𝑛log3 5).
∎ Parallelism: Θ(𝑛2−log3 5) = Ω(𝑛0.53).
∎ This nine-way d-n-c has more parallelism than the four way but

exhibits more cache complexity.
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∎ Parallelism: Θ(𝑛2−log3 5) = Ω(𝑛0.53).
∎ This nine-way d-n-c has more parallelism than the four way but

exhibits more cache complexity.
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