
The Fork-Join Model

Marc Moreno Maza

Ontario Research Center for Computer Algebra
Departments of Computer Science and Mathematics

University of Western Ontario, Canada

CS4402 - CS9635, February 9, 2024

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 1 / 107

The Fork-Join Model

Marc Moreno Maza

Ontario Research Center for Computer Algebra
Departments of Computer Science and Mathematics

University of Western Ontario, Canada

CS4402 - CS9635, February 9, 2024

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 2 / 107

Plan

1. Cilk: the fork-join model in action
1.1 The language and the compiler
1.2 The runtime system
1.3 Matrix multiplication in Cilk

2. The Fork-Join Model

3. Scheduling Theory and Implementation

4. Analysis of Multithreaded Algorithms
4.1 Review of Complexity Notions
4.2 Divide-and-Conquer Recurrences
4.3 Matrix Multiplication
4.4 Merge Sort
4.5 Tableau Construction

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 3 / 107

Outline

1. Cilk: the fork-join model in action
1.1 The language and the compiler
1.2 The runtime system
1.3 Matrix multiplication in Cilk

2. The Fork-Join Model

3. Scheduling Theory and Implementation

4. Analysis of Multithreaded Algorithms
4.1 Review of Complexity Notions
4.2 Divide-and-Conquer Recurrences
4.3 Matrix Multiplication
4.4 Merge Sort
4.5 Tableau Construction

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 4 / 107

Outline

1. Cilk: the fork-join model in action
1.1 The language and the compiler
1.2 The runtime system
1.3 Matrix multiplication in Cilk

2. The Fork-Join Model

3. Scheduling Theory and Implementation

4. Analysis of Multithreaded Algorithms
4.1 Review of Complexity Notions
4.2 Divide-and-Conquer Recurrences
4.3 Matrix Multiplication
4.4 Merge Sort
4.5 Tableau Construction

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 5 / 107

From Cilk to Cilk++, CilkPlus and OpenCilk

∎ Cilk has been developed since 1994 at the MIT Laboratory for
Computer Science by Prof. Charles E. Leiserson and his group, in
particular by Matteo Frigo and Tao Benjamin Schardl.

∎ Besides being used for research and teaching, Cilk was the system
used to code the three world-class chess programs: Tech, Socrates, and
Cilkchess.

∎ Over the years, the implementations of Cilk have run on computers
ranging from networks of Linux laptops to an 1824-nodes Intel Paragon.

∎ From 2007 to 2009 Cilk has lead to Cilk++, developed by Cilk Arts, an
MIT spin-off, acquired by Intel in July 2009 and became CilkPlus.

∎ I recommend the following CilkPlus documentation
https://www.clear.rice.edu/comp422/resources/Intel_Cilk++_Programmers_Guide.pdf

∎ Cilk is still now developed at MIT with NSF support
https://cilk.mit.edu

∎ In this course, we will be using OpenCilk which is freely available in
source from the above URL.

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 6 / 107

https://cilk.mit.edu
https://cilk.mit.edu

From Cilk to Cilk++, CilkPlus and OpenCilk

∎ Cilk has been developed since 1994 at the MIT Laboratory for
Computer Science by Prof. Charles E. Leiserson and his group, in
particular by Matteo Frigo and Tao Benjamin Schardl.

∎ Besides being used for research and teaching, Cilk was the system
used to code the three world-class chess programs: Tech, Socrates, and
Cilkchess.

∎ Over the years, the implementations of Cilk have run on computers
ranging from networks of Linux laptops to an 1824-nodes Intel Paragon.

∎ From 2007 to 2009 Cilk has lead to Cilk++, developed by Cilk Arts, an
MIT spin-off, acquired by Intel in July 2009 and became CilkPlus.

∎ I recommend the following CilkPlus documentation
https://www.clear.rice.edu/comp422/resources/Intel_Cilk++_Programmers_Guide.pdf

∎ Cilk is still now developed at MIT with NSF support
https://cilk.mit.edu

∎ In this course, we will be using OpenCilk which is freely available in
source from the above URL.

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 6 / 107

https://cilk.mit.edu
https://cilk.mit.edu

From Cilk to Cilk++, CilkPlus and OpenCilk

∎ Cilk has been developed since 1994 at the MIT Laboratory for
Computer Science by Prof. Charles E. Leiserson and his group, in
particular by Matteo Frigo and Tao Benjamin Schardl.

∎ Besides being used for research and teaching, Cilk was the system
used to code the three world-class chess programs: Tech, Socrates, and
Cilkchess.

∎ Over the years, the implementations of Cilk have run on computers
ranging from networks of Linux laptops to an 1824-nodes Intel Paragon.

∎ From 2007 to 2009 Cilk has lead to Cilk++, developed by Cilk Arts, an
MIT spin-off, acquired by Intel in July 2009 and became CilkPlus.

∎ I recommend the following CilkPlus documentation
https://www.clear.rice.edu/comp422/resources/Intel_Cilk++_Programmers_Guide.pdf

∎ Cilk is still now developed at MIT with NSF support
https://cilk.mit.edu

∎ In this course, we will be using OpenCilk which is freely available in
source from the above URL.

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 6 / 107

https://cilk.mit.edu
https://cilk.mit.edu

From Cilk to Cilk++, CilkPlus and OpenCilk

∎ Cilk has been developed since 1994 at the MIT Laboratory for
Computer Science by Prof. Charles E. Leiserson and his group, in
particular by Matteo Frigo and Tao Benjamin Schardl.

∎ Besides being used for research and teaching, Cilk was the system
used to code the three world-class chess programs: Tech, Socrates, and
Cilkchess.

∎ Over the years, the implementations of Cilk have run on computers
ranging from networks of Linux laptops to an 1824-nodes Intel Paragon.

∎ From 2007 to 2009 Cilk has lead to Cilk++, developed by Cilk Arts, an
MIT spin-off, acquired by Intel in July 2009 and became CilkPlus.

∎ I recommend the following CilkPlus documentation
https://www.clear.rice.edu/comp422/resources/Intel_Cilk++_Programmers_Guide.pdf

∎ Cilk is still now developed at MIT with NSF support
https://cilk.mit.edu

∎ In this course, we will be using OpenCilk which is freely available in
source from the above URL.

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 6 / 107

https://cilk.mit.edu
https://cilk.mit.edu

From Cilk to Cilk++, CilkPlus and OpenCilk

∎ Cilk has been developed since 1994 at the MIT Laboratory for
Computer Science by Prof. Charles E. Leiserson and his group, in
particular by Matteo Frigo and Tao Benjamin Schardl.

∎ Besides being used for research and teaching, Cilk was the system
used to code the three world-class chess programs: Tech, Socrates, and
Cilkchess.

∎ Over the years, the implementations of Cilk have run on computers
ranging from networks of Linux laptops to an 1824-nodes Intel Paragon.

∎ From 2007 to 2009 Cilk has lead to Cilk++, developed by Cilk Arts, an
MIT spin-off, acquired by Intel in July 2009 and became CilkPlus.

∎ I recommend the following CilkPlus documentation
https://www.clear.rice.edu/comp422/resources/Intel_Cilk++_Programmers_Guide.pdf

∎ Cilk is still now developed at MIT with NSF support
https://cilk.mit.edu

∎ In this course, we will be using OpenCilk which is freely available in
source from the above URL.

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 6 / 107

https://cilk.mit.edu
https://cilk.mit.edu

From Cilk to Cilk++, CilkPlus and OpenCilk

∎ Cilk has been developed since 1994 at the MIT Laboratory for
Computer Science by Prof. Charles E. Leiserson and his group, in
particular by Matteo Frigo and Tao Benjamin Schardl.

∎ Besides being used for research and teaching, Cilk was the system
used to code the three world-class chess programs: Tech, Socrates, and
Cilkchess.

∎ Over the years, the implementations of Cilk have run on computers
ranging from networks of Linux laptops to an 1824-nodes Intel Paragon.

∎ From 2007 to 2009 Cilk has lead to Cilk++, developed by Cilk Arts, an
MIT spin-off, acquired by Intel in July 2009 and became CilkPlus.

∎ I recommend the following CilkPlus documentation
https://www.clear.rice.edu/comp422/resources/Intel_Cilk++_Programmers_Guide.pdf

∎ Cilk is still now developed at MIT with NSF support
https://cilk.mit.edu

∎ In this course, we will be using OpenCilk which is freely available in
source from the above URL.

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 6 / 107

https://cilk.mit.edu
https://cilk.mit.edu

From Cilk to Cilk++, CilkPlus and OpenCilk

∎ Cilk has been developed since 1994 at the MIT Laboratory for
Computer Science by Prof. Charles E. Leiserson and his group, in
particular by Matteo Frigo and Tao Benjamin Schardl.

∎ Besides being used for research and teaching, Cilk was the system
used to code the three world-class chess programs: Tech, Socrates, and
Cilkchess.

∎ Over the years, the implementations of Cilk have run on computers
ranging from networks of Linux laptops to an 1824-nodes Intel Paragon.

∎ From 2007 to 2009 Cilk has lead to Cilk++, developed by Cilk Arts, an
MIT spin-off, acquired by Intel in July 2009 and became CilkPlus.

∎ I recommend the following CilkPlus documentation
https://www.clear.rice.edu/comp422/resources/Intel_Cilk++_Programmers_Guide.pdf

∎ Cilk is still now developed at MIT with NSF support
https://cilk.mit.edu

∎ In this course, we will be using OpenCilk which is freely available in
source from the above URL.

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 6 / 107

https://cilk.mit.edu
https://cilk.mit.edu

Cilk

∎ Cilk is a small set of linguistic extensions to C++ (resp. C) supporting
fork-join parallelism

∎ Cilk’s runtime features a provably efficient work-stealing scheduler.

∎ A number third-party libraries are known to work with OpenCilk out
of the box for parallel execution, see OpenCilk-powered libraries.

∎ OpenCilk includes the Cilkscale performance analyzer.

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 7 / 107

https://www.opencilk.org/community/software/#opencilk-powered-libraries
https://www.opencilk.org/doc/users-guide/cilkscale/

Cilk

∎ Cilk is a small set of linguistic extensions to C++ (resp. C) supporting
fork-join parallelism

∎ Cilk’s runtime features a provably efficient work-stealing scheduler.

∎ A number third-party libraries are known to work with OpenCilk out
of the box for parallel execution, see OpenCilk-powered libraries.

∎ OpenCilk includes the Cilkscale performance analyzer.

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 7 / 107

https://www.opencilk.org/community/software/#opencilk-powered-libraries
https://www.opencilk.org/doc/users-guide/cilkscale/

Cilk

∎ Cilk is a small set of linguistic extensions to C++ (resp. C) supporting
fork-join parallelism

∎ Cilk’s runtime features a provably efficient work-stealing scheduler.

∎ A number third-party libraries are known to work with OpenCilk out
of the box for parallel execution, see OpenCilk-powered libraries.

∎ OpenCilk includes the Cilkscale performance analyzer.

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 7 / 107

https://www.opencilk.org/community/software/#opencilk-powered-libraries
https://www.opencilk.org/doc/users-guide/cilkscale/

Cilk

∎ Cilk is a small set of linguistic extensions to C++ (resp. C) supporting
fork-join parallelism

∎ Cilk’s runtime features a provably efficient work-stealing scheduler.

∎ A number third-party libraries are known to work with OpenCilk out
of the box for parallel execution, see OpenCilk-powered libraries.

∎ OpenCilk includes the Cilkscale performance analyzer.

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 7 / 107

https://www.opencilk.org/community/software/#opencilk-powered-libraries
https://www.opencilk.org/doc/users-guide/cilkscale/

Nested Parallelism in Cilk

int fib(int n)
{

if (n < 2) return n;
int x, y;
x = cilk_spawn fib(n-1);
y = fib(n-2);
cilk_sync;
return x+y;

}

∎ The named child function cilk_spawn fib(n-1) may execute in
parallel with its parent executes fib(n-2).

∎ Cilk++ keywords cilk_spawn and cilk_sync grant permissions for
parallel execution. They do not command parallel execution.

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 8 / 107

Nested Parallelism in Cilk

int fib(int n)
{

if (n < 2) return n;
int x, y;
x = cilk_spawn fib(n-1);
y = fib(n-2);
cilk_sync;
return x+y;

}

∎ The named child function cilk_spawn fib(n-1) may execute in
parallel with its parent executes fib(n-2).

∎ Cilk++ keywords cilk_spawn and cilk_sync grant permissions for
parallel execution. They do not command parallel execution.

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 8 / 107

Nested Parallelism in Cilk

int fib(int n)
{

if (n < 2) return n;
int x, y;
x = cilk_spawn fib(n-1);
y = fib(n-2);
cilk_sync;
return x+y;

}

∎ The named child function cilk_spawn fib(n-1) may execute in
parallel with its parent executes fib(n-2).

∎ Cilk++ keywords cilk_spawn and cilk_sync grant permissions for
parallel execution. They do not command parallel execution.

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 8 / 107

Loop Parallelism in Cilk

a11 a12 ⋯ a1n
a21 a22 ⋯ a2n

a11 a21 ⋯ an1
a12 a22 ⋯ an221 22 2n

⋮ ⋮ ⋱ ⋮
an1 an2 ⋯ ann

12 22 n2

⋮ ⋮ ⋱ ⋮
a1n a2n ⋯ annn1 n2 nn 1n 2n nn

A AT

// indices run from 0, not 1
cilk_for (int i=1; i<n; ++i) {

for (int j=0; j<i; ++j) {
d bl [i][j]double temp = A[i][j];
A[i][j] = A[j][i];
A[j][i] = temp;

}}
}

The iterations of a cilk_for loop may execute in parallel.

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 9 / 107

Serial Semantics (1/2)

∎ Cilk is a multithreaded language for parallel programming that
generalizes the semantics of C by introducing linguistic constructs for
parallel control.

∎ Cilk is a faithful extension of C (resp. C++):

ë The C elision of a Cilk (resp. Cilk++) is a correct implementation of
the semantics of the program.

ë Moreover, on one processor, a parallel Cilk program scales down to
run nearly as fast as its C elision.

∎ To obtain the serialization of a Cilk program
#define cilk_for for
#define cilk_spawn
#define cilk_sync

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 10 / 107

Serial Semantics (1/2)

∎ Cilk is a multithreaded language for parallel programming that
generalizes the semantics of C by introducing linguistic constructs for
parallel control.

∎ Cilk is a faithful extension of C (resp. C++):

ë The C elision of a Cilk (resp. Cilk++) is a correct implementation of
the semantics of the program.

ë Moreover, on one processor, a parallel Cilk program scales down to
run nearly as fast as its C elision.

∎ To obtain the serialization of a Cilk program
#define cilk_for for
#define cilk_spawn
#define cilk_sync

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 10 / 107

Serial Semantics (1/2)

∎ Cilk is a multithreaded language for parallel programming that
generalizes the semantics of C by introducing linguistic constructs for
parallel control.

∎ Cilk is a faithful extension of C (resp. C++):

ë The C elision of a Cilk (resp. Cilk++) is a correct implementation of
the semantics of the program.

ë Moreover, on one processor, a parallel Cilk program scales down to
run nearly as fast as its C elision.

∎ To obtain the serialization of a Cilk program
#define cilk_for for
#define cilk_spawn
#define cilk_sync

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 10 / 107

Serial Semantics (1/2)

∎ Cilk is a multithreaded language for parallel programming that
generalizes the semantics of C by introducing linguistic constructs for
parallel control.

∎ Cilk is a faithful extension of C (resp. C++):

ë The C elision of a Cilk (resp. Cilk++) is a correct implementation of
the semantics of the program.

ë Moreover, on one processor, a parallel Cilk program scales down to
run nearly as fast as its C elision.

∎ To obtain the serialization of a Cilk program
#define cilk_for for
#define cilk_spawn
#define cilk_sync

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 10 / 107

Serial Semantics (1/2)

∎ Cilk is a multithreaded language for parallel programming that
generalizes the semantics of C by introducing linguistic constructs for
parallel control.

∎ Cilk is a faithful extension of C (resp. C++):

ë The C elision of a Cilk (resp. Cilk++) is a correct implementation of
the semantics of the program.

ë Moreover, on one processor, a parallel Cilk program scales down to
run nearly as fast as its C elision.

∎ To obtain the serialization of a Cilk program
#define cilk_for for
#define cilk_spawn
#define cilk_sync

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 10 / 107

Serial Semantics (2/2)

int fib (int n) {
if (n<2) return (n);
else {

int x,y;
x = cilk spawn fib(n-1);

Cilk++ source

x cilk_spawn fib(n 1);
y = fib(n-2);
cilk_sync;
return (x+y);

}
}

int fib (int n) {
if (n<2) return (n);

else {
int x,y;
x fib(n 1);x = fib(n-1);
y = fib(n-2);
return (x+y);

}
} Serialization

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 11 / 107

Outline

1. Cilk: the fork-join model in action
1.1 The language and the compiler
1.2 The runtime system
1.3 Matrix multiplication in Cilk

2. The Fork-Join Model

3. Scheduling Theory and Implementation

4. Analysis of Multithreaded Algorithms
4.1 Review of Complexity Notions
4.2 Divide-and-Conquer Recurrences
4.3 Matrix Multiplication
4.4 Merge Sort
4.5 Tableau Construction

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 12 / 107

Scheduling (1/2)

int fib (int n) {
if (n<2) return (n);
else {
int x,y;
 ilk fib(1)x = cilk_spawn fib(n-1);
y = fib(n-2);
cilk_sync;
return (x+y);

}
}}

Memory I/O

Network

…P
P P P
$ $ $
P P P

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 13 / 107

Scheduling (2/2)

∎ Cilk randomized work-stealing scheduler load-balances the
computation at run-time. Each processor maintains a ready deque:

ë A ready deque is a double ended queue, where each entry is a
procedure instance that is ready to execute.

ë Adding a procedure instance to the bottom of the deque represents a
procedure call being spawned.

ë A procedure instance being deleted from the bottom of the deque
represents the processor beginning/resuming execution on that
procedure.

ë Deletion from the top of the deque corresponds to that procedure
instance being stolen.

∎ A mathematical proof guarantees near-perfect linear speed-up on
applications with sufficient parallelism, as long as the architecture has
sufficient memory bandwidth.

∎ A spawn/return in Cilk is over 100 times faster than a Pthread
create/exit and less than 3 times slower than an ordinary C
function call on a modern Intel processor.

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 14 / 107

Scheduling (2/2)

∎ Cilk randomized work-stealing scheduler load-balances the
computation at run-time. Each processor maintains a ready deque:

ë A ready deque is a double ended queue, where each entry is a
procedure instance that is ready to execute.

ë Adding a procedure instance to the bottom of the deque represents a
procedure call being spawned.

ë A procedure instance being deleted from the bottom of the deque
represents the processor beginning/resuming execution on that
procedure.

ë Deletion from the top of the deque corresponds to that procedure
instance being stolen.

∎ A mathematical proof guarantees near-perfect linear speed-up on
applications with sufficient parallelism, as long as the architecture has
sufficient memory bandwidth.

∎ A spawn/return in Cilk is over 100 times faster than a Pthread
create/exit and less than 3 times slower than an ordinary C
function call on a modern Intel processor.

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 14 / 107

Scheduling (2/2)

∎ Cilk randomized work-stealing scheduler load-balances the
computation at run-time. Each processor maintains a ready deque:

ë A ready deque is a double ended queue, where each entry is a
procedure instance that is ready to execute.

ë Adding a procedure instance to the bottom of the deque represents a
procedure call being spawned.

ë A procedure instance being deleted from the bottom of the deque
represents the processor beginning/resuming execution on that
procedure.

ë Deletion from the top of the deque corresponds to that procedure
instance being stolen.

∎ A mathematical proof guarantees near-perfect linear speed-up on
applications with sufficient parallelism, as long as the architecture has
sufficient memory bandwidth.

∎ A spawn/return in Cilk is over 100 times faster than a Pthread
create/exit and less than 3 times slower than an ordinary C
function call on a modern Intel processor.

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 14 / 107

Scheduling (2/2)

∎ Cilk randomized work-stealing scheduler load-balances the
computation at run-time. Each processor maintains a ready deque:

ë A ready deque is a double ended queue, where each entry is a
procedure instance that is ready to execute.

ë Adding a procedure instance to the bottom of the deque represents a
procedure call being spawned.

ë A procedure instance being deleted from the bottom of the deque
represents the processor beginning/resuming execution on that
procedure.

ë Deletion from the top of the deque corresponds to that procedure
instance being stolen.

∎ A mathematical proof guarantees near-perfect linear speed-up on
applications with sufficient parallelism, as long as the architecture has
sufficient memory bandwidth.

∎ A spawn/return in Cilk is over 100 times faster than a Pthread
create/exit and less than 3 times slower than an ordinary C
function call on a modern Intel processor.

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 14 / 107

Scheduling (2/2)

∎ Cilk randomized work-stealing scheduler load-balances the
computation at run-time. Each processor maintains a ready deque:

ë A ready deque is a double ended queue, where each entry is a
procedure instance that is ready to execute.

ë Adding a procedure instance to the bottom of the deque represents a
procedure call being spawned.

ë A procedure instance being deleted from the bottom of the deque
represents the processor beginning/resuming execution on that
procedure.

ë Deletion from the top of the deque corresponds to that procedure
instance being stolen.

∎ A mathematical proof guarantees near-perfect linear speed-up on
applications with sufficient parallelism, as long as the architecture has
sufficient memory bandwidth.

∎ A spawn/return in Cilk is over 100 times faster than a Pthread
create/exit and less than 3 times slower than an ordinary C
function call on a modern Intel processor.

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 14 / 107

Scheduling (2/2)

∎ Cilk randomized work-stealing scheduler load-balances the
computation at run-time. Each processor maintains a ready deque:

ë A ready deque is a double ended queue, where each entry is a
procedure instance that is ready to execute.

ë Adding a procedure instance to the bottom of the deque represents a
procedure call being spawned.

ë A procedure instance being deleted from the bottom of the deque
represents the processor beginning/resuming execution on that
procedure.

ë Deletion from the top of the deque corresponds to that procedure
instance being stolen.

∎ A mathematical proof guarantees near-perfect linear speed-up on
applications with sufficient parallelism, as long as the architecture has
sufficient memory bandwidth.

∎ A spawn/return in Cilk is over 100 times faster than a Pthread
create/exit and less than 3 times slower than an ordinary C
function call on a modern Intel processor.

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 14 / 107

Outline

1. Cilk: the fork-join model in action
1.1 The language and the compiler
1.2 The runtime system
1.3 Matrix multiplication in Cilk

2. The Fork-Join Model

3. Scheduling Theory and Implementation

4. Analysis of Multithreaded Algorithms
4.1 Review of Complexity Notions
4.2 Divide-and-Conquer Recurrences
4.3 Matrix Multiplication
4.4 Merge Sort
4.5 Tableau Construction

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 15 / 107

template<typename T> void multiply_iter_par(int ii, int jj, int kk, T* A, T* B,
T* C)

{
cilk_for(int i = 0; i < ii; ++i)

cilk_for(int j = 0; j < jj; ++j)
for (int k = 0; k < kk; ++k)

C[i * jj + j] += A[i * kk + k] + B[k * jj + j];
}

Does not scale up well due to a poor locality and uncontrolled granularity.

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 16 / 107

template<typename T> void multiply_rec_seq_helper(int i0, int i1, int j0,
int j1, int k0, int k1, T* A, ptrdiff_t lda, T* B, ptrdiff_t ldb, T* C,
ptrdiff_t ldc)

{
int di = i1 - i0;
int dj = j1 - j0;
int dk = k1 - k0;
if (di >= dj && di >= dk && di >= RECURSION_THRESHOLD) {

int mi = i0 + di / 2;
multiply_rec_seq_helper(i0, mi, j0, j1, k0, k1, A, lda, B, ldb, C, ldc);
multiply_rec_seq_helper(mi, i1, j0, j1, k0, k1, A, lda, B, ldb, C, ldc);

} else if (dj >= dk && dj >= RECURSION_THRESHOLD) {
int mj = j0 + dj / 2;
multiply_rec_seq_helper(i0, i1, j0, mj, k0, k1, A, lda, B, ldb, C, ldc);
multiply_rec_seq_helper(i0, i1, mj, j1, k0, k1, A, lda, B, ldb, C, ldc);

} else if (dk >= RECURSION_THRESHOLD) {
int mk = k0 + dk / 2;
multiply_rec_seq_helper(i0, i1, j0, j1, k0, mk, A, lda, B, ldb, C, ldc);
multiply_rec_seq_helper(i0, i1, j0, j1, mk, k1, A, lda, B, ldb, C, ldc);

} else {
for (int i = i0; i < i1; ++i)

for (int k = k0; k < k1; ++k)
for (int j = j0; j < j1; ++j)

C[i * ldc + j] += A[i * lda + k] * B[k * ldb + j];
}

}

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 17 / 107

template<typename T> inline void multiply_rec_seq(int ii, int jj, int kk, T* A,
T* B, T* C)

{
multiply_rec_seq_helper(0, ii, 0, jj, 0, kk, A, kk, B, jj, C, jj);

}

Multiplying a 4000x8000 matrix by a 8000x4000 matrix
∎ on 32 cores = 8 sockets x 4 cores (Quad Core AMD Opteron 8354)

per socket.
∎ The 32 cores share a L3 32-way set-associative cache of 2 Mbytes.

#core Elision (s) Parallel (s) speedup
8 420.906 51.365 8.19

16 432.419 25.845 16.73
24 413.681 17.361 23.83
32 389.300 13.051 29.83

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 18 / 107

Outline

1. Cilk: the fork-join model in action
1.1 The language and the compiler
1.2 The runtime system
1.3 Matrix multiplication in Cilk

2. The Fork-Join Model

3. Scheduling Theory and Implementation

4. Analysis of Multithreaded Algorithms
4.1 Review of Complexity Notions
4.2 Divide-and-Conquer Recurrences
4.3 Matrix Multiplication
4.4 Merge Sort
4.5 Tableau Construction

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 19 / 107

The fork-join parallelism model

int fib (int n) {
if (n<2) return (n);

int fib (int n) {
if (n<2) return (n);

Example:
fib(4)() ();

else {
int x,y;
x = cilk_spawn fib(n-1);
y fib(n 2);

() ();
else {

int x,y;
x = cilk_spawn fib(n-1);
y fib(n 2);

fib(4)

4
y = fib(n-2);
cilk_sync;
return (x+y);

}

y = fib(n-2);
cilk_sync;
return (x+y);

} 3 2}
}

}
}

2 1 1 0

“Processor
oblivious”

2

1

1 1 0

0 The computation dag
unfolds dynamically.

1 0

We shall also call this model multithreaded parallelism.

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 20 / 107

Terminology

initial strand final strand

strand

spawn edge return edge
continue edge strand

spawn edge
call edge

∎ a strand is a maximal sequence of instructions that ends with a
spawn, sync, or return (either explicit or implicit) statement.

∎ At runtime, the spawn relation causes procedure instances to be
structured as a rooted tree, called spawn tree or parallel instruction
stream, where dependencies among strands form a dag.

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 21 / 107

Terminology

initial strand final strand

strand

spawn edge return edge
continue edge strand

spawn edge
call edge

∎ a strand is a maximal sequence of instructions that ends with a
spawn, sync, or return (either explicit or implicit) statement.

∎ At runtime, the spawn relation causes procedure instances to be
structured as a rooted tree, called spawn tree or parallel instruction
stream, where dependencies among strands form a dag.

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 21 / 107

Terminology

initial strand final strand

strand

spawn edge return edge
continue edge strand

spawn edge
call edge

∎ a strand is a maximal sequence of instructions that ends with a
spawn, sync, or return (either explicit or implicit) statement.

∎ At runtime, the spawn relation causes procedure instances to be
structured as a rooted tree, called spawn tree or parallel instruction
stream, where dependencies among strands form a dag.

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 21 / 107

Work and span

We define several performance measures. We assume an ideal situation:
no cache issues, no interprocessor costs:

𝑇𝑝 is the minimum running time on 𝑝 processors
𝑇1 is called the work, that is, the sum of the number of instructions at

each node.
𝑇∞ is the minimum running time with infinitely many processors, called

the span

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 22 / 107

Work and span

We define several performance measures. We assume an ideal situation:
no cache issues, no interprocessor costs:
𝑇𝑝 is the minimum running time on 𝑝 processors

𝑇1 is called the work, that is, the sum of the number of instructions at
each node.

𝑇∞ is the minimum running time with infinitely many processors, called
the span

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 22 / 107

Work and span

We define several performance measures. We assume an ideal situation:
no cache issues, no interprocessor costs:
𝑇𝑝 is the minimum running time on 𝑝 processors
𝑇1 is called the work, that is, the sum of the number of instructions at

each node.

𝑇∞ is the minimum running time with infinitely many processors, called
the span

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 22 / 107

Work and span

We define several performance measures. We assume an ideal situation:
no cache issues, no interprocessor costs:
𝑇𝑝 is the minimum running time on 𝑝 processors
𝑇1 is called the work, that is, the sum of the number of instructions at

each node.
𝑇∞ is the minimum running time with infinitely many processors, called

the span
Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 22 / 107

The critical path length

Assuming all strands run in unit time, the longest path in the DAG is equal
to 𝑇∞. For this reason, 𝑇∞ is also referred to as the critical path length.

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 23 / 107

Work law

∎ We have: 𝑇𝑝 ≥ 𝑇1⇑𝑝.
∎ Indeed, in the best case, 𝑝 processors can do 𝑝 works per unit of time.

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 24 / 107

Work law

∎ We have: 𝑇𝑝 ≥ 𝑇1⇑𝑝.

∎ Indeed, in the best case, 𝑝 processors can do 𝑝 works per unit of time.

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 24 / 107

Work law

∎ We have: 𝑇𝑝 ≥ 𝑇1⇑𝑝.
∎ Indeed, in the best case, 𝑝 processors can do 𝑝 works per unit of time.

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 24 / 107

Span law

∎ We have: 𝑇𝑝 ≥ 𝑇∞.
∎ Indeed, 𝑇𝑝 < 𝑇∞ contradicts the definitions of 𝑇𝑝 and 𝑇∞.

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 25 / 107

Span law

∎ We have: 𝑇𝑝 ≥ 𝑇∞.

∎ Indeed, 𝑇𝑝 < 𝑇∞ contradicts the definitions of 𝑇𝑝 and 𝑇∞.

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 25 / 107

Span law

∎ We have: 𝑇𝑝 ≥ 𝑇∞.
∎ Indeed, 𝑇𝑝 < 𝑇∞ contradicts the definitions of 𝑇𝑝 and 𝑇∞.

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 25 / 107

Speedup on 𝑝 processors

∎ 𝑇1⇑𝑇𝑝 is called the speedup on 𝑝 processors

∎ A parallel program execution can have:

ë linear speedup: 𝑇1⇑𝑇𝑃 = Θ(𝑝)

ë superlinear speedup: 𝑇1⇑𝑇𝑃 = 𝜔(𝑝) (not possible in this model,
though it is possible in others)

ë sublinear speedup: 𝑇1⇑𝑇𝑃 = 𝑜(𝑝)

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 26 / 107

Speedup on 𝑝 processors

∎ 𝑇1⇑𝑇𝑝 is called the speedup on 𝑝 processors

∎ A parallel program execution can have:

ë linear speedup: 𝑇1⇑𝑇𝑃 = Θ(𝑝)

ë superlinear speedup: 𝑇1⇑𝑇𝑃 = 𝜔(𝑝) (not possible in this model,
though it is possible in others)

ë sublinear speedup: 𝑇1⇑𝑇𝑃 = 𝑜(𝑝)

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 26 / 107

Speedup on 𝑝 processors

∎ 𝑇1⇑𝑇𝑝 is called the speedup on 𝑝 processors

∎ A parallel program execution can have:
ë linear speedup: 𝑇1⇑𝑇𝑃 = Θ(𝑝)

ë superlinear speedup: 𝑇1⇑𝑇𝑃 = 𝜔(𝑝) (not possible in this model,
though it is possible in others)

ë sublinear speedup: 𝑇1⇑𝑇𝑃 = 𝑜(𝑝)

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 26 / 107

Speedup on 𝑝 processors

∎ 𝑇1⇑𝑇𝑝 is called the speedup on 𝑝 processors

∎ A parallel program execution can have:
ë linear speedup: 𝑇1⇑𝑇𝑃 = Θ(𝑝)

ë superlinear speedup: 𝑇1⇑𝑇𝑃 = 𝜔(𝑝) (not possible in this model,
though it is possible in others)

ë sublinear speedup: 𝑇1⇑𝑇𝑃 = 𝑜(𝑝)

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 26 / 107

Speedup on 𝑝 processors

∎ 𝑇1⇑𝑇𝑝 is called the speedup on 𝑝 processors

∎ A parallel program execution can have:
ë linear speedup: 𝑇1⇑𝑇𝑃 = Θ(𝑝)

ë superlinear speedup: 𝑇1⇑𝑇𝑃 = 𝜔(𝑝) (not possible in this model,
though it is possible in others)

ë sublinear speedup: 𝑇1⇑𝑇𝑃 = 𝑜(𝑝)

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 26 / 107

Parallelism

Because the Span Law dictates
that T ≥ T the maximumthat TP ≥ T∞, the maximum
possible speedup given T1and T∞ is
T /T ll liT1/T∞ = parallelism

= the average
amount of workamount of work
per step along
the span.

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 27 / 107

The Fibonacci example (1/2)

1

2 7

8

4 6

2 7

3

5

∎ For Fib(4), we have 𝑇1 = 17 and 𝑇∞ = 8 and thus 𝑇1⇑𝑇∞ = 2.125.
∎ What about 𝑇1(Fib(𝑛)) and 𝑇∞(Fib(𝑛))?

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 28 / 107

The Fibonacci example (1/2)

1

2 7

8

4 6

2 7

3

5

∎ For Fib(4), we have 𝑇1 = 17 and 𝑇∞ = 8 and thus 𝑇1⇑𝑇∞ = 2.125.

∎ What about 𝑇1(Fib(𝑛)) and 𝑇∞(Fib(𝑛))?

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 28 / 107

The Fibonacci example (1/2)

1

2 7

8

4 6

2 7

3

5

∎ For Fib(4), we have 𝑇1 = 17 and 𝑇∞ = 8 and thus 𝑇1⇑𝑇∞ = 2.125.
∎ What about 𝑇1(Fib(𝑛)) and 𝑇∞(Fib(𝑛))?

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 28 / 107

The Fibonacci example (2/2)

∎ We have 𝑇1(𝑛) = 𝑇1(𝑛 − 1) + 𝑇1(𝑛 − 2) +Θ(1). Let’s solve it.

ë One can verify by induction that 𝑇 (𝑛) ≤ 𝑎𝐹𝑛 − 𝑏 for 𝑏 > 0 large enough
to dominate Θ(1) and 𝑎 > 1.

ë We can then choose 𝑎 large enough to satisfy the initial condition,
whatever that is.

ë On the other hand we also have 𝐹𝑛 ≤ 𝑇 (𝑛).
ë Therefore 𝑇1(𝑛) = Θ(𝐹𝑛) = Θ(𝜓𝑛) with 𝜓 = (1 +

⌋︂
5)⇑2.

∎ We have 𝑇∞(𝑛) = max(𝑇∞(𝑛 − 1), 𝑇∞(𝑛 − 2)) +Θ(1).

ë We easily check 𝑇∞(𝑛 − 1) ≥ 𝑇∞(𝑛 − 2).
ë This implies 𝑇∞(𝑛) = 𝑇∞(𝑛 − 1) +Θ(1).
ë Therefore 𝑇∞(𝑛) = Θ(𝑛).

∎ Consequently the parallelism is Θ(𝜓𝑛⇑𝑛).

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 29 / 107

The Fibonacci example (2/2)

∎ We have 𝑇1(𝑛) = 𝑇1(𝑛 − 1) + 𝑇1(𝑛 − 2) +Θ(1). Let’s solve it.
ë One can verify by induction that 𝑇 (𝑛) ≤ 𝑎𝐹𝑛 − 𝑏 for 𝑏 > 0 large enough

to dominate Θ(1) and 𝑎 > 1.

ë We can then choose 𝑎 large enough to satisfy the initial condition,
whatever that is.

ë On the other hand we also have 𝐹𝑛 ≤ 𝑇 (𝑛).
ë Therefore 𝑇1(𝑛) = Θ(𝐹𝑛) = Θ(𝜓𝑛) with 𝜓 = (1 +

⌋︂
5)⇑2.

∎ We have 𝑇∞(𝑛) = max(𝑇∞(𝑛 − 1), 𝑇∞(𝑛 − 2)) +Θ(1).

ë We easily check 𝑇∞(𝑛 − 1) ≥ 𝑇∞(𝑛 − 2).
ë This implies 𝑇∞(𝑛) = 𝑇∞(𝑛 − 1) +Θ(1).
ë Therefore 𝑇∞(𝑛) = Θ(𝑛).

∎ Consequently the parallelism is Θ(𝜓𝑛⇑𝑛).

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 29 / 107

The Fibonacci example (2/2)

∎ We have 𝑇1(𝑛) = 𝑇1(𝑛 − 1) + 𝑇1(𝑛 − 2) +Θ(1). Let’s solve it.
ë One can verify by induction that 𝑇 (𝑛) ≤ 𝑎𝐹𝑛 − 𝑏 for 𝑏 > 0 large enough

to dominate Θ(1) and 𝑎 > 1.
ë We can then choose 𝑎 large enough to satisfy the initial condition,

whatever that is.

ë On the other hand we also have 𝐹𝑛 ≤ 𝑇 (𝑛).
ë Therefore 𝑇1(𝑛) = Θ(𝐹𝑛) = Θ(𝜓𝑛) with 𝜓 = (1 +

⌋︂
5)⇑2.

∎ We have 𝑇∞(𝑛) = max(𝑇∞(𝑛 − 1), 𝑇∞(𝑛 − 2)) +Θ(1).

ë We easily check 𝑇∞(𝑛 − 1) ≥ 𝑇∞(𝑛 − 2).
ë This implies 𝑇∞(𝑛) = 𝑇∞(𝑛 − 1) +Θ(1).
ë Therefore 𝑇∞(𝑛) = Θ(𝑛).

∎ Consequently the parallelism is Θ(𝜓𝑛⇑𝑛).

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 29 / 107

The Fibonacci example (2/2)

∎ We have 𝑇1(𝑛) = 𝑇1(𝑛 − 1) + 𝑇1(𝑛 − 2) +Θ(1). Let’s solve it.
ë One can verify by induction that 𝑇 (𝑛) ≤ 𝑎𝐹𝑛 − 𝑏 for 𝑏 > 0 large enough

to dominate Θ(1) and 𝑎 > 1.
ë We can then choose 𝑎 large enough to satisfy the initial condition,

whatever that is.
ë On the other hand we also have 𝐹𝑛 ≤ 𝑇 (𝑛).

ë Therefore 𝑇1(𝑛) = Θ(𝐹𝑛) = Θ(𝜓𝑛) with 𝜓 = (1 +
⌋︂

5)⇑2.

∎ We have 𝑇∞(𝑛) = max(𝑇∞(𝑛 − 1), 𝑇∞(𝑛 − 2)) +Θ(1).

ë We easily check 𝑇∞(𝑛 − 1) ≥ 𝑇∞(𝑛 − 2).
ë This implies 𝑇∞(𝑛) = 𝑇∞(𝑛 − 1) +Θ(1).
ë Therefore 𝑇∞(𝑛) = Θ(𝑛).

∎ Consequently the parallelism is Θ(𝜓𝑛⇑𝑛).

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 29 / 107

The Fibonacci example (2/2)

∎ We have 𝑇1(𝑛) = 𝑇1(𝑛 − 1) + 𝑇1(𝑛 − 2) +Θ(1). Let’s solve it.
ë One can verify by induction that 𝑇 (𝑛) ≤ 𝑎𝐹𝑛 − 𝑏 for 𝑏 > 0 large enough

to dominate Θ(1) and 𝑎 > 1.
ë We can then choose 𝑎 large enough to satisfy the initial condition,

whatever that is.
ë On the other hand we also have 𝐹𝑛 ≤ 𝑇 (𝑛).
ë Therefore 𝑇1(𝑛) = Θ(𝐹𝑛) = Θ(𝜓𝑛) with 𝜓 = (1 +

⌋︂
5)⇑2.

∎ We have 𝑇∞(𝑛) = max(𝑇∞(𝑛 − 1), 𝑇∞(𝑛 − 2)) +Θ(1).

ë We easily check 𝑇∞(𝑛 − 1) ≥ 𝑇∞(𝑛 − 2).
ë This implies 𝑇∞(𝑛) = 𝑇∞(𝑛 − 1) +Θ(1).
ë Therefore 𝑇∞(𝑛) = Θ(𝑛).

∎ Consequently the parallelism is Θ(𝜓𝑛⇑𝑛).

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 29 / 107

The Fibonacci example (2/2)

∎ We have 𝑇1(𝑛) = 𝑇1(𝑛 − 1) + 𝑇1(𝑛 − 2) +Θ(1). Let’s solve it.
ë One can verify by induction that 𝑇 (𝑛) ≤ 𝑎𝐹𝑛 − 𝑏 for 𝑏 > 0 large enough

to dominate Θ(1) and 𝑎 > 1.
ë We can then choose 𝑎 large enough to satisfy the initial condition,

whatever that is.
ë On the other hand we also have 𝐹𝑛 ≤ 𝑇 (𝑛).
ë Therefore 𝑇1(𝑛) = Θ(𝐹𝑛) = Θ(𝜓𝑛) with 𝜓 = (1 +

⌋︂
5)⇑2.

∎ We have 𝑇∞(𝑛) = max(𝑇∞(𝑛 − 1), 𝑇∞(𝑛 − 2)) +Θ(1).

ë We easily check 𝑇∞(𝑛 − 1) ≥ 𝑇∞(𝑛 − 2).
ë This implies 𝑇∞(𝑛) = 𝑇∞(𝑛 − 1) +Θ(1).
ë Therefore 𝑇∞(𝑛) = Θ(𝑛).

∎ Consequently the parallelism is Θ(𝜓𝑛⇑𝑛).

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 29 / 107

The Fibonacci example (2/2)

∎ We have 𝑇1(𝑛) = 𝑇1(𝑛 − 1) + 𝑇1(𝑛 − 2) +Θ(1). Let’s solve it.
ë One can verify by induction that 𝑇 (𝑛) ≤ 𝑎𝐹𝑛 − 𝑏 for 𝑏 > 0 large enough

to dominate Θ(1) and 𝑎 > 1.
ë We can then choose 𝑎 large enough to satisfy the initial condition,

whatever that is.
ë On the other hand we also have 𝐹𝑛 ≤ 𝑇 (𝑛).
ë Therefore 𝑇1(𝑛) = Θ(𝐹𝑛) = Θ(𝜓𝑛) with 𝜓 = (1 +

⌋︂
5)⇑2.

∎ We have 𝑇∞(𝑛) = max(𝑇∞(𝑛 − 1), 𝑇∞(𝑛 − 2)) +Θ(1).
ë We easily check 𝑇∞(𝑛 − 1) ≥ 𝑇∞(𝑛 − 2).

ë This implies 𝑇∞(𝑛) = 𝑇∞(𝑛 − 1) +Θ(1).
ë Therefore 𝑇∞(𝑛) = Θ(𝑛).

∎ Consequently the parallelism is Θ(𝜓𝑛⇑𝑛).

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 29 / 107

The Fibonacci example (2/2)

∎ We have 𝑇1(𝑛) = 𝑇1(𝑛 − 1) + 𝑇1(𝑛 − 2) +Θ(1). Let’s solve it.
ë One can verify by induction that 𝑇 (𝑛) ≤ 𝑎𝐹𝑛 − 𝑏 for 𝑏 > 0 large enough

to dominate Θ(1) and 𝑎 > 1.
ë We can then choose 𝑎 large enough to satisfy the initial condition,

whatever that is.
ë On the other hand we also have 𝐹𝑛 ≤ 𝑇 (𝑛).
ë Therefore 𝑇1(𝑛) = Θ(𝐹𝑛) = Θ(𝜓𝑛) with 𝜓 = (1 +

⌋︂
5)⇑2.

∎ We have 𝑇∞(𝑛) = max(𝑇∞(𝑛 − 1), 𝑇∞(𝑛 − 2)) +Θ(1).
ë We easily check 𝑇∞(𝑛 − 1) ≥ 𝑇∞(𝑛 − 2).
ë This implies 𝑇∞(𝑛) = 𝑇∞(𝑛 − 1) +Θ(1).

ë Therefore 𝑇∞(𝑛) = Θ(𝑛).

∎ Consequently the parallelism is Θ(𝜓𝑛⇑𝑛).

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 29 / 107

The Fibonacci example (2/2)

∎ We have 𝑇1(𝑛) = 𝑇1(𝑛 − 1) + 𝑇1(𝑛 − 2) +Θ(1). Let’s solve it.
ë One can verify by induction that 𝑇 (𝑛) ≤ 𝑎𝐹𝑛 − 𝑏 for 𝑏 > 0 large enough

to dominate Θ(1) and 𝑎 > 1.
ë We can then choose 𝑎 large enough to satisfy the initial condition,

whatever that is.
ë On the other hand we also have 𝐹𝑛 ≤ 𝑇 (𝑛).
ë Therefore 𝑇1(𝑛) = Θ(𝐹𝑛) = Θ(𝜓𝑛) with 𝜓 = (1 +

⌋︂
5)⇑2.

∎ We have 𝑇∞(𝑛) = max(𝑇∞(𝑛 − 1), 𝑇∞(𝑛 − 2)) +Θ(1).
ë We easily check 𝑇∞(𝑛 − 1) ≥ 𝑇∞(𝑛 − 2).
ë This implies 𝑇∞(𝑛) = 𝑇∞(𝑛 − 1) +Θ(1).
ë Therefore 𝑇∞(𝑛) = Θ(𝑛).

∎ Consequently the parallelism is Θ(𝜓𝑛⇑𝑛).

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 29 / 107

The Fibonacci example (2/2)

∎ We have 𝑇1(𝑛) = 𝑇1(𝑛 − 1) + 𝑇1(𝑛 − 2) +Θ(1). Let’s solve it.
ë One can verify by induction that 𝑇 (𝑛) ≤ 𝑎𝐹𝑛 − 𝑏 for 𝑏 > 0 large enough

to dominate Θ(1) and 𝑎 > 1.
ë We can then choose 𝑎 large enough to satisfy the initial condition,

whatever that is.
ë On the other hand we also have 𝐹𝑛 ≤ 𝑇 (𝑛).
ë Therefore 𝑇1(𝑛) = Θ(𝐹𝑛) = Θ(𝜓𝑛) with 𝜓 = (1 +

⌋︂
5)⇑2.

∎ We have 𝑇∞(𝑛) = max(𝑇∞(𝑛 − 1), 𝑇∞(𝑛 − 2)) +Θ(1).
ë We easily check 𝑇∞(𝑛 − 1) ≥ 𝑇∞(𝑛 − 2).
ë This implies 𝑇∞(𝑛) = 𝑇∞(𝑛 − 1) +Θ(1).
ë Therefore 𝑇∞(𝑛) = Θ(𝑛).

∎ Consequently the parallelism is Θ(𝜓𝑛⇑𝑛).

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 29 / 107

Series composition

A B

∎ Work?

∎ Span?

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 30 / 107

Series composition

A B

∎ Work?
∎ Span?

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 30 / 107

Series composition

A B

∎ Work: 𝑇1(𝐴 ∪𝐵) = 𝑇1(𝐴) + 𝑇1(𝐵)

∎ Span: 𝑇∞(𝐴 ∪𝐵) = 𝑇∞(𝐴) + 𝑇∞(𝐵)

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 31 / 107

Series composition

A B

∎ Work: 𝑇1(𝐴 ∪𝐵) = 𝑇1(𝐴) + 𝑇1(𝐵)

∎ Span: 𝑇∞(𝐴 ∪𝐵) = 𝑇∞(𝐴) + 𝑇∞(𝐵)

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 31 / 107

Parallel composition

AA

B

∎ Work?

∎ Span?

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 32 / 107

Parallel composition

AA

B

∎ Work?
∎ Span?

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 32 / 107

Parallel composition

AA

B

∎ Work: 𝑇1(𝐴 ∪𝐵) = 𝑇1(𝐴) + 𝑇1(𝐵)

∎ Span: 𝑇∞(𝐴 ∪𝐵) = max(𝑇∞(𝐴), 𝑇∞(𝐵))

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 33 / 107

Parallel composition

AA

B

∎ Work: 𝑇1(𝐴 ∪𝐵) = 𝑇1(𝐴) + 𝑇1(𝐵)

∎ Span: 𝑇∞(𝐴 ∪𝐵) = max(𝑇∞(𝐴), 𝑇∞(𝐵))

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 33 / 107

Some results in the fork-join parallelism model

Algorithm Work Spang p
Merge sort Θ(n lg n) Θ(lg3n)
Matrix multiplication Θ(n3) Θ(lg n)
Strassen Θ(nlg7) Θ(lg2n)
LU-decomposition Θ(n3) Θ(n lg n)
Tableau construction Θ(n2) Ω(nlg3)
FFT Θ(n lg n) Θ(lg2n)
B d h fi h Θ(E) Θ(d l V)Breadth-first search Θ(E) Θ(d lg V)

We shall prove most of these results in the next sections.

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 34 / 107

For loop parallelism in Cilk++

a11 a12 ⋯ a1n
a21 a22 ⋯ a2n

a11 a21 ⋯ an1
a12 a22 ⋯ an221 22 2n

⋮ ⋮ ⋱ ⋮
an1 an2 ⋯ ann

12 22 n2

⋮ ⋮ ⋱ ⋮
a1n a2n ⋯ annn1 n2 nn 1n 2n nn

A AT

cilk_for (int i=1; i<n; ++i) {
for (int j=0; j<i; ++j) {

double temp = A[i][j];
A[i][j] = A[j][i];
A[j][i] = temp;

}
}

The iterations of a cilk_for loop execute in parallel.

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 35 / 107

Implementation of for loops in Cilk++

Up to details the previous loop is compiled as follows, using a
divide-and-conquer implementation:
void recur(int lo, int hi) {

if (hi > lo) { // coarsen
int mid = lo + (hi - lo)/2;
cilk_spawn recur(lo, mid);
recur(mid+1, hi);
cilk_sync;

} else
for (int j=lo; j<hi+1; ++j) {

double temp = A[hi][j];
A[hi][j] = A[j][hi];
A[j][hi] = temp;

}
}

}
Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 36 / 107

Analysis of parallel for loops

1 2 3 41 2 3 4 5 6 7 8

Here we do not assume that each strand runs in unit time.

∎ Span of loop control: Θ(log(𝑛))
∎ Max span of an iteration: Θ(𝑛)

∎ Span: Θ(𝑛)

∎ Work: Θ(𝑛2)

∎ Parallelism: Θ(𝑛)

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 37 / 107

Analysis of parallel for loops

1 2 3 41 2 3 4 5 6 7 8

Here we do not assume that each strand runs in unit time.
∎ Span of loop control: Θ(log(𝑛))

∎ Max span of an iteration: Θ(𝑛)

∎ Span: Θ(𝑛)

∎ Work: Θ(𝑛2)

∎ Parallelism: Θ(𝑛)

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 37 / 107

Analysis of parallel for loops

1 2 3 41 2 3 4 5 6 7 8

Here we do not assume that each strand runs in unit time.
∎ Span of loop control: Θ(log(𝑛))
∎ Max span of an iteration: Θ(𝑛)

∎ Span: Θ(𝑛)

∎ Work: Θ(𝑛2)

∎ Parallelism: Θ(𝑛)

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 37 / 107

Analysis of parallel for loops

1 2 3 41 2 3 4 5 6 7 8

Here we do not assume that each strand runs in unit time.
∎ Span of loop control: Θ(log(𝑛))
∎ Max span of an iteration: Θ(𝑛)

∎ Span: Θ(𝑛)

∎ Work: Θ(𝑛2)

∎ Parallelism: Θ(𝑛)

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 37 / 107

Analysis of parallel for loops

1 2 3 41 2 3 4 5 6 7 8

Here we do not assume that each strand runs in unit time.
∎ Span of loop control: Θ(log(𝑛))
∎ Max span of an iteration: Θ(𝑛)

∎ Span: Θ(𝑛)

∎ Work: Θ(𝑛2)

∎ Parallelism: Θ(𝑛)

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 37 / 107

Analysis of parallel for loops

1 2 3 41 2 3 4 5 6 7 8

Here we do not assume that each strand runs in unit time.
∎ Span of loop control: Θ(log(𝑛))
∎ Max span of an iteration: Θ(𝑛)

∎ Span: Θ(𝑛)

∎ Work: Θ(𝑛2)

∎ Parallelism: Θ(𝑛)

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 37 / 107

Analysis of parallel for loops

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 38 / 107

Parallelizing the inner loop
This would yield the following code

cilk_for (int i=1; i<n; ++i) {
cilk_for (int j=0; j<i; ++j) {

double temp = A[i][j];
A[i][j] = A[j][i];
A[j][i] = temp;

}
}

∎ Span of outer loop control: Θ(log(𝑛))
∎ Max span of an inner loop control: Θ(log(𝑛))
∎ Span of an iteration: Θ(1)
∎ Span: Θ(log(𝑛))
∎ Work: Θ(𝑛2)
∎ Parallelism: Θ(𝑛2⇑log(𝑛))

In practice, parallelizing the inner loop would increase the memory footprint
(allocation of the temporaries) and increase parallelism overheads. So, this is
not a good idea.

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 39 / 107

Parallelizing the inner loop
This would yield the following code

cilk_for (int i=1; i<n; ++i) {
cilk_for (int j=0; j<i; ++j) {

double temp = A[i][j];
A[i][j] = A[j][i];
A[j][i] = temp;

}
}

∎ Span of outer loop control: Θ(log(𝑛))

∎ Max span of an inner loop control: Θ(log(𝑛))
∎ Span of an iteration: Θ(1)
∎ Span: Θ(log(𝑛))
∎ Work: Θ(𝑛2)
∎ Parallelism: Θ(𝑛2⇑log(𝑛))

In practice, parallelizing the inner loop would increase the memory footprint
(allocation of the temporaries) and increase parallelism overheads. So, this is
not a good idea.

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 39 / 107

Parallelizing the inner loop
This would yield the following code

cilk_for (int i=1; i<n; ++i) {
cilk_for (int j=0; j<i; ++j) {

double temp = A[i][j];
A[i][j] = A[j][i];
A[j][i] = temp;

}
}

∎ Span of outer loop control: Θ(log(𝑛))
∎ Max span of an inner loop control: Θ(log(𝑛))

∎ Span of an iteration: Θ(1)
∎ Span: Θ(log(𝑛))
∎ Work: Θ(𝑛2)
∎ Parallelism: Θ(𝑛2⇑log(𝑛))

In practice, parallelizing the inner loop would increase the memory footprint
(allocation of the temporaries) and increase parallelism overheads. So, this is
not a good idea.

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 39 / 107

Parallelizing the inner loop
This would yield the following code

cilk_for (int i=1; i<n; ++i) {
cilk_for (int j=0; j<i; ++j) {

double temp = A[i][j];
A[i][j] = A[j][i];
A[j][i] = temp;

}
}

∎ Span of outer loop control: Θ(log(𝑛))
∎ Max span of an inner loop control: Θ(log(𝑛))
∎ Span of an iteration: Θ(1)

∎ Span: Θ(log(𝑛))
∎ Work: Θ(𝑛2)
∎ Parallelism: Θ(𝑛2⇑log(𝑛))

In practice, parallelizing the inner loop would increase the memory footprint
(allocation of the temporaries) and increase parallelism overheads. So, this is
not a good idea.

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 39 / 107

Parallelizing the inner loop
This would yield the following code

cilk_for (int i=1; i<n; ++i) {
cilk_for (int j=0; j<i; ++j) {

double temp = A[i][j];
A[i][j] = A[j][i];
A[j][i] = temp;

}
}

∎ Span of outer loop control: Θ(log(𝑛))
∎ Max span of an inner loop control: Θ(log(𝑛))
∎ Span of an iteration: Θ(1)
∎ Span: Θ(log(𝑛))

∎ Work: Θ(𝑛2)
∎ Parallelism: Θ(𝑛2⇑log(𝑛))

In practice, parallelizing the inner loop would increase the memory footprint
(allocation of the temporaries) and increase parallelism overheads. So, this is
not a good idea.

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 39 / 107

Parallelizing the inner loop
This would yield the following code

cilk_for (int i=1; i<n; ++i) {
cilk_for (int j=0; j<i; ++j) {

double temp = A[i][j];
A[i][j] = A[j][i];
A[j][i] = temp;

}
}

∎ Span of outer loop control: Θ(log(𝑛))
∎ Max span of an inner loop control: Θ(log(𝑛))
∎ Span of an iteration: Θ(1)
∎ Span: Θ(log(𝑛))
∎ Work: Θ(𝑛2)

∎ Parallelism: Θ(𝑛2⇑log(𝑛))

In practice, parallelizing the inner loop would increase the memory footprint
(allocation of the temporaries) and increase parallelism overheads. So, this is
not a good idea.

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 39 / 107

Parallelizing the inner loop
This would yield the following code

cilk_for (int i=1; i<n; ++i) {
cilk_for (int j=0; j<i; ++j) {

double temp = A[i][j];
A[i][j] = A[j][i];
A[j][i] = temp;

}
}

∎ Span of outer loop control: Θ(log(𝑛))
∎ Max span of an inner loop control: Θ(log(𝑛))
∎ Span of an iteration: Θ(1)
∎ Span: Θ(log(𝑛))
∎ Work: Θ(𝑛2)
∎ Parallelism: Θ(𝑛2⇑log(𝑛))

In practice, parallelizing the inner loop would increase the memory footprint
(allocation of the temporaries) and increase parallelism overheads. So, this is
not a good idea.

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 39 / 107

Parallelizing the inner loop
This would yield the following code

cilk_for (int i=1; i<n; ++i) {
cilk_for (int j=0; j<i; ++j) {

double temp = A[i][j];
A[i][j] = A[j][i];
A[j][i] = temp;

}
}

∎ Span of outer loop control: Θ(log(𝑛))
∎ Max span of an inner loop control: Θ(log(𝑛))
∎ Span of an iteration: Θ(1)
∎ Span: Θ(log(𝑛))
∎ Work: Θ(𝑛2)
∎ Parallelism: Θ(𝑛2⇑log(𝑛))

In practice, parallelizing the inner loop would increase the memory footprint
(allocation of the temporaries) and increase parallelism overheads. So, this is
not a good idea.

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 39 / 107

Outline

1. Cilk: the fork-join model in action
1.1 The language and the compiler
1.2 The runtime system
1.3 Matrix multiplication in Cilk

2. The Fork-Join Model

3. Scheduling Theory and Implementation

4. Analysis of Multithreaded Algorithms
4.1 Review of Complexity Notions
4.2 Divide-and-Conquer Recurrences
4.3 Matrix Multiplication
4.4 Merge Sort
4.5 Tableau Construction

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 40 / 107

Scheduling

Memory I/O

Network

P$ $ $…P
P P P
$ $ $

A scheduler’s job is to map a computation to particular processors. Such
a mapping is called a schedule.

∎ If decisions are made at runtime, the scheduler is online, otherwise, it
is offline

∎ Cilk++’s scheduler maps strands onto processors dynamically at
runtime.

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 41 / 107

Scheduling

Memory I/O

Network

P$ $ $…P
P P P
$ $ $

A scheduler’s job is to map a computation to particular processors. Such
a mapping is called a schedule.
∎ If decisions are made at runtime, the scheduler is online, otherwise, it

is offline

∎ Cilk++’s scheduler maps strands onto processors dynamically at
runtime.

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 41 / 107

Scheduling

Memory I/O

Network

P$ $ $…P
P P P
$ $ $

A scheduler’s job is to map a computation to particular processors. Such
a mapping is called a schedule.
∎ If decisions are made at runtime, the scheduler is online, otherwise, it

is offline
∎ Cilk++’s scheduler maps strands onto processors dynamically at

runtime.
Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 41 / 107

Greedy scheduling (1/2)

∎ A strand is ready if all its predecessors have executed

∎ A scheduler is greedy if it attempts to do as much work as possible
at every step.

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 42 / 107

Greedy scheduling (1/2)

∎ A strand is ready if all its predecessors have executed
∎ A scheduler is greedy if it attempts to do as much work as possible

at every step.

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 42 / 107

Greedy scheduling (2/2)

P = 3

∎ In any greedy schedule, there are two types of steps:

ë complete step: There are at least 𝑝 strands that are ready to run.
The greedy scheduler selects any 𝑝 of them and runs them.

ë incomplete step: There are strictly less than 𝑝 strands that are ready
to run. The greedy scheduler runs them all.

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 43 / 107

Greedy scheduling (2/2)

P = 3

∎ In any greedy schedule, there are two types of steps:
ë complete step: There are at least 𝑝 strands that are ready to run.

The greedy scheduler selects any 𝑝 of them and runs them.

ë incomplete step: There are strictly less than 𝑝 strands that are ready
to run. The greedy scheduler runs them all.

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 43 / 107

Greedy scheduling (2/2)

P = 3

∎ In any greedy schedule, there are two types of steps:
ë complete step: There are at least 𝑝 strands that are ready to run.

The greedy scheduler selects any 𝑝 of them and runs them.
ë incomplete step: There are strictly less than 𝑝 strands that are ready

to run. The greedy scheduler runs them all.

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 43 / 107

Theorem of Graham and Brent

P = 3

For any greedy schedule, we have 𝑇𝑝 ≤ 𝑇1⇑𝑝 + 𝑇∞
∎ #complete steps ≤ 𝑇1⇑𝑝, by definition of 𝑇1.

∎ #incomplete steps ≤ 𝑇∞. Indeed, let 𝐺′ be the subgraph of 𝐺 that
remains to be executed immediately prior to an incomplete step.

(𝑖) During this incomplete step, all strands that can be run are actually run
(𝑖𝑖) Hence removing this incomplete step from 𝐺′ reduces 𝑇∞ by one.

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 44 / 107

Theorem of Graham and Brent

P = 3

For any greedy schedule, we have 𝑇𝑝 ≤ 𝑇1⇑𝑝 + 𝑇∞
∎ #complete steps ≤ 𝑇1⇑𝑝, by definition of 𝑇1.
∎ #incomplete steps ≤ 𝑇∞. Indeed, let 𝐺′ be the subgraph of 𝐺 that

remains to be executed immediately prior to an incomplete step.

(𝑖) During this incomplete step, all strands that can be run are actually run
(𝑖𝑖) Hence removing this incomplete step from 𝐺′ reduces 𝑇∞ by one.

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 44 / 107

Theorem of Graham and Brent

P = 3

For any greedy schedule, we have 𝑇𝑝 ≤ 𝑇1⇑𝑝 + 𝑇∞
∎ #complete steps ≤ 𝑇1⇑𝑝, by definition of 𝑇1.
∎ #incomplete steps ≤ 𝑇∞. Indeed, let 𝐺′ be the subgraph of 𝐺 that

remains to be executed immediately prior to an incomplete step.
(𝑖) During this incomplete step, all strands that can be run are actually run

(𝑖𝑖) Hence removing this incomplete step from 𝐺′ reduces 𝑇∞ by one.

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 44 / 107

Theorem of Graham and Brent

P = 3

For any greedy schedule, we have 𝑇𝑝 ≤ 𝑇1⇑𝑝 + 𝑇∞
∎ #complete steps ≤ 𝑇1⇑𝑝, by definition of 𝑇1.
∎ #incomplete steps ≤ 𝑇∞. Indeed, let 𝐺′ be the subgraph of 𝐺 that

remains to be executed immediately prior to an incomplete step.
(𝑖) During this incomplete step, all strands that can be run are actually run
(𝑖𝑖) Hence removing this incomplete step from 𝐺′ reduces 𝑇∞ by one.

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 44 / 107

Corollary 1

A greedy scheduler is always within a factor of 2 of optimal.

From the work and span laws, we have:

𝑇𝑃 ≥ max(𝑇1⇑𝑝, 𝑇∞) (1)

In addition, we can trivially express:

𝑇1⇑𝑝 ≤ max(𝑇1⇑𝑝, 𝑇∞) (2)

𝑇∞ ≤ max(𝑇1⇑𝑝, 𝑇∞) (3)
From Graham - Brent Theorem, we deduce:

𝑇𝑃 ≤ 𝑇1⇑𝑝 + 𝑇∞ (4)
≤ max(𝑇1⇑𝑝, 𝑇∞) +max(𝑇1⇑𝑝, 𝑇∞) (5)
≤ 2 max(𝑇1⇑𝑝, 𝑇∞) (6)

which concludes the proof.

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 45 / 107

Corollary 1

A greedy scheduler is always within a factor of 2 of optimal.

From the work and span laws, we have:

𝑇𝑃 ≥ max(𝑇1⇑𝑝, 𝑇∞) (1)

In addition, we can trivially express:

𝑇1⇑𝑝 ≤ max(𝑇1⇑𝑝, 𝑇∞) (2)

𝑇∞ ≤ max(𝑇1⇑𝑝, 𝑇∞) (3)
From Graham - Brent Theorem, we deduce:

𝑇𝑃 ≤ 𝑇1⇑𝑝 + 𝑇∞ (4)
≤ max(𝑇1⇑𝑝, 𝑇∞) +max(𝑇1⇑𝑝, 𝑇∞) (5)
≤ 2 max(𝑇1⇑𝑝, 𝑇∞) (6)

which concludes the proof.

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 45 / 107

Corollary 1

A greedy scheduler is always within a factor of 2 of optimal.

From the work and span laws, we have:

𝑇𝑃 ≥ max(𝑇1⇑𝑝, 𝑇∞) (1)

In addition, we can trivially express:

𝑇1⇑𝑝 ≤ max(𝑇1⇑𝑝, 𝑇∞) (2)

𝑇∞ ≤ max(𝑇1⇑𝑝, 𝑇∞) (3)

From Graham - Brent Theorem, we deduce:

𝑇𝑃 ≤ 𝑇1⇑𝑝 + 𝑇∞ (4)
≤ max(𝑇1⇑𝑝, 𝑇∞) +max(𝑇1⇑𝑝, 𝑇∞) (5)
≤ 2 max(𝑇1⇑𝑝, 𝑇∞) (6)

which concludes the proof.

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 45 / 107

Corollary 1

A greedy scheduler is always within a factor of 2 of optimal.

From the work and span laws, we have:

𝑇𝑃 ≥ max(𝑇1⇑𝑝, 𝑇∞) (1)

In addition, we can trivially express:

𝑇1⇑𝑝 ≤ max(𝑇1⇑𝑝, 𝑇∞) (2)

𝑇∞ ≤ max(𝑇1⇑𝑝, 𝑇∞) (3)
From Graham - Brent Theorem, we deduce:

𝑇𝑃 ≤ 𝑇1⇑𝑝 + 𝑇∞ (4)
≤ max(𝑇1⇑𝑝, 𝑇∞) +max(𝑇1⇑𝑝, 𝑇∞) (5)
≤ 2 max(𝑇1⇑𝑝, 𝑇∞) (6)

which concludes the proof.
Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 45 / 107

Corollary 2

The greedy scheduler achieves linear speedup whenever 𝑇∞ = 𝑂(𝑇1⇑𝑝).

From Graham - Brent Theorem, we deduce:

𝑇𝑝 ≤ 𝑇1⇑𝑝 + 𝑇∞ (7)
= 𝑇1⇑𝑝 +𝑂(𝑇1⇑𝑝) (8)
= Θ(𝑇1⇑𝑝) (9)

∎ This result suggests to operate in the range where 𝑇1⇑𝑝 dominates
𝑇∞.

∎ As long as 𝑇1⇑𝑝 dominates 𝑇∞, all processors can be used efficiently.
∎ The quantity 𝑇1⇑𝑝𝑇∞ is called the parallel slackness.

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 46 / 107

Corollary 2

The greedy scheduler achieves linear speedup whenever 𝑇∞ = 𝑂(𝑇1⇑𝑝).

From Graham - Brent Theorem, we deduce:

𝑇𝑝 ≤ 𝑇1⇑𝑝 + 𝑇∞ (7)
= 𝑇1⇑𝑝 +𝑂(𝑇1⇑𝑝) (8)
= Θ(𝑇1⇑𝑝) (9)

∎ This result suggests to operate in the range where 𝑇1⇑𝑝 dominates
𝑇∞.

∎ As long as 𝑇1⇑𝑝 dominates 𝑇∞, all processors can be used efficiently.
∎ The quantity 𝑇1⇑𝑝𝑇∞ is called the parallel slackness.

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 46 / 107

Corollary 2

The greedy scheduler achieves linear speedup whenever 𝑇∞ = 𝑂(𝑇1⇑𝑝).

From Graham - Brent Theorem, we deduce:

𝑇𝑝 ≤ 𝑇1⇑𝑝 + 𝑇∞ (7)
= 𝑇1⇑𝑝 +𝑂(𝑇1⇑𝑝) (8)
= Θ(𝑇1⇑𝑝) (9)

∎ This result suggests to operate in the range where 𝑇1⇑𝑝 dominates
𝑇∞.

∎ As long as 𝑇1⇑𝑝 dominates 𝑇∞, all processors can be used efficiently.
∎ The quantity 𝑇1⇑𝑝𝑇∞ is called the parallel slackness.

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 46 / 107

Corollary 2

The greedy scheduler achieves linear speedup whenever 𝑇∞ = 𝑂(𝑇1⇑𝑝).

From Graham - Brent Theorem, we deduce:

𝑇𝑝 ≤ 𝑇1⇑𝑝 + 𝑇∞ (7)
= 𝑇1⇑𝑝 +𝑂(𝑇1⇑𝑝) (8)
= Θ(𝑇1⇑𝑝) (9)

∎ This result suggests to operate in the range where 𝑇1⇑𝑝 dominates
𝑇∞.

∎ As long as 𝑇1⇑𝑝 dominates 𝑇∞, all processors can be used efficiently.

∎ The quantity 𝑇1⇑𝑝𝑇∞ is called the parallel slackness.

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 46 / 107

Corollary 2

The greedy scheduler achieves linear speedup whenever 𝑇∞ = 𝑂(𝑇1⇑𝑝).

From Graham - Brent Theorem, we deduce:

𝑇𝑝 ≤ 𝑇1⇑𝑝 + 𝑇∞ (7)
= 𝑇1⇑𝑝 +𝑂(𝑇1⇑𝑝) (8)
= Θ(𝑇1⇑𝑝) (9)

∎ This result suggests to operate in the range where 𝑇1⇑𝑝 dominates
𝑇∞.

∎ As long as 𝑇1⇑𝑝 dominates 𝑇∞, all processors can be used efficiently.
∎ The quantity 𝑇1⇑𝑝𝑇∞ is called the parallel slackness.

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 46 / 107

The work-stealing scheduler (1/9)

∎ Cilk/Cilk++ randomized work-stealing scheduler load-balances the
computation at run-time. Each processor maintains a ready deque:

ë A ready deque is a double ended queue, where each entry is a
procedure instance that is ready to execute.

ë Adding a procedure instance to the bottom of the deque represents a
procedure call being spawned.

ë A procedure instance being deleted from the bottom of the deque
represents the processor beginning/resuming execution on that
procedure.

ë Deletion from the top of the deque corresponds to that procedure
instance being stolen.

∎ A mathematical proof guarantees near-perfect linear speed-up on
applications with sufficient parallelism, as long as the architecture has
sufficient memory bandwidth.

∎ A spawn/return in Cilk is over 100 times faster than a Pthread
create/exit and less than 3 times slower than an ordinary C
function call on a modern Intel processor.

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 47 / 107

The work-stealing scheduler (1/9)

∎ Cilk/Cilk++ randomized work-stealing scheduler load-balances the
computation at run-time. Each processor maintains a ready deque:

ë A ready deque is a double ended queue, where each entry is a
procedure instance that is ready to execute.

ë Adding a procedure instance to the bottom of the deque represents a
procedure call being spawned.

ë A procedure instance being deleted from the bottom of the deque
represents the processor beginning/resuming execution on that
procedure.

ë Deletion from the top of the deque corresponds to that procedure
instance being stolen.

∎ A mathematical proof guarantees near-perfect linear speed-up on
applications with sufficient parallelism, as long as the architecture has
sufficient memory bandwidth.

∎ A spawn/return in Cilk is over 100 times faster than a Pthread
create/exit and less than 3 times slower than an ordinary C
function call on a modern Intel processor.

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 47 / 107

The work-stealing scheduler (1/9)

∎ Cilk/Cilk++ randomized work-stealing scheduler load-balances the
computation at run-time. Each processor maintains a ready deque:

ë A ready deque is a double ended queue, where each entry is a
procedure instance that is ready to execute.

ë Adding a procedure instance to the bottom of the deque represents a
procedure call being spawned.

ë A procedure instance being deleted from the bottom of the deque
represents the processor beginning/resuming execution on that
procedure.

ë Deletion from the top of the deque corresponds to that procedure
instance being stolen.

∎ A mathematical proof guarantees near-perfect linear speed-up on
applications with sufficient parallelism, as long as the architecture has
sufficient memory bandwidth.

∎ A spawn/return in Cilk is over 100 times faster than a Pthread
create/exit and less than 3 times slower than an ordinary C
function call on a modern Intel processor.

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 47 / 107

The work-stealing scheduler (1/9)

∎ Cilk/Cilk++ randomized work-stealing scheduler load-balances the
computation at run-time. Each processor maintains a ready deque:

ë A ready deque is a double ended queue, where each entry is a
procedure instance that is ready to execute.

ë Adding a procedure instance to the bottom of the deque represents a
procedure call being spawned.

ë A procedure instance being deleted from the bottom of the deque
represents the processor beginning/resuming execution on that
procedure.

ë Deletion from the top of the deque corresponds to that procedure
instance being stolen.

∎ A mathematical proof guarantees near-perfect linear speed-up on
applications with sufficient parallelism, as long as the architecture has
sufficient memory bandwidth.

∎ A spawn/return in Cilk is over 100 times faster than a Pthread
create/exit and less than 3 times slower than an ordinary C
function call on a modern Intel processor.

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 47 / 107

The work-stealing scheduler (1/9)

∎ Cilk/Cilk++ randomized work-stealing scheduler load-balances the
computation at run-time. Each processor maintains a ready deque:

ë A ready deque is a double ended queue, where each entry is a
procedure instance that is ready to execute.

ë Adding a procedure instance to the bottom of the deque represents a
procedure call being spawned.

ë A procedure instance being deleted from the bottom of the deque
represents the processor beginning/resuming execution on that
procedure.

ë Deletion from the top of the deque corresponds to that procedure
instance being stolen.

∎ A mathematical proof guarantees near-perfect linear speed-up on
applications with sufficient parallelism, as long as the architecture has
sufficient memory bandwidth.

∎ A spawn/return in Cilk is over 100 times faster than a Pthread
create/exit and less than 3 times slower than an ordinary C
function call on a modern Intel processor.

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 47 / 107

The work-stealing scheduler (1/9)

∎ Cilk/Cilk++ randomized work-stealing scheduler load-balances the
computation at run-time. Each processor maintains a ready deque:

ë A ready deque is a double ended queue, where each entry is a
procedure instance that is ready to execute.

ë Adding a procedure instance to the bottom of the deque represents a
procedure call being spawned.

ë A procedure instance being deleted from the bottom of the deque
represents the processor beginning/resuming execution on that
procedure.

ë Deletion from the top of the deque corresponds to that procedure
instance being stolen.

∎ A mathematical proof guarantees near-perfect linear speed-up on
applications with sufficient parallelism, as long as the architecture has
sufficient memory bandwidth.

∎ A spawn/return in Cilk is over 100 times faster than a Pthread
create/exit and less than 3 times slower than an ordinary C
function call on a modern Intel processor.

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 47 / 107

The work-stealing scheduler (1/9)

∎ Cilk/Cilk++ randomized work-stealing scheduler load-balances the
computation at run-time. Each processor maintains a ready deque:

ë A ready deque is a double ended queue, where each entry is a
procedure instance that is ready to execute.

ë Adding a procedure instance to the bottom of the deque represents a
procedure call being spawned.

ë A procedure instance being deleted from the bottom of the deque
represents the processor beginning/resuming execution on that
procedure.

ë Deletion from the top of the deque corresponds to that procedure
instance being stolen.

∎ A mathematical proof guarantees near-perfect linear speed-up on
applications with sufficient parallelism, as long as the architecture has
sufficient memory bandwidth.

∎ A spawn/return in Cilk is over 100 times faster than a Pthread
create/exit and less than 3 times slower than an ordinary C
function call on a modern Intel processor.

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 47 / 107

The work-stealing scheduler (2/9)

Each processor possesses a deque

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 48 / 107

The work-stealing scheduler (3/9)

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 49 / 107

The work-stealing scheduler (3/9)

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 49 / 107

The work-stealing scheduler (4/9)

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 50 / 107

The work-stealing scheduler (4/9)

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 50 / 107

The work-stealing scheduler (5/9)

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 51 / 107

The work-stealing scheduler (5/9)

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 51 / 107

The work-stealing scheduler (6/9)

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 52 / 107

The work-stealing scheduler (6/9)

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 52 / 107

The work-stealing scheduler (7/9)

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 53 / 107

The work-stealing scheduler (7/9)

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 53 / 107

The work-stealing scheduler (8/9)

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 54 / 107

The work-stealing scheduler (8/9)

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 54 / 107

The work-stealing scheduler (9/9)

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 55 / 107

The work-stealing scheduler (9/9)

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 55 / 107

Performances of the work-stealing scheduler
Assume that
∎ each strand executes in unit time,

∎ for almost all “parallel steps” there are at least 𝑝 strands to run,
∎ each processor is either working or stealing.

Then, the randomized work-stealing scheduler is expected to run in

𝑇𝑃 = 𝑇1⇑𝑝 +𝑂(𝑇∞)

∎ A processor is either working or stealing.
∎ The total time all processors spend working is 𝑇1, by definition of 𝑇1.
∎ Each stealing processor has a probability of 1⇑𝑝 to reduce the span by

1.
∎ Thus, the expected number of steals is 𝑂(𝑝𝑇∞).
∎ Since 𝑝 processors are working/stealing together, the expected running

time

𝑇𝑃 = #steps without steal +#steps with steal = 𝑇1⇑𝑝 + 𝑂(𝑝𝑇∞)⇑𝑝.

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 56 / 107

Performances of the work-stealing scheduler
Assume that
∎ each strand executes in unit time,
∎ for almost all “parallel steps” there are at least 𝑝 strands to run,

∎ each processor is either working or stealing.
Then, the randomized work-stealing scheduler is expected to run in

𝑇𝑃 = 𝑇1⇑𝑝 +𝑂(𝑇∞)

∎ A processor is either working or stealing.
∎ The total time all processors spend working is 𝑇1, by definition of 𝑇1.
∎ Each stealing processor has a probability of 1⇑𝑝 to reduce the span by

1.
∎ Thus, the expected number of steals is 𝑂(𝑝𝑇∞).
∎ Since 𝑝 processors are working/stealing together, the expected running

time

𝑇𝑃 = #steps without steal +#steps with steal = 𝑇1⇑𝑝 + 𝑂(𝑝𝑇∞)⇑𝑝.

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 56 / 107

Performances of the work-stealing scheduler
Assume that
∎ each strand executes in unit time,
∎ for almost all “parallel steps” there are at least 𝑝 strands to run,
∎ each processor is either working or stealing.

Then, the randomized work-stealing scheduler is expected to run in

𝑇𝑃 = 𝑇1⇑𝑝 +𝑂(𝑇∞)

∎ A processor is either working or stealing.
∎ The total time all processors spend working is 𝑇1, by definition of 𝑇1.
∎ Each stealing processor has a probability of 1⇑𝑝 to reduce the span by

1.
∎ Thus, the expected number of steals is 𝑂(𝑝𝑇∞).
∎ Since 𝑝 processors are working/stealing together, the expected running

time

𝑇𝑃 = #steps without steal +#steps with steal = 𝑇1⇑𝑝 + 𝑂(𝑝𝑇∞)⇑𝑝.

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 56 / 107

Performances of the work-stealing scheduler
Assume that
∎ each strand executes in unit time,
∎ for almost all “parallel steps” there are at least 𝑝 strands to run,
∎ each processor is either working or stealing.

Then, the randomized work-stealing scheduler is expected to run in

𝑇𝑃 = 𝑇1⇑𝑝 +𝑂(𝑇∞)

∎ A processor is either working or stealing.
∎ The total time all processors spend working is 𝑇1, by definition of 𝑇1.
∎ Each stealing processor has a probability of 1⇑𝑝 to reduce the span by

1.
∎ Thus, the expected number of steals is 𝑂(𝑝𝑇∞).
∎ Since 𝑝 processors are working/stealing together, the expected running

time

𝑇𝑃 = #steps without steal +#steps with steal = 𝑇1⇑𝑝 + 𝑂(𝑝𝑇∞)⇑𝑝.

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 56 / 107

Performances of the work-stealing scheduler
Assume that
∎ each strand executes in unit time,
∎ for almost all “parallel steps” there are at least 𝑝 strands to run,
∎ each processor is either working or stealing.

Then, the randomized work-stealing scheduler is expected to run in

𝑇𝑃 = 𝑇1⇑𝑝 +𝑂(𝑇∞)

∎ A processor is either working or stealing.

∎ The total time all processors spend working is 𝑇1, by definition of 𝑇1.
∎ Each stealing processor has a probability of 1⇑𝑝 to reduce the span by

1.
∎ Thus, the expected number of steals is 𝑂(𝑝𝑇∞).
∎ Since 𝑝 processors are working/stealing together, the expected running

time

𝑇𝑃 = #steps without steal +#steps with steal = 𝑇1⇑𝑝 + 𝑂(𝑝𝑇∞)⇑𝑝.

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 56 / 107

Performances of the work-stealing scheduler
Assume that
∎ each strand executes in unit time,
∎ for almost all “parallel steps” there are at least 𝑝 strands to run,
∎ each processor is either working or stealing.

Then, the randomized work-stealing scheduler is expected to run in

𝑇𝑃 = 𝑇1⇑𝑝 +𝑂(𝑇∞)

∎ A processor is either working or stealing.
∎ The total time all processors spend working is 𝑇1, by definition of 𝑇1.

∎ Each stealing processor has a probability of 1⇑𝑝 to reduce the span by
1.

∎ Thus, the expected number of steals is 𝑂(𝑝𝑇∞).
∎ Since 𝑝 processors are working/stealing together, the expected running

time

𝑇𝑃 = #steps without steal +#steps with steal = 𝑇1⇑𝑝 + 𝑂(𝑝𝑇∞)⇑𝑝.

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 56 / 107

Performances of the work-stealing scheduler
Assume that
∎ each strand executes in unit time,
∎ for almost all “parallel steps” there are at least 𝑝 strands to run,
∎ each processor is either working or stealing.

Then, the randomized work-stealing scheduler is expected to run in

𝑇𝑃 = 𝑇1⇑𝑝 +𝑂(𝑇∞)

∎ A processor is either working or stealing.
∎ The total time all processors spend working is 𝑇1, by definition of 𝑇1.
∎ Each stealing processor has a probability of 1⇑𝑝 to reduce the span by

1.

∎ Thus, the expected number of steals is 𝑂(𝑝𝑇∞).
∎ Since 𝑝 processors are working/stealing together, the expected running

time

𝑇𝑃 = #steps without steal +#steps with steal = 𝑇1⇑𝑝 + 𝑂(𝑝𝑇∞)⇑𝑝.

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 56 / 107

Performances of the work-stealing scheduler
Assume that
∎ each strand executes in unit time,
∎ for almost all “parallel steps” there are at least 𝑝 strands to run,
∎ each processor is either working or stealing.

Then, the randomized work-stealing scheduler is expected to run in

𝑇𝑃 = 𝑇1⇑𝑝 +𝑂(𝑇∞)

∎ A processor is either working or stealing.
∎ The total time all processors spend working is 𝑇1, by definition of 𝑇1.
∎ Each stealing processor has a probability of 1⇑𝑝 to reduce the span by

1.
∎ Thus, the expected number of steals is 𝑂(𝑝𝑇∞).

∎ Since 𝑝 processors are working/stealing together, the expected running
time

𝑇𝑃 = #steps without steal +#steps with steal = 𝑇1⇑𝑝 + 𝑂(𝑝𝑇∞)⇑𝑝.

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 56 / 107

Performances of the work-stealing scheduler
Assume that
∎ each strand executes in unit time,
∎ for almost all “parallel steps” there are at least 𝑝 strands to run,
∎ each processor is either working or stealing.

Then, the randomized work-stealing scheduler is expected to run in

𝑇𝑃 = 𝑇1⇑𝑝 +𝑂(𝑇∞)

∎ A processor is either working or stealing.
∎ The total time all processors spend working is 𝑇1, by definition of 𝑇1.
∎ Each stealing processor has a probability of 1⇑𝑝 to reduce the span by

1.
∎ Thus, the expected number of steals is 𝑂(𝑝𝑇∞).
∎ Since 𝑝 processors are working/stealing together, the expected running

time

𝑇𝑃 = #steps without steal +#steps with steal = 𝑇1⇑𝑝 + 𝑂(𝑝𝑇∞)⇑𝑝.

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 56 / 107

Overheads and burden

∎ Obviously 𝑇1⇑𝑝 + 𝑇∞ will under-estimate 𝑇𝑝 in practice.

∎ Many factors (simplification assumptions of the fork-join parallelism
model, architecture limitation, costs of executing the parallel
constructs, overheads of scheduling) will make 𝑇𝑝 larger in practice.

∎ One may want to estimate the impact of those factors:

1 by improving the estimate of the randomized work-stealing complexity
result

2 by comparing a Cilk program with its C elision
3 by estimating the costs of spawning and synchronizing

∎ Cilk estimates 𝑇𝑝 as 𝑇𝑝 = 𝑇1⇑𝑝 + 1.7 burden_span, where
burden_span is 15000 instructions times the number of continuation
edges along the critical path.

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 57 / 107

Overheads and burden

∎ Obviously 𝑇1⇑𝑝 + 𝑇∞ will under-estimate 𝑇𝑝 in practice.

∎ Many factors (simplification assumptions of the fork-join parallelism
model, architecture limitation, costs of executing the parallel
constructs, overheads of scheduling) will make 𝑇𝑝 larger in practice.

∎ One may want to estimate the impact of those factors:

1 by improving the estimate of the randomized work-stealing complexity
result

2 by comparing a Cilk program with its C elision
3 by estimating the costs of spawning and synchronizing

∎ Cilk estimates 𝑇𝑝 as 𝑇𝑝 = 𝑇1⇑𝑝 + 1.7 burden_span, where
burden_span is 15000 instructions times the number of continuation
edges along the critical path.

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 57 / 107

Overheads and burden

∎ Obviously 𝑇1⇑𝑝 + 𝑇∞ will under-estimate 𝑇𝑝 in practice.

∎ Many factors (simplification assumptions of the fork-join parallelism
model, architecture limitation, costs of executing the parallel
constructs, overheads of scheduling) will make 𝑇𝑝 larger in practice.

∎ One may want to estimate the impact of those factors:

1 by improving the estimate of the randomized work-stealing complexity
result

2 by comparing a Cilk program with its C elision
3 by estimating the costs of spawning and synchronizing

∎ Cilk estimates 𝑇𝑝 as 𝑇𝑝 = 𝑇1⇑𝑝 + 1.7 burden_span, where
burden_span is 15000 instructions times the number of continuation
edges along the critical path.

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 57 / 107

Overheads and burden

∎ Obviously 𝑇1⇑𝑝 + 𝑇∞ will under-estimate 𝑇𝑝 in practice.

∎ Many factors (simplification assumptions of the fork-join parallelism
model, architecture limitation, costs of executing the parallel
constructs, overheads of scheduling) will make 𝑇𝑝 larger in practice.

∎ One may want to estimate the impact of those factors:
1 by improving the estimate of the randomized work-stealing complexity

result

2 by comparing a Cilk program with its C elision
3 by estimating the costs of spawning and synchronizing

∎ Cilk estimates 𝑇𝑝 as 𝑇𝑝 = 𝑇1⇑𝑝 + 1.7 burden_span, where
burden_span is 15000 instructions times the number of continuation
edges along the critical path.

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 57 / 107

Overheads and burden

∎ Obviously 𝑇1⇑𝑝 + 𝑇∞ will under-estimate 𝑇𝑝 in practice.

∎ Many factors (simplification assumptions of the fork-join parallelism
model, architecture limitation, costs of executing the parallel
constructs, overheads of scheduling) will make 𝑇𝑝 larger in practice.

∎ One may want to estimate the impact of those factors:
1 by improving the estimate of the randomized work-stealing complexity

result
2 by comparing a Cilk program with its C elision

3 by estimating the costs of spawning and synchronizing
∎ Cilk estimates 𝑇𝑝 as 𝑇𝑝 = 𝑇1⇑𝑝 + 1.7 burden_span, where

burden_span is 15000 instructions times the number of continuation
edges along the critical path.

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 57 / 107

Overheads and burden

∎ Obviously 𝑇1⇑𝑝 + 𝑇∞ will under-estimate 𝑇𝑝 in practice.

∎ Many factors (simplification assumptions of the fork-join parallelism
model, architecture limitation, costs of executing the parallel
constructs, overheads of scheduling) will make 𝑇𝑝 larger in practice.

∎ One may want to estimate the impact of those factors:
1 by improving the estimate of the randomized work-stealing complexity

result
2 by comparing a Cilk program with its C elision
3 by estimating the costs of spawning and synchronizing

∎ Cilk estimates 𝑇𝑝 as 𝑇𝑝 = 𝑇1⇑𝑝 + 1.7 burden_span, where
burden_span is 15000 instructions times the number of continuation
edges along the critical path.

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 57 / 107

Overheads and burden

∎ Obviously 𝑇1⇑𝑝 + 𝑇∞ will under-estimate 𝑇𝑝 in practice.

∎ Many factors (simplification assumptions of the fork-join parallelism
model, architecture limitation, costs of executing the parallel
constructs, overheads of scheduling) will make 𝑇𝑝 larger in practice.

∎ One may want to estimate the impact of those factors:
1 by improving the estimate of the randomized work-stealing complexity

result
2 by comparing a Cilk program with its C elision
3 by estimating the costs of spawning and synchronizing

∎ Cilk estimates 𝑇𝑝 as 𝑇𝑝 = 𝑇1⇑𝑝 + 1.7 burden_span, where
burden_span is 15000 instructions times the number of continuation
edges along the critical path.

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 57 / 107

Span overhead

∎ Let 𝑇1, 𝑇∞, 𝑇𝑝 be given. We want to refine the randomized
work-stealing complexity result.

∎ The span overhead is the smallest constant 𝑐∞ such that

𝑇𝑝 ≤ 𝑇1⇑𝑝 + 𝑐∞𝑇∞.

∎ Recall that 𝑇1⇑𝑇∞ is the maximum possible speed-up that the
application can obtain.

∎ We call parallel slackness assumption the following property

𝑇1⇑𝑇∞ >> 𝑐∞𝑝 (10)

that is, 𝑐∞ 𝑝 is much smaller than the average parallelism .

∎ Under this assumption it follows that 𝑇1⇑𝑝 >> 𝑐∞𝑇∞ holds, thus 𝑐∞
has little effect on performance when sufficiently slackness exists.

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 58 / 107

Span overhead

∎ Let 𝑇1, 𝑇∞, 𝑇𝑝 be given. We want to refine the randomized
work-stealing complexity result.

∎ The span overhead is the smallest constant 𝑐∞ such that

𝑇𝑝 ≤ 𝑇1⇑𝑝 + 𝑐∞𝑇∞.

∎ Recall that 𝑇1⇑𝑇∞ is the maximum possible speed-up that the
application can obtain.

∎ We call parallel slackness assumption the following property

𝑇1⇑𝑇∞ >> 𝑐∞𝑝 (10)

that is, 𝑐∞ 𝑝 is much smaller than the average parallelism .

∎ Under this assumption it follows that 𝑇1⇑𝑝 >> 𝑐∞𝑇∞ holds, thus 𝑐∞
has little effect on performance when sufficiently slackness exists.

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 58 / 107

Span overhead

∎ Let 𝑇1, 𝑇∞, 𝑇𝑝 be given. We want to refine the randomized
work-stealing complexity result.

∎ The span overhead is the smallest constant 𝑐∞ such that

𝑇𝑝 ≤ 𝑇1⇑𝑝 + 𝑐∞𝑇∞.

∎ Recall that 𝑇1⇑𝑇∞ is the maximum possible speed-up that the
application can obtain.

∎ We call parallel slackness assumption the following property

𝑇1⇑𝑇∞ >> 𝑐∞𝑝 (10)

that is, 𝑐∞ 𝑝 is much smaller than the average parallelism .

∎ Under this assumption it follows that 𝑇1⇑𝑝 >> 𝑐∞𝑇∞ holds, thus 𝑐∞
has little effect on performance when sufficiently slackness exists.

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 58 / 107

Span overhead

∎ Let 𝑇1, 𝑇∞, 𝑇𝑝 be given. We want to refine the randomized
work-stealing complexity result.

∎ The span overhead is the smallest constant 𝑐∞ such that

𝑇𝑝 ≤ 𝑇1⇑𝑝 + 𝑐∞𝑇∞.

∎ Recall that 𝑇1⇑𝑇∞ is the maximum possible speed-up that the
application can obtain.

∎ We call parallel slackness assumption the following property

𝑇1⇑𝑇∞ >> 𝑐∞𝑝 (10)

that is, 𝑐∞ 𝑝 is much smaller than the average parallelism .

∎ Under this assumption it follows that 𝑇1⇑𝑝 >> 𝑐∞𝑇∞ holds, thus 𝑐∞
has little effect on performance when sufficiently slackness exists.

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 58 / 107

Span overhead

∎ Let 𝑇1, 𝑇∞, 𝑇𝑝 be given. We want to refine the randomized
work-stealing complexity result.

∎ The span overhead is the smallest constant 𝑐∞ such that

𝑇𝑝 ≤ 𝑇1⇑𝑝 + 𝑐∞𝑇∞.

∎ Recall that 𝑇1⇑𝑇∞ is the maximum possible speed-up that the
application can obtain.

∎ We call parallel slackness assumption the following property

𝑇1⇑𝑇∞ >> 𝑐∞𝑝 (10)

that is, 𝑐∞ 𝑝 is much smaller than the average parallelism .

∎ Under this assumption it follows that 𝑇1⇑𝑝 >> 𝑐∞𝑇∞ holds, thus 𝑐∞
has little effect on performance when sufficiently slackness exists.

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 58 / 107

Work overhead

∎ Let 𝑇𝑠 be the running time of the C++ elision of a Cilk++ program.

∎ We denote by 𝑐1 the work overhead

𝑐1 = 𝑇1⇑𝑇𝑠

∎ Recall the expected running time: 𝑇𝑃 ≤ 𝑇1⇑𝑃 + 𝑐∞𝑇∞. Thus with the
parallel slackness assumption we get

𝑇𝑃 ≤ 𝑐1𝑇𝑠⇑𝑝 + 𝑐∞𝑇∞ ≃ 𝑐1𝑇𝑠⇑𝑝. (11)

∎ We can now state the work first principle precisely
Minimize 𝑐1 , even at the expense of a larger 𝑐∞.

This is a key feature since it is conceptually easier to minimize 𝑐1
rather than minimizing 𝑐∞.

∎ Cilk++ estimates 𝑇𝑝 as 𝑇𝑝 = 𝑇1⇑𝑝 + 1.7 burden_span, where
burden_span is 15000 instructions times the number of continuation
edges along the critical path.

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 59 / 107

Work overhead

∎ Let 𝑇𝑠 be the running time of the C++ elision of a Cilk++ program.
∎ We denote by 𝑐1 the work overhead

𝑐1 = 𝑇1⇑𝑇𝑠

∎ Recall the expected running time: 𝑇𝑃 ≤ 𝑇1⇑𝑃 + 𝑐∞𝑇∞. Thus with the
parallel slackness assumption we get

𝑇𝑃 ≤ 𝑐1𝑇𝑠⇑𝑝 + 𝑐∞𝑇∞ ≃ 𝑐1𝑇𝑠⇑𝑝. (11)

∎ We can now state the work first principle precisely
Minimize 𝑐1 , even at the expense of a larger 𝑐∞.

This is a key feature since it is conceptually easier to minimize 𝑐1
rather than minimizing 𝑐∞.

∎ Cilk++ estimates 𝑇𝑝 as 𝑇𝑝 = 𝑇1⇑𝑝 + 1.7 burden_span, where
burden_span is 15000 instructions times the number of continuation
edges along the critical path.

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 59 / 107

Work overhead

∎ Let 𝑇𝑠 be the running time of the C++ elision of a Cilk++ program.
∎ We denote by 𝑐1 the work overhead

𝑐1 = 𝑇1⇑𝑇𝑠

∎ Recall the expected running time: 𝑇𝑃 ≤ 𝑇1⇑𝑃 + 𝑐∞𝑇∞. Thus with the
parallel slackness assumption we get

𝑇𝑃 ≤ 𝑐1𝑇𝑠⇑𝑝 + 𝑐∞𝑇∞ ≃ 𝑐1𝑇𝑠⇑𝑝. (11)

∎ We can now state the work first principle precisely
Minimize 𝑐1 , even at the expense of a larger 𝑐∞.

This is a key feature since it is conceptually easier to minimize 𝑐1
rather than minimizing 𝑐∞.

∎ Cilk++ estimates 𝑇𝑝 as 𝑇𝑝 = 𝑇1⇑𝑝 + 1.7 burden_span, where
burden_span is 15000 instructions times the number of continuation
edges along the critical path.

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 59 / 107

Work overhead

∎ Let 𝑇𝑠 be the running time of the C++ elision of a Cilk++ program.
∎ We denote by 𝑐1 the work overhead

𝑐1 = 𝑇1⇑𝑇𝑠

∎ Recall the expected running time: 𝑇𝑃 ≤ 𝑇1⇑𝑃 + 𝑐∞𝑇∞. Thus with the
parallel slackness assumption we get

𝑇𝑃 ≤ 𝑐1𝑇𝑠⇑𝑝 + 𝑐∞𝑇∞ ≃ 𝑐1𝑇𝑠⇑𝑝. (11)

∎ We can now state the work first principle precisely
Minimize 𝑐1 , even at the expense of a larger 𝑐∞.

This is a key feature since it is conceptually easier to minimize 𝑐1
rather than minimizing 𝑐∞.

∎ Cilk++ estimates 𝑇𝑝 as 𝑇𝑝 = 𝑇1⇑𝑝 + 1.7 burden_span, where
burden_span is 15000 instructions times the number of continuation
edges along the critical path.

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 59 / 107

Work overhead

∎ Let 𝑇𝑠 be the running time of the C++ elision of a Cilk++ program.
∎ We denote by 𝑐1 the work overhead

𝑐1 = 𝑇1⇑𝑇𝑠

∎ Recall the expected running time: 𝑇𝑃 ≤ 𝑇1⇑𝑃 + 𝑐∞𝑇∞. Thus with the
parallel slackness assumption we get

𝑇𝑃 ≤ 𝑐1𝑇𝑠⇑𝑝 + 𝑐∞𝑇∞ ≃ 𝑐1𝑇𝑠⇑𝑝. (11)

∎ We can now state the work first principle precisely
Minimize 𝑐1 , even at the expense of a larger 𝑐∞.

This is a key feature since it is conceptually easier to minimize 𝑐1
rather than minimizing 𝑐∞.

∎ Cilk++ estimates 𝑇𝑝 as 𝑇𝑝 = 𝑇1⇑𝑝 + 1.7 burden_span, where
burden_span is 15000 instructions times the number of continuation
edges along the critical path.

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 59 / 107

Outline

1. Cilk: the fork-join model in action
1.1 The language and the compiler
1.2 The runtime system
1.3 Matrix multiplication in Cilk

2. The Fork-Join Model

3. Scheduling Theory and Implementation

4. Analysis of Multithreaded Algorithms
4.1 Review of Complexity Notions
4.2 Divide-and-Conquer Recurrences
4.3 Matrix Multiplication
4.4 Merge Sort
4.5 Tableau Construction

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 60 / 107

Outline

1. Cilk: the fork-join model in action
1.1 The language and the compiler
1.2 The runtime system
1.3 Matrix multiplication in Cilk

2. The Fork-Join Model

3. Scheduling Theory and Implementation

4. Analysis of Multithreaded Algorithms
4.1 Review of Complexity Notions
4.2 Divide-and-Conquer Recurrences
4.3 Matrix Multiplication
4.4 Merge Sort
4.5 Tableau Construction

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 61 / 107

Orders of magnitude
Let 𝑓 , 𝑔 et ℎ be functions from N to R.

∎ We say that 𝑔(𝑛) is in the order of magnitude of 𝑓(𝑛) and we write
𝑓(𝑛) ∈ Θ(𝑔(𝑛)) if there exist two strictly positive constants 𝑐1 and 𝑐2
such that for 𝑛 big enough we have

0 ≤ 𝑐1 𝑔(𝑛) ≤ 𝑓(𝑛) ≤ 𝑐2 𝑔(𝑛). (12)

∎ We say that 𝑔(𝑛) is an asymptotic upper bound of 𝑓(𝑛) and we
write 𝑓(𝑛) ∈ 𝒪(𝑔(𝑛)) if there exists a strictly positive constants 𝑐2
such that for 𝑛 big enough we have

0 ≤ 𝑓(𝑛) ≤ 𝑐2 𝑔(𝑛). (13)

∎ We say that 𝑔(𝑛) is an asymptotic lower bound of 𝑓(𝑛) and we
write 𝑓(𝑛) ∈ Ω(𝑔(𝑛)) if there exists a strictly positive constants 𝑐1
such that for 𝑛 big enough we have

0 ≤ 𝑐1 𝑔(𝑛) ≤ 𝑓(𝑛). (14)

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 62 / 107

Orders of magnitude
Let 𝑓 , 𝑔 et ℎ be functions from N to R.
∎ We say that 𝑔(𝑛) is in the order of magnitude of 𝑓(𝑛) and we write
𝑓(𝑛) ∈ Θ(𝑔(𝑛)) if there exist two strictly positive constants 𝑐1 and 𝑐2
such that for 𝑛 big enough we have

0 ≤ 𝑐1 𝑔(𝑛) ≤ 𝑓(𝑛) ≤ 𝑐2 𝑔(𝑛). (12)

∎ We say that 𝑔(𝑛) is an asymptotic upper bound of 𝑓(𝑛) and we
write 𝑓(𝑛) ∈ 𝒪(𝑔(𝑛)) if there exists a strictly positive constants 𝑐2
such that for 𝑛 big enough we have

0 ≤ 𝑓(𝑛) ≤ 𝑐2 𝑔(𝑛). (13)

∎ We say that 𝑔(𝑛) is an asymptotic lower bound of 𝑓(𝑛) and we
write 𝑓(𝑛) ∈ Ω(𝑔(𝑛)) if there exists a strictly positive constants 𝑐1
such that for 𝑛 big enough we have

0 ≤ 𝑐1 𝑔(𝑛) ≤ 𝑓(𝑛). (14)

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 62 / 107

Orders of magnitude
Let 𝑓 , 𝑔 et ℎ be functions from N to R.
∎ We say that 𝑔(𝑛) is in the order of magnitude of 𝑓(𝑛) and we write
𝑓(𝑛) ∈ Θ(𝑔(𝑛)) if there exist two strictly positive constants 𝑐1 and 𝑐2
such that for 𝑛 big enough we have

0 ≤ 𝑐1 𝑔(𝑛) ≤ 𝑓(𝑛) ≤ 𝑐2 𝑔(𝑛). (12)

∎ We say that 𝑔(𝑛) is an asymptotic upper bound of 𝑓(𝑛) and we
write 𝑓(𝑛) ∈ 𝒪(𝑔(𝑛)) if there exists a strictly positive constants 𝑐2
such that for 𝑛 big enough we have

0 ≤ 𝑓(𝑛) ≤ 𝑐2 𝑔(𝑛). (13)

∎ We say that 𝑔(𝑛) is an asymptotic lower bound of 𝑓(𝑛) and we
write 𝑓(𝑛) ∈ Ω(𝑔(𝑛)) if there exists a strictly positive constants 𝑐1
such that for 𝑛 big enough we have

0 ≤ 𝑐1 𝑔(𝑛) ≤ 𝑓(𝑛). (14)

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 62 / 107

Orders of magnitude
Let 𝑓 , 𝑔 et ℎ be functions from N to R.
∎ We say that 𝑔(𝑛) is in the order of magnitude of 𝑓(𝑛) and we write
𝑓(𝑛) ∈ Θ(𝑔(𝑛)) if there exist two strictly positive constants 𝑐1 and 𝑐2
such that for 𝑛 big enough we have

0 ≤ 𝑐1 𝑔(𝑛) ≤ 𝑓(𝑛) ≤ 𝑐2 𝑔(𝑛). (12)

∎ We say that 𝑔(𝑛) is an asymptotic upper bound of 𝑓(𝑛) and we
write 𝑓(𝑛) ∈ 𝒪(𝑔(𝑛)) if there exists a strictly positive constants 𝑐2
such that for 𝑛 big enough we have

0 ≤ 𝑓(𝑛) ≤ 𝑐2 𝑔(𝑛). (13)

∎ We say that 𝑔(𝑛) is an asymptotic lower bound of 𝑓(𝑛) and we
write 𝑓(𝑛) ∈ Ω(𝑔(𝑛)) if there exists a strictly positive constants 𝑐1
such that for 𝑛 big enough we have

0 ≤ 𝑐1 𝑔(𝑛) ≤ 𝑓(𝑛). (14)

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 62 / 107

Examples
∎ With 𝑓(𝑛) = 1

2𝑛
2 − 3𝑛 and 𝑔(𝑛) = 𝑛2 we have 𝑓(𝑛) ∈ Θ(𝑔(𝑛)). Indeed we

have
𝑐1 𝑛

2
≤

1
2
𝑛2

− 3𝑛 ≤ 𝑐2 𝑛
2. (15)

for 𝑛 ≥ 12 with 𝑐1 =
1
4 and 𝑐2 =

1
2 .

∎ Assume that there exists a positive integer 𝑛0 such that 𝑓(𝑛) > 0 and
𝑔(𝑛) > 0 for every 𝑛 ≥ 𝑛0. Then we have

𝑚𝑎𝑥(𝑓(𝑛), 𝑔(𝑛)) ∈ Θ(𝑓(𝑛) + 𝑔(𝑛)). (16)

Indeed we have
1
2
(𝑓(𝑛) + 𝑔(𝑛)) ≤ 𝑚𝑎𝑥(𝑓(𝑛), 𝑔(𝑛)) ≤ (𝑓(𝑛) + 𝑔(𝑛)). (17)

∎ Assume 𝑎 and 𝑏 are positive real constants. Then we have

(𝑛 + 𝑎)𝑏
∈ Θ(𝑛𝑏

). (18)

Indeed for 𝑛 ≥ 𝑎 we have

0 ≤ 𝑛𝑏
≤ (𝑛 + 𝑎)𝑏

≤ (2𝑛)𝑏. (19)

Hence we can choose 𝑐1 = 1 and 𝑐2 = 2𝑏.

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 63 / 107

Examples
∎ With 𝑓(𝑛) = 1

2𝑛
2 − 3𝑛 and 𝑔(𝑛) = 𝑛2 we have 𝑓(𝑛) ∈ Θ(𝑔(𝑛)). Indeed we

have
𝑐1 𝑛

2
≤

1
2
𝑛2

− 3𝑛 ≤ 𝑐2 𝑛
2. (15)

for 𝑛 ≥ 12 with 𝑐1 =
1
4 and 𝑐2 =

1
2 .

∎ Assume that there exists a positive integer 𝑛0 such that 𝑓(𝑛) > 0 and
𝑔(𝑛) > 0 for every 𝑛 ≥ 𝑛0. Then we have

𝑚𝑎𝑥(𝑓(𝑛), 𝑔(𝑛)) ∈ Θ(𝑓(𝑛) + 𝑔(𝑛)). (16)

Indeed we have
1
2
(𝑓(𝑛) + 𝑔(𝑛)) ≤ 𝑚𝑎𝑥(𝑓(𝑛), 𝑔(𝑛)) ≤ (𝑓(𝑛) + 𝑔(𝑛)). (17)

∎ Assume 𝑎 and 𝑏 are positive real constants. Then we have

(𝑛 + 𝑎)𝑏
∈ Θ(𝑛𝑏

). (18)

Indeed for 𝑛 ≥ 𝑎 we have

0 ≤ 𝑛𝑏
≤ (𝑛 + 𝑎)𝑏

≤ (2𝑛)𝑏. (19)

Hence we can choose 𝑐1 = 1 and 𝑐2 = 2𝑏.

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 63 / 107

Examples
∎ With 𝑓(𝑛) = 1

2𝑛
2 − 3𝑛 and 𝑔(𝑛) = 𝑛2 we have 𝑓(𝑛) ∈ Θ(𝑔(𝑛)). Indeed we

have
𝑐1 𝑛

2
≤

1
2
𝑛2

− 3𝑛 ≤ 𝑐2 𝑛
2. (15)

for 𝑛 ≥ 12 with 𝑐1 =
1
4 and 𝑐2 =

1
2 .

∎ Assume that there exists a positive integer 𝑛0 such that 𝑓(𝑛) > 0 and
𝑔(𝑛) > 0 for every 𝑛 ≥ 𝑛0. Then we have

𝑚𝑎𝑥(𝑓(𝑛), 𝑔(𝑛)) ∈ Θ(𝑓(𝑛) + 𝑔(𝑛)). (16)

Indeed we have
1
2
(𝑓(𝑛) + 𝑔(𝑛)) ≤ 𝑚𝑎𝑥(𝑓(𝑛), 𝑔(𝑛)) ≤ (𝑓(𝑛) + 𝑔(𝑛)). (17)

∎ Assume 𝑎 and 𝑏 are positive real constants. Then we have

(𝑛 + 𝑎)𝑏
∈ Θ(𝑛𝑏

). (18)

Indeed for 𝑛 ≥ 𝑎 we have

0 ≤ 𝑛𝑏
≤ (𝑛 + 𝑎)𝑏

≤ (2𝑛)𝑏. (19)

Hence we can choose 𝑐1 = 1 and 𝑐2 = 2𝑏.

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 63 / 107

Properties

∎ 𝑓(𝑛) ∈ Θ(𝑔(𝑛)) holds iff 𝑓(𝑛) ∈ 𝒪(𝑔(𝑛)) and 𝑓(𝑛) ∈ Ω(𝑔(𝑛)) hold
together.

∎ Each of the predicates 𝑓(𝑛) ∈ Θ(𝑔(𝑛)), 𝑓(𝑛) ∈ 𝒪(𝑔(𝑛)) and
𝑓(𝑛) ∈ Ω(𝑔(𝑛)) define a reflexive and transitive binary relation among
the N-to-R functions. Moreover 𝑓(𝑛) ∈ Θ(𝑔(𝑛)) is symmetric.

∎ We have the following transposition formula

𝑓(𝑛) ∈ 𝒪(𝑔(𝑛)) ⇐⇒ 𝑔(𝑛) ∈ Ω(𝑓(𝑛)). (20)

In practice ∈ is replaced by = in each of the expressions 𝑓(𝑛) ∈ Θ(𝑔(𝑛)),
𝑓(𝑛) ∈ 𝒪(𝑔(𝑛)) and 𝑓(𝑛) ∈ Ω(𝑔(𝑛)). Hence, the following

𝑓(𝑛) = ℎ(𝑛) +Θ(𝑔(𝑛)) (21)

means
𝑓(𝑛) − ℎ(𝑛) ∈ Θ(𝑔(𝑛)). (22)

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 64 / 107

Properties

∎ 𝑓(𝑛) ∈ Θ(𝑔(𝑛)) holds iff 𝑓(𝑛) ∈ 𝒪(𝑔(𝑛)) and 𝑓(𝑛) ∈ Ω(𝑔(𝑛)) hold
together.

∎ Each of the predicates 𝑓(𝑛) ∈ Θ(𝑔(𝑛)), 𝑓(𝑛) ∈ 𝒪(𝑔(𝑛)) and
𝑓(𝑛) ∈ Ω(𝑔(𝑛)) define a reflexive and transitive binary relation among
the N-to-R functions. Moreover 𝑓(𝑛) ∈ Θ(𝑔(𝑛)) is symmetric.

∎ We have the following transposition formula

𝑓(𝑛) ∈ 𝒪(𝑔(𝑛)) ⇐⇒ 𝑔(𝑛) ∈ Ω(𝑓(𝑛)). (20)

In practice ∈ is replaced by = in each of the expressions 𝑓(𝑛) ∈ Θ(𝑔(𝑛)),
𝑓(𝑛) ∈ 𝒪(𝑔(𝑛)) and 𝑓(𝑛) ∈ Ω(𝑔(𝑛)). Hence, the following

𝑓(𝑛) = ℎ(𝑛) +Θ(𝑔(𝑛)) (21)

means
𝑓(𝑛) − ℎ(𝑛) ∈ Θ(𝑔(𝑛)). (22)

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 64 / 107

Properties

∎ 𝑓(𝑛) ∈ Θ(𝑔(𝑛)) holds iff 𝑓(𝑛) ∈ 𝒪(𝑔(𝑛)) and 𝑓(𝑛) ∈ Ω(𝑔(𝑛)) hold
together.

∎ Each of the predicates 𝑓(𝑛) ∈ Θ(𝑔(𝑛)), 𝑓(𝑛) ∈ 𝒪(𝑔(𝑛)) and
𝑓(𝑛) ∈ Ω(𝑔(𝑛)) define a reflexive and transitive binary relation among
the N-to-R functions. Moreover 𝑓(𝑛) ∈ Θ(𝑔(𝑛)) is symmetric.

∎ We have the following transposition formula

𝑓(𝑛) ∈ 𝒪(𝑔(𝑛)) ⇐⇒ 𝑔(𝑛) ∈ Ω(𝑓(𝑛)). (20)

In practice ∈ is replaced by = in each of the expressions 𝑓(𝑛) ∈ Θ(𝑔(𝑛)),
𝑓(𝑛) ∈ 𝒪(𝑔(𝑛)) and 𝑓(𝑛) ∈ Ω(𝑔(𝑛)). Hence, the following

𝑓(𝑛) = ℎ(𝑛) +Θ(𝑔(𝑛)) (21)

means
𝑓(𝑛) − ℎ(𝑛) ∈ Θ(𝑔(𝑛)). (22)

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 64 / 107

Properties

∎ 𝑓(𝑛) ∈ Θ(𝑔(𝑛)) holds iff 𝑓(𝑛) ∈ 𝒪(𝑔(𝑛)) and 𝑓(𝑛) ∈ Ω(𝑔(𝑛)) hold
together.

∎ Each of the predicates 𝑓(𝑛) ∈ Θ(𝑔(𝑛)), 𝑓(𝑛) ∈ 𝒪(𝑔(𝑛)) and
𝑓(𝑛) ∈ Ω(𝑔(𝑛)) define a reflexive and transitive binary relation among
the N-to-R functions. Moreover 𝑓(𝑛) ∈ Θ(𝑔(𝑛)) is symmetric.

∎ We have the following transposition formula

𝑓(𝑛) ∈ 𝒪(𝑔(𝑛)) ⇐⇒ 𝑔(𝑛) ∈ Ω(𝑓(𝑛)). (20)

In practice ∈ is replaced by = in each of the expressions 𝑓(𝑛) ∈ Θ(𝑔(𝑛)),
𝑓(𝑛) ∈ 𝒪(𝑔(𝑛)) and 𝑓(𝑛) ∈ Ω(𝑔(𝑛)). Hence, the following

𝑓(𝑛) = ℎ(𝑛) +Θ(𝑔(𝑛)) (21)

means
𝑓(𝑛) − ℎ(𝑛) ∈ Θ(𝑔(𝑛)). (22)

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 64 / 107

Another example

Let us give another fundamental example.

Let 𝑝(𝑛) be a (univariate) polynomial with degree 𝑑 > 0. Let 𝑎𝑑 be its
leading coefficient and assume 𝑎𝑑 > 0. Let 𝑘 be an integer. Then we have:
(1) if 𝑘 ≥ 𝑑 then 𝑝(𝑛) ∈ 𝒪(𝑛𝑘),
(2) if 𝑘 ≤ 𝑑 then 𝑝(𝑛) ∈ Ω(𝑛𝑘),
(3) if 𝑘 = 𝑑 then 𝑝(𝑛) ∈ Θ(𝑛𝑘).
Exercise: Prove the following

Σ𝑘=𝑛
𝑘=1 𝑘 ∈ Θ(𝑛2

). (23)

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 65 / 107

Another example

Let us give another fundamental example.
Let 𝑝(𝑛) be a (univariate) polynomial with degree 𝑑 > 0. Let 𝑎𝑑 be its
leading coefficient and assume 𝑎𝑑 > 0. Let 𝑘 be an integer. Then we have:

(1) if 𝑘 ≥ 𝑑 then 𝑝(𝑛) ∈ 𝒪(𝑛𝑘),
(2) if 𝑘 ≤ 𝑑 then 𝑝(𝑛) ∈ Ω(𝑛𝑘),
(3) if 𝑘 = 𝑑 then 𝑝(𝑛) ∈ Θ(𝑛𝑘).
Exercise: Prove the following

Σ𝑘=𝑛
𝑘=1 𝑘 ∈ Θ(𝑛2

). (23)

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 65 / 107

Another example

Let us give another fundamental example.
Let 𝑝(𝑛) be a (univariate) polynomial with degree 𝑑 > 0. Let 𝑎𝑑 be its
leading coefficient and assume 𝑎𝑑 > 0. Let 𝑘 be an integer. Then we have:
(1) if 𝑘 ≥ 𝑑 then 𝑝(𝑛) ∈ 𝒪(𝑛𝑘),

(2) if 𝑘 ≤ 𝑑 then 𝑝(𝑛) ∈ Ω(𝑛𝑘),
(3) if 𝑘 = 𝑑 then 𝑝(𝑛) ∈ Θ(𝑛𝑘).
Exercise: Prove the following

Σ𝑘=𝑛
𝑘=1 𝑘 ∈ Θ(𝑛2

). (23)

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 65 / 107

Another example

Let us give another fundamental example.
Let 𝑝(𝑛) be a (univariate) polynomial with degree 𝑑 > 0. Let 𝑎𝑑 be its
leading coefficient and assume 𝑎𝑑 > 0. Let 𝑘 be an integer. Then we have:
(1) if 𝑘 ≥ 𝑑 then 𝑝(𝑛) ∈ 𝒪(𝑛𝑘),
(2) if 𝑘 ≤ 𝑑 then 𝑝(𝑛) ∈ Ω(𝑛𝑘),

(3) if 𝑘 = 𝑑 then 𝑝(𝑛) ∈ Θ(𝑛𝑘).
Exercise: Prove the following

Σ𝑘=𝑛
𝑘=1 𝑘 ∈ Θ(𝑛2

). (23)

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 65 / 107

Another example

Let us give another fundamental example.
Let 𝑝(𝑛) be a (univariate) polynomial with degree 𝑑 > 0. Let 𝑎𝑑 be its
leading coefficient and assume 𝑎𝑑 > 0. Let 𝑘 be an integer. Then we have:
(1) if 𝑘 ≥ 𝑑 then 𝑝(𝑛) ∈ 𝒪(𝑛𝑘),
(2) if 𝑘 ≤ 𝑑 then 𝑝(𝑛) ∈ Ω(𝑛𝑘),
(3) if 𝑘 = 𝑑 then 𝑝(𝑛) ∈ Θ(𝑛𝑘).

Exercise: Prove the following

Σ𝑘=𝑛
𝑘=1 𝑘 ∈ Θ(𝑛2

). (23)

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 65 / 107

Another example

Let us give another fundamental example.
Let 𝑝(𝑛) be a (univariate) polynomial with degree 𝑑 > 0. Let 𝑎𝑑 be its
leading coefficient and assume 𝑎𝑑 > 0. Let 𝑘 be an integer. Then we have:
(1) if 𝑘 ≥ 𝑑 then 𝑝(𝑛) ∈ 𝒪(𝑛𝑘),
(2) if 𝑘 ≤ 𝑑 then 𝑝(𝑛) ∈ Ω(𝑛𝑘),
(3) if 𝑘 = 𝑑 then 𝑝(𝑛) ∈ Θ(𝑛𝑘).
Exercise: Prove the following

Σ𝑘=𝑛
𝑘=1 𝑘 ∈ Θ(𝑛2

). (23)

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 65 / 107

Outline

1. Cilk: the fork-join model in action
1.1 The language and the compiler
1.2 The runtime system
1.3 Matrix multiplication in Cilk

2. The Fork-Join Model

3. Scheduling Theory and Implementation

4. Analysis of Multithreaded Algorithms
4.1 Review of Complexity Notions
4.2 Divide-and-Conquer Recurrences
4.3 Matrix Multiplication
4.4 Merge Sort
4.5 Tableau Construction

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 66 / 107

Divide-and-Conquer Algorithms
Divide-and-conquer algorithms proceed as follows.

Divide the input problem into sub-problems.
Conquer on the sub-problems by solving them directly if they are

small enough or proceed recursively.
Combine the solutions of the sub-problems to obtain the solution of

the input problem.
Equation satisfied by 𝑇 (𝑛).
∎ Assume that the size of the input problem increases with an integer 𝑛.
∎ Let 𝑇 (𝑛) be the time complexity of a divide-and-conquer algorithm to

solve this problem.
∎ Then 𝑇 (𝑛) satisfies an equation of the form:

𝑇 (𝑛) = 𝑎𝑇 (𝑛⇑𝑏) + 𝑓(𝑛). (24)

where 𝑓(𝑛) is the cost of the combine-part, 𝑎 ≥ 1 is the number of
recursively calls and 𝑛⇑𝑏 with 𝑏 > 1 is the size of a sub-problem.

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 67 / 107

Divide-and-Conquer Algorithms
Divide-and-conquer algorithms proceed as follows.

Divide the input problem into sub-problems.

Conquer on the sub-problems by solving them directly if they are
small enough or proceed recursively.

Combine the solutions of the sub-problems to obtain the solution of
the input problem.

Equation satisfied by 𝑇 (𝑛).
∎ Assume that the size of the input problem increases with an integer 𝑛.
∎ Let 𝑇 (𝑛) be the time complexity of a divide-and-conquer algorithm to

solve this problem.
∎ Then 𝑇 (𝑛) satisfies an equation of the form:

𝑇 (𝑛) = 𝑎𝑇 (𝑛⇑𝑏) + 𝑓(𝑛). (24)

where 𝑓(𝑛) is the cost of the combine-part, 𝑎 ≥ 1 is the number of
recursively calls and 𝑛⇑𝑏 with 𝑏 > 1 is the size of a sub-problem.

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 67 / 107

Divide-and-Conquer Algorithms
Divide-and-conquer algorithms proceed as follows.

Divide the input problem into sub-problems.
Conquer on the sub-problems by solving them directly if they are

small enough or proceed recursively.

Combine the solutions of the sub-problems to obtain the solution of
the input problem.

Equation satisfied by 𝑇 (𝑛).
∎ Assume that the size of the input problem increases with an integer 𝑛.
∎ Let 𝑇 (𝑛) be the time complexity of a divide-and-conquer algorithm to

solve this problem.
∎ Then 𝑇 (𝑛) satisfies an equation of the form:

𝑇 (𝑛) = 𝑎𝑇 (𝑛⇑𝑏) + 𝑓(𝑛). (24)

where 𝑓(𝑛) is the cost of the combine-part, 𝑎 ≥ 1 is the number of
recursively calls and 𝑛⇑𝑏 with 𝑏 > 1 is the size of a sub-problem.

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 67 / 107

Divide-and-Conquer Algorithms
Divide-and-conquer algorithms proceed as follows.

Divide the input problem into sub-problems.
Conquer on the sub-problems by solving them directly if they are

small enough or proceed recursively.
Combine the solutions of the sub-problems to obtain the solution of

the input problem.

Equation satisfied by 𝑇 (𝑛).
∎ Assume that the size of the input problem increases with an integer 𝑛.
∎ Let 𝑇 (𝑛) be the time complexity of a divide-and-conquer algorithm to

solve this problem.
∎ Then 𝑇 (𝑛) satisfies an equation of the form:

𝑇 (𝑛) = 𝑎𝑇 (𝑛⇑𝑏) + 𝑓(𝑛). (24)

where 𝑓(𝑛) is the cost of the combine-part, 𝑎 ≥ 1 is the number of
recursively calls and 𝑛⇑𝑏 with 𝑏 > 1 is the size of a sub-problem.

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 67 / 107

Divide-and-Conquer Algorithms
Divide-and-conquer algorithms proceed as follows.

Divide the input problem into sub-problems.
Conquer on the sub-problems by solving them directly if they are

small enough or proceed recursively.
Combine the solutions of the sub-problems to obtain the solution of

the input problem.
Equation satisfied by 𝑇 (𝑛).

∎ Assume that the size of the input problem increases with an integer 𝑛.
∎ Let 𝑇 (𝑛) be the time complexity of a divide-and-conquer algorithm to

solve this problem.
∎ Then 𝑇 (𝑛) satisfies an equation of the form:

𝑇 (𝑛) = 𝑎𝑇 (𝑛⇑𝑏) + 𝑓(𝑛). (24)

where 𝑓(𝑛) is the cost of the combine-part, 𝑎 ≥ 1 is the number of
recursively calls and 𝑛⇑𝑏 with 𝑏 > 1 is the size of a sub-problem.

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 67 / 107

Divide-and-Conquer Algorithms
Divide-and-conquer algorithms proceed as follows.

Divide the input problem into sub-problems.
Conquer on the sub-problems by solving them directly if they are

small enough or proceed recursively.
Combine the solutions of the sub-problems to obtain the solution of

the input problem.
Equation satisfied by 𝑇 (𝑛).
∎ Assume that the size of the input problem increases with an integer 𝑛.

∎ Let 𝑇 (𝑛) be the time complexity of a divide-and-conquer algorithm to
solve this problem.

∎ Then 𝑇 (𝑛) satisfies an equation of the form:

𝑇 (𝑛) = 𝑎𝑇 (𝑛⇑𝑏) + 𝑓(𝑛). (24)

where 𝑓(𝑛) is the cost of the combine-part, 𝑎 ≥ 1 is the number of
recursively calls and 𝑛⇑𝑏 with 𝑏 > 1 is the size of a sub-problem.

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 67 / 107

Divide-and-Conquer Algorithms
Divide-and-conquer algorithms proceed as follows.

Divide the input problem into sub-problems.
Conquer on the sub-problems by solving them directly if they are

small enough or proceed recursively.
Combine the solutions of the sub-problems to obtain the solution of

the input problem.
Equation satisfied by 𝑇 (𝑛).
∎ Assume that the size of the input problem increases with an integer 𝑛.
∎ Let 𝑇 (𝑛) be the time complexity of a divide-and-conquer algorithm to

solve this problem.

∎ Then 𝑇 (𝑛) satisfies an equation of the form:

𝑇 (𝑛) = 𝑎𝑇 (𝑛⇑𝑏) + 𝑓(𝑛). (24)

where 𝑓(𝑛) is the cost of the combine-part, 𝑎 ≥ 1 is the number of
recursively calls and 𝑛⇑𝑏 with 𝑏 > 1 is the size of a sub-problem.

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 67 / 107

Divide-and-Conquer Algorithms
Divide-and-conquer algorithms proceed as follows.

Divide the input problem into sub-problems.
Conquer on the sub-problems by solving them directly if they are

small enough or proceed recursively.
Combine the solutions of the sub-problems to obtain the solution of

the input problem.
Equation satisfied by 𝑇 (𝑛).
∎ Assume that the size of the input problem increases with an integer 𝑛.
∎ Let 𝑇 (𝑛) be the time complexity of a divide-and-conquer algorithm to

solve this problem.
∎ Then 𝑇 (𝑛) satisfies an equation of the form:

𝑇 (𝑛) = 𝑎𝑇 (𝑛⇑𝑏) + 𝑓(𝑛). (24)

where 𝑓(𝑛) is the cost of the combine-part, 𝑎 ≥ 1 is the number of
recursively calls and 𝑛⇑𝑏 with 𝑏 > 1 is the size of a sub-problem.

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 67 / 107

Tree associated with a divide-and-conquer recurrence

Labeled tree associated with the equation. Assume 𝑛 is a power of 𝑏,
say 𝑛 = 𝑏𝑝.

To solve the equation

𝑇 (𝑛) = 𝑎𝑇 (𝑛⇑𝑏) + 𝑓(𝑛).

we can associate a labeled tree 𝒜(𝑛) to it as follows.
(1) If 𝑛 = 1, then 𝒜(𝑛) is reduced to a single leaf labeled 𝑇 (1).
(2) If 𝑛 > 1, then the root of 𝒜(𝑛) is labeled by 𝑓(𝑛) and 𝒜(𝑛)

possesses 𝑎 labeled sub-trees all equal to 𝒜(𝑛⇑𝑏).

The labeled tree 𝒜(𝑛) associated with 𝑇 (𝑛) = 𝑎𝑇 (𝑛⇑𝑏) + 𝑓(𝑛) has height
𝑝 + 1. Moreover the sum of its labels is 𝑇 (𝑛).

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 68 / 107

Tree associated with a divide-and-conquer recurrence

Labeled tree associated with the equation. Assume 𝑛 is a power of 𝑏,
say 𝑛 = 𝑏𝑝. To solve the equation

𝑇 (𝑛) = 𝑎𝑇 (𝑛⇑𝑏) + 𝑓(𝑛).

we can associate a labeled tree 𝒜(𝑛) to it as follows.

(1) If 𝑛 = 1, then 𝒜(𝑛) is reduced to a single leaf labeled 𝑇 (1).
(2) If 𝑛 > 1, then the root of 𝒜(𝑛) is labeled by 𝑓(𝑛) and 𝒜(𝑛)

possesses 𝑎 labeled sub-trees all equal to 𝒜(𝑛⇑𝑏).

The labeled tree 𝒜(𝑛) associated with 𝑇 (𝑛) = 𝑎𝑇 (𝑛⇑𝑏) + 𝑓(𝑛) has height
𝑝 + 1. Moreover the sum of its labels is 𝑇 (𝑛).

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 68 / 107

Tree associated with a divide-and-conquer recurrence

Labeled tree associated with the equation. Assume 𝑛 is a power of 𝑏,
say 𝑛 = 𝑏𝑝. To solve the equation

𝑇 (𝑛) = 𝑎𝑇 (𝑛⇑𝑏) + 𝑓(𝑛).

we can associate a labeled tree 𝒜(𝑛) to it as follows.
(1) If 𝑛 = 1, then 𝒜(𝑛) is reduced to a single leaf labeled 𝑇 (1).

(2) If 𝑛 > 1, then the root of 𝒜(𝑛) is labeled by 𝑓(𝑛) and 𝒜(𝑛)
possesses 𝑎 labeled sub-trees all equal to 𝒜(𝑛⇑𝑏).

The labeled tree 𝒜(𝑛) associated with 𝑇 (𝑛) = 𝑎𝑇 (𝑛⇑𝑏) + 𝑓(𝑛) has height
𝑝 + 1. Moreover the sum of its labels is 𝑇 (𝑛).

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 68 / 107

Tree associated with a divide-and-conquer recurrence

Labeled tree associated with the equation. Assume 𝑛 is a power of 𝑏,
say 𝑛 = 𝑏𝑝. To solve the equation

𝑇 (𝑛) = 𝑎𝑇 (𝑛⇑𝑏) + 𝑓(𝑛).

we can associate a labeled tree 𝒜(𝑛) to it as follows.
(1) If 𝑛 = 1, then 𝒜(𝑛) is reduced to a single leaf labeled 𝑇 (1).
(2) If 𝑛 > 1, then the root of 𝒜(𝑛) is labeled by 𝑓(𝑛) and 𝒜(𝑛)

possesses 𝑎 labeled sub-trees all equal to 𝒜(𝑛⇑𝑏).

The labeled tree 𝒜(𝑛) associated with 𝑇 (𝑛) = 𝑎𝑇 (𝑛⇑𝑏) + 𝑓(𝑛) has height
𝑝 + 1. Moreover the sum of its labels is 𝑇 (𝑛).

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 68 / 107

Tree associated with a divide-and-conquer recurrence

Labeled tree associated with the equation. Assume 𝑛 is a power of 𝑏,
say 𝑛 = 𝑏𝑝. To solve the equation

𝑇 (𝑛) = 𝑎𝑇 (𝑛⇑𝑏) + 𝑓(𝑛).

we can associate a labeled tree 𝒜(𝑛) to it as follows.
(1) If 𝑛 = 1, then 𝒜(𝑛) is reduced to a single leaf labeled 𝑇 (1).
(2) If 𝑛 > 1, then the root of 𝒜(𝑛) is labeled by 𝑓(𝑛) and 𝒜(𝑛)

possesses 𝑎 labeled sub-trees all equal to 𝒜(𝑛⇑𝑏).

The labeled tree 𝒜(𝑛) associated with 𝑇 (𝑛) = 𝑎𝑇 (𝑛⇑𝑏) + 𝑓(𝑛) has height
𝑝 + 1. Moreover the sum of its labels is 𝑇 (𝑛).

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 68 / 107

Solving divide-and-conquer recurrences (1/2)

T(n)

T(n)

T(/b)T(/b) T(/b)
af(n)

T(n/b)T(n/b) T(n/b)…

a
T(/b)T(/b) T(/b)f(/b) f(/b)

f(n)

f(/b) …

T(/b2)T(/b2) T(/b2)
a

T(n/b)T(n/b) T(n/b)f(n/b) f(n/b)f(n/b)

T(n/b2)T(n/b2) T(n/b2)…

f(/b)
a

f(/b)f(/b)

f(n)

f(n/b)…
a

T(/b2)T(/b2) T(/b2)f(/b2) f(/b2)f(/b2)

f(n/b)f(n/b)

…T(n/b2)T(n/b2) T(n/b2)f(n/b2) f(n/b2)f(n/b2)

T(1)

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 69 / 107

Solving divide-and-conquer recurrences (2/2)

f(/b)
a f(n)

f(/b)f(/b)f(/b)

f(n)

f(n/b)…

f(/b2) f(/b2) 2 f(/b2)

h = logbn

f(/b2)

a f(n/b)f(n/b)f(n/b)
a

f(n/b2) f(n/b2)…

…

a2 f(n/b2)f(n/b2)

…

alogbn T(1)T(1)
= Θ(nlogba)

I C log a ith f()IDEA: Compare nlogba with f(n) .

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 70 / 107

Master Theorem: case 𝑛log𝑏𝑎 ≫ 𝑓(𝑛)

f(n/b)
a f(n)

a f(n/b)f(n/b)f(n/b)

f(n)

f(n/b)…

f(n/b2) f(n/b2)

a

a2

f(n/b)

f(n/b2)

h = logbn

f(n/b2)

f(n/b)f(n/b)
anlogba ≫ f(n)

GEOMETRICALLYf(n/b2) f(n/b2)… a2

…

f(n/b2)f(n/b2) GEOMETRICALLY
INCREASING

Specifically f(n) O(nlogba – ε)

alogbn T(1)

…

T(1)

Specifically, f(n) = O(nlogba ε)
for some constant ε > 0 .

= Θ(nlogba)

T(n) = Θ(nlogba)T(n) = Θ(n gb)

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 71 / 107

Master Theorem: case 𝑓(𝑛) ∈ Θ(𝑛log𝑏𝑎log𝑘𝑛)

f(n/b)
a f(n)

a f(n/b)f(n/b)f(n/b)

f(n)

nlogba ≈ f(n)f(n/b)…

f(n/b2) f(n/b2)

a

a2

f(n/b)

f(n/b2)

h = logbn

f(n/b2)

f(n/b)f(n/b)
a

nlogba ≈ f(n)

ARITHMETICALLY
f(n/b2) f(n/b2)… a2

…

f(n/b2)f(n/b2) INCREASING

Specifically, f(n) = Θ(nlogbalgkn)

alogbn T(1)

…

T(1)

p y, () (g)
for some constant k ≥ 0.

= Θ(nlogba)

T(n) = Θ(nlogbalgk+1n))T(n) Θ(n b lg n))

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 72 / 107

Master Theorem: case where 𝑓(𝑛) ≫ 𝑛log𝑏𝑎

f(n/b)
a f(n)

a f(n/b)f(n/b)f(n/b)

f(n)nlogba ≪ f(n)
GEOMETRICALLYf(n/b)…

f(n/b2) f(n/b2)

a

a2

f(n/b)

f(n/b2)

h = logbn

f(n/b2)

f(n/b)f(n/b)
a

GEOMETRICALLY
DECREASING

S ifi ll f()f(n/b2) f(n/b2)… a2

…

f(n/b2)f(n/b2) Specifically, f(n) =
Ω(nlogba + ε) for some

constant ε > 0 .*

alogbn T(1)

…

T(1)
= Θ(nlogba)T(n) = Θ(f(n))

*and f(n) satisfies the regularity condition that
a f(n/b) ≤ c f(n) for some constant c < 1.

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 73 / 107

More examples

∎ Consider the relation:

𝑇 (𝑛) = 2𝑇 (𝑛⇑2) + 𝑛2. (25)

We obtain:

𝑇 (𝑛) = 𝑛2
+
𝑛2

2
+
𝑛2

4
+
𝑛2

8
+⋯ +

𝑛2

2𝑝
+ 𝑛𝑇 (1). (26)

Hence we have:
𝑇 (𝑛) ∈ Θ(𝑛2

). (27)

∎ Consider the relation:

𝑇 (𝑛) = 3𝑇 (𝑛⇑3) + 𝑛. (28)

We obtain:
𝑇 (𝑛) ∈ Θ(log3(𝑛)𝑛). (29)

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 74 / 107

More examples

∎ Consider the relation:

𝑇 (𝑛) = 2𝑇 (𝑛⇑2) + 𝑛2. (25)

We obtain:

𝑇 (𝑛) = 𝑛2
+
𝑛2

2
+
𝑛2

4
+
𝑛2

8
+⋯ +

𝑛2

2𝑝
+ 𝑛𝑇 (1). (26)

Hence we have:
𝑇 (𝑛) ∈ Θ(𝑛2

). (27)
∎ Consider the relation:

𝑇 (𝑛) = 3𝑇 (𝑛⇑3) + 𝑛. (28)

We obtain:
𝑇 (𝑛) ∈ Θ(log3(𝑛)𝑛). (29)

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 74 / 107

Master Theorem when 𝑏 = 2
Let 𝑎 > 0 be an integer and let 𝑓, 𝑇 ∶ NÐ→ R+ be functions such that

(𝑖) 𝑓(2𝑛) ≥ 2 𝑓(𝑛) and 𝑓(𝑛) ≥ 𝑛.
(𝑖𝑖) If 𝑛 = 2𝑝 then 𝑇 (𝑛) ≤ 𝑎𝑇 (𝑛⇑2) + 𝑓(𝑛).
Then for 𝑛 = 2𝑝 we have:
(1) if 𝑎 = 1 then

𝑇 (𝑛) ≤ (2 − 2⇑𝑛) 𝑓(𝑛) + 𝑇 (1) ∈ 𝒪(𝑓(𝑛)), (30)

(2) if 𝑎 = 2 then

𝑇 (𝑛) ≤ 𝑓(𝑛) log2(𝑛) + 𝑇 (1)𝑛 ∈ 𝒪(log2(𝑛) 𝑓(𝑛)), (31)

(3) if 𝑎 ≥ 3 then

𝑇 (𝑛) ≤
2

𝑎 − 2
(𝑛log2(𝑎)−1

− 1) 𝑓(𝑛)+𝑇 (1)𝑛log2(𝑎) ∈ 𝒪(𝑓(𝑛)𝑛log2(𝑎)−1
).

(32)

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 75 / 107

Master Theorem when 𝑏 = 2
Let 𝑎 > 0 be an integer and let 𝑓, 𝑇 ∶ NÐ→ R+ be functions such that
(𝑖) 𝑓(2𝑛) ≥ 2 𝑓(𝑛) and 𝑓(𝑛) ≥ 𝑛.

(𝑖𝑖) If 𝑛 = 2𝑝 then 𝑇 (𝑛) ≤ 𝑎𝑇 (𝑛⇑2) + 𝑓(𝑛).
Then for 𝑛 = 2𝑝 we have:
(1) if 𝑎 = 1 then

𝑇 (𝑛) ≤ (2 − 2⇑𝑛) 𝑓(𝑛) + 𝑇 (1) ∈ 𝒪(𝑓(𝑛)), (30)

(2) if 𝑎 = 2 then

𝑇 (𝑛) ≤ 𝑓(𝑛) log2(𝑛) + 𝑇 (1)𝑛 ∈ 𝒪(log2(𝑛) 𝑓(𝑛)), (31)

(3) if 𝑎 ≥ 3 then

𝑇 (𝑛) ≤
2

𝑎 − 2
(𝑛log2(𝑎)−1

− 1) 𝑓(𝑛)+𝑇 (1)𝑛log2(𝑎) ∈ 𝒪(𝑓(𝑛)𝑛log2(𝑎)−1
).

(32)

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 75 / 107

Master Theorem when 𝑏 = 2
Let 𝑎 > 0 be an integer and let 𝑓, 𝑇 ∶ NÐ→ R+ be functions such that
(𝑖) 𝑓(2𝑛) ≥ 2 𝑓(𝑛) and 𝑓(𝑛) ≥ 𝑛.
(𝑖𝑖) If 𝑛 = 2𝑝 then 𝑇 (𝑛) ≤ 𝑎𝑇 (𝑛⇑2) + 𝑓(𝑛).

Then for 𝑛 = 2𝑝 we have:
(1) if 𝑎 = 1 then

𝑇 (𝑛) ≤ (2 − 2⇑𝑛) 𝑓(𝑛) + 𝑇 (1) ∈ 𝒪(𝑓(𝑛)), (30)

(2) if 𝑎 = 2 then

𝑇 (𝑛) ≤ 𝑓(𝑛) log2(𝑛) + 𝑇 (1)𝑛 ∈ 𝒪(log2(𝑛) 𝑓(𝑛)), (31)

(3) if 𝑎 ≥ 3 then

𝑇 (𝑛) ≤
2

𝑎 − 2
(𝑛log2(𝑎)−1

− 1) 𝑓(𝑛)+𝑇 (1)𝑛log2(𝑎) ∈ 𝒪(𝑓(𝑛)𝑛log2(𝑎)−1
).

(32)

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 75 / 107

Master Theorem when 𝑏 = 2
Let 𝑎 > 0 be an integer and let 𝑓, 𝑇 ∶ NÐ→ R+ be functions such that
(𝑖) 𝑓(2𝑛) ≥ 2 𝑓(𝑛) and 𝑓(𝑛) ≥ 𝑛.
(𝑖𝑖) If 𝑛 = 2𝑝 then 𝑇 (𝑛) ≤ 𝑎𝑇 (𝑛⇑2) + 𝑓(𝑛).
Then for 𝑛 = 2𝑝 we have:

(1) if 𝑎 = 1 then

𝑇 (𝑛) ≤ (2 − 2⇑𝑛) 𝑓(𝑛) + 𝑇 (1) ∈ 𝒪(𝑓(𝑛)), (30)

(2) if 𝑎 = 2 then

𝑇 (𝑛) ≤ 𝑓(𝑛) log2(𝑛) + 𝑇 (1)𝑛 ∈ 𝒪(log2(𝑛) 𝑓(𝑛)), (31)

(3) if 𝑎 ≥ 3 then

𝑇 (𝑛) ≤
2

𝑎 − 2
(𝑛log2(𝑎)−1

− 1) 𝑓(𝑛)+𝑇 (1)𝑛log2(𝑎) ∈ 𝒪(𝑓(𝑛)𝑛log2(𝑎)−1
).

(32)

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 75 / 107

Master Theorem when 𝑏 = 2
Let 𝑎 > 0 be an integer and let 𝑓, 𝑇 ∶ NÐ→ R+ be functions such that
(𝑖) 𝑓(2𝑛) ≥ 2 𝑓(𝑛) and 𝑓(𝑛) ≥ 𝑛.
(𝑖𝑖) If 𝑛 = 2𝑝 then 𝑇 (𝑛) ≤ 𝑎𝑇 (𝑛⇑2) + 𝑓(𝑛).
Then for 𝑛 = 2𝑝 we have:
(1) if 𝑎 = 1 then

𝑇 (𝑛) ≤ (2 − 2⇑𝑛) 𝑓(𝑛) + 𝑇 (1) ∈ 𝒪(𝑓(𝑛)), (30)

(2) if 𝑎 = 2 then

𝑇 (𝑛) ≤ 𝑓(𝑛) log2(𝑛) + 𝑇 (1)𝑛 ∈ 𝒪(log2(𝑛) 𝑓(𝑛)), (31)

(3) if 𝑎 ≥ 3 then

𝑇 (𝑛) ≤
2

𝑎 − 2
(𝑛log2(𝑎)−1

− 1) 𝑓(𝑛)+𝑇 (1)𝑛log2(𝑎) ∈ 𝒪(𝑓(𝑛)𝑛log2(𝑎)−1
).

(32)

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 75 / 107

Master Theorem when 𝑏 = 2
Let 𝑎 > 0 be an integer and let 𝑓, 𝑇 ∶ NÐ→ R+ be functions such that
(𝑖) 𝑓(2𝑛) ≥ 2 𝑓(𝑛) and 𝑓(𝑛) ≥ 𝑛.
(𝑖𝑖) If 𝑛 = 2𝑝 then 𝑇 (𝑛) ≤ 𝑎𝑇 (𝑛⇑2) + 𝑓(𝑛).
Then for 𝑛 = 2𝑝 we have:
(1) if 𝑎 = 1 then

𝑇 (𝑛) ≤ (2 − 2⇑𝑛) 𝑓(𝑛) + 𝑇 (1) ∈ 𝒪(𝑓(𝑛)), (30)

(2) if 𝑎 = 2 then

𝑇 (𝑛) ≤ 𝑓(𝑛) log2(𝑛) + 𝑇 (1)𝑛 ∈ 𝒪(log2(𝑛) 𝑓(𝑛)), (31)

(3) if 𝑎 ≥ 3 then

𝑇 (𝑛) ≤
2

𝑎 − 2
(𝑛log2(𝑎)−1

− 1) 𝑓(𝑛)+𝑇 (1)𝑛log2(𝑎) ∈ 𝒪(𝑓(𝑛)𝑛log2(𝑎)−1
).

(32)

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 75 / 107

Master Theorem when 𝑏 = 2
Let 𝑎 > 0 be an integer and let 𝑓, 𝑇 ∶ NÐ→ R+ be functions such that
(𝑖) 𝑓(2𝑛) ≥ 2 𝑓(𝑛) and 𝑓(𝑛) ≥ 𝑛.
(𝑖𝑖) If 𝑛 = 2𝑝 then 𝑇 (𝑛) ≤ 𝑎𝑇 (𝑛⇑2) + 𝑓(𝑛).
Then for 𝑛 = 2𝑝 we have:
(1) if 𝑎 = 1 then

𝑇 (𝑛) ≤ (2 − 2⇑𝑛) 𝑓(𝑛) + 𝑇 (1) ∈ 𝒪(𝑓(𝑛)), (30)

(2) if 𝑎 = 2 then

𝑇 (𝑛) ≤ 𝑓(𝑛) log2(𝑛) + 𝑇 (1)𝑛 ∈ 𝒪(log2(𝑛) 𝑓(𝑛)), (31)

(3) if 𝑎 ≥ 3 then

𝑇 (𝑛) ≤
2

𝑎 − 2
(𝑛log2(𝑎)−1

− 1) 𝑓(𝑛)+𝑇 (1)𝑛log2(𝑎) ∈ 𝒪(𝑓(𝑛)𝑛log2(𝑎)−1
).

(32)

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 75 / 107

Master Theorem when 𝑏 = 2

Indeed

𝑇 (2𝑝) ≤ 𝑎𝑇 (2𝑝−1) + 𝑓(2𝑝)

≤ 𝑎)︀𝑎𝑇 (2𝑝−2) + 𝑓(2𝑝−1)⌈︀ + 𝑓(2𝑝)

= 𝑎2 𝑇 (2𝑝−2) + 𝑎𝑓(2𝑝−1) + 𝑓(2𝑝)

≤ 𝑎2)︀𝑎𝑇 (2𝑝−3) + 𝑓(2𝑝−2)⌈︀ + 𝑎𝑓(2𝑝−1) + 𝑓(2𝑝)

= 𝑎3 𝑇 (2𝑝−3) + 𝑎2 𝑓(2𝑝−2) + 𝑎𝑓(2𝑝−1) + 𝑓(2𝑝)

≤ 𝑎𝑝 𝑇 (𝑠1) + 𝜎𝑗=𝑝−1
𝑗=0 𝑎𝑗 𝑓(2𝑝−𝑗)

(33)

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 76 / 107

Master Theorem when 𝑏 = 2

Moreover
𝑓(2𝑝) ≥ 2 𝑓(2𝑝−1)
𝑓(2𝑝) ≥ 22 𝑓(2𝑝−2)

⋮ ⋮ ⋮

𝑓(2𝑝) ≥ 2𝑗 𝑓(2𝑝−𝑗)

(34)

Thus
Σ𝑗=𝑝−1

𝑗=0 𝑎𝑗 𝑓(2𝑝−𝑗
) ≤ 𝑓(2𝑝

)Σ𝑗=𝑝−1
𝑗=0 (

𝑎

2
)

𝑗

. (35)

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 77 / 107

Master Theorem when 𝑏 = 2

Hence
𝑇 (2𝑝

) ≤ 𝑎𝑝 𝑇 (1) + 𝑓(2𝑝
)Σ𝑗=𝑝−1

𝑗=0 (
𝑎

2
)

𝑗

. (36)

For 𝑎 = 1 we obtain

𝑇 (2𝑝) ≤ 𝑇 (1) + 𝑓(2𝑝)Σ𝑗=𝑝−1
𝑗=0 (1

2)
𝑗

= 𝑇 (1) + 𝑓(2𝑝)
1

2𝑝 −1
1
2−1

= 𝑇 (1) + 𝑓(𝑛) (2 − 2⇑𝑛).

(37)

For 𝑎 = 2 we obtain

𝑇 (2𝑝) ≤ 2𝑝 𝑇 (1) + 𝑓(2𝑝)𝑝
= 𝑛𝑇 (1) + 𝑓(𝑛) log2(𝑛).

(38)

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 78 / 107

Master Theorem cheat sheet
For 𝑎 ≥ 1 and 𝑏 > 1, consider again the equation

𝑇 (𝑛) = 𝑎𝑇 (𝑛⇑𝑏) + 𝑓(𝑛). (39)

∎ We have:

(∃𝜀 > 0) 𝑓(𝑛) ∈ 𝑂(𝑛log𝑏𝑎−𝜀
) Ô⇒ 𝑇 (𝑛) ∈ Θ(𝑛log𝑏𝑎

) (40)

∎ We have:

(∃𝜀 > 0) 𝑓(𝑛) ∈ Θ(𝑛log𝑏𝑎 log𝑘𝑛) Ô⇒ 𝑇 (𝑛) ∈ Θ(𝑛log𝑏𝑎 log𝑘+1𝑛) (41)

∎ We have:

(∃𝜀 > 0) 𝑓(𝑛) ∈ Ω(𝑛log𝑏𝑎+𝜀
) Ô⇒ 𝑇 (𝑛) ∈ Θ(𝑓(𝑛)) (42)

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 79 / 107

Master Theorem cheat sheet
For 𝑎 ≥ 1 and 𝑏 > 1, consider again the equation

𝑇 (𝑛) = 𝑎𝑇 (𝑛⇑𝑏) + 𝑓(𝑛). (39)

∎ We have:

(∃𝜀 > 0) 𝑓(𝑛) ∈ 𝑂(𝑛log𝑏𝑎−𝜀
) Ô⇒ 𝑇 (𝑛) ∈ Θ(𝑛log𝑏𝑎

) (40)

∎ We have:

(∃𝜀 > 0) 𝑓(𝑛) ∈ Θ(𝑛log𝑏𝑎 log𝑘𝑛) Ô⇒ 𝑇 (𝑛) ∈ Θ(𝑛log𝑏𝑎 log𝑘+1𝑛) (41)

∎ We have:

(∃𝜀 > 0) 𝑓(𝑛) ∈ Ω(𝑛log𝑏𝑎+𝜀
) Ô⇒ 𝑇 (𝑛) ∈ Θ(𝑓(𝑛)) (42)

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 79 / 107

Master Theorem cheat sheet
For 𝑎 ≥ 1 and 𝑏 > 1, consider again the equation

𝑇 (𝑛) = 𝑎𝑇 (𝑛⇑𝑏) + 𝑓(𝑛). (39)

∎ We have:

(∃𝜀 > 0) 𝑓(𝑛) ∈ 𝑂(𝑛log𝑏𝑎−𝜀
) Ô⇒ 𝑇 (𝑛) ∈ Θ(𝑛log𝑏𝑎

) (40)

∎ We have:

(∃𝜀 > 0) 𝑓(𝑛) ∈ Θ(𝑛log𝑏𝑎 log𝑘𝑛) Ô⇒ 𝑇 (𝑛) ∈ Θ(𝑛log𝑏𝑎 log𝑘+1𝑛) (41)

∎ We have:

(∃𝜀 > 0) 𝑓(𝑛) ∈ Ω(𝑛log𝑏𝑎+𝜀
) Ô⇒ 𝑇 (𝑛) ∈ Θ(𝑓(𝑛)) (42)

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 79 / 107

Master Theorem cheat sheet
For 𝑎 ≥ 1 and 𝑏 > 1, consider again the equation

𝑇 (𝑛) = 𝑎𝑇 (𝑛⇑𝑏) + 𝑓(𝑛). (39)

∎ We have:

(∃𝜀 > 0) 𝑓(𝑛) ∈ 𝑂(𝑛log𝑏𝑎−𝜀
) Ô⇒ 𝑇 (𝑛) ∈ Θ(𝑛log𝑏𝑎

) (40)

∎ We have:

(∃𝜀 > 0) 𝑓(𝑛) ∈ Θ(𝑛log𝑏𝑎 log𝑘𝑛) Ô⇒ 𝑇 (𝑛) ∈ Θ(𝑛log𝑏𝑎 log𝑘+1𝑛) (41)

∎ We have:

(∃𝜀 > 0) 𝑓(𝑛) ∈ Ω(𝑛log𝑏𝑎+𝜀
) Ô⇒ 𝑇 (𝑛) ∈ Θ(𝑓(𝑛)) (42)

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 79 / 107

Master Theorem quizz!

∎ 𝑇 (𝑛) = 4𝑇 (𝑛⇑2) + 𝑛

∎ 𝑇 (𝑛) = 4𝑇 (𝑛⇑2) + 𝑛2

∎ 𝑇 (𝑛) = 4𝑇 (𝑛⇑2) + 𝑛3

∎ 𝑇 (𝑛) = 4𝑇 (𝑛⇑2) + 𝑛2⇑log𝑛

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 80 / 107

Master Theorem quizz!

∎ 𝑇 (𝑛) = 4𝑇 (𝑛⇑2) + 𝑛

∎ 𝑇 (𝑛) = 4𝑇 (𝑛⇑2) + 𝑛2

∎ 𝑇 (𝑛) = 4𝑇 (𝑛⇑2) + 𝑛3

∎ 𝑇 (𝑛) = 4𝑇 (𝑛⇑2) + 𝑛2⇑log𝑛

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 80 / 107

Master Theorem quizz!

∎ 𝑇 (𝑛) = 4𝑇 (𝑛⇑2) + 𝑛

∎ 𝑇 (𝑛) = 4𝑇 (𝑛⇑2) + 𝑛2

∎ 𝑇 (𝑛) = 4𝑇 (𝑛⇑2) + 𝑛3

∎ 𝑇 (𝑛) = 4𝑇 (𝑛⇑2) + 𝑛2⇑log𝑛

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 80 / 107

Master Theorem quizz!

∎ 𝑇 (𝑛) = 4𝑇 (𝑛⇑2) + 𝑛

∎ 𝑇 (𝑛) = 4𝑇 (𝑛⇑2) + 𝑛2

∎ 𝑇 (𝑛) = 4𝑇 (𝑛⇑2) + 𝑛3

∎ 𝑇 (𝑛) = 4𝑇 (𝑛⇑2) + 𝑛2⇑log𝑛

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 80 / 107

Outline

1. Cilk: the fork-join model in action
1.1 The language and the compiler
1.2 The runtime system
1.3 Matrix multiplication in Cilk

2. The Fork-Join Model

3. Scheduling Theory and Implementation

4. Analysis of Multithreaded Algorithms
4.1 Review of Complexity Notions
4.2 Divide-and-Conquer Recurrences
4.3 Matrix Multiplication
4.4 Merge Sort
4.5 Tableau Construction

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 81 / 107

Matrix multiplication

c11 c12 ⋯ c1n
c c c

a11 a12 ⋯ a1n
a a a

b11 b12 ⋯ b1n
b b bc21 c22 ⋯ c2n

⋮ ⋮ ⋱ ⋮
c 1 c 2 c

a21 a22 ⋯ a2n
⋮ ⋮ ⋱ ⋮
a 1 a 2 a

b21 b22 ⋯ b2n
⋮ ⋮ ⋱ ⋮
b 1 b 2 b

= ·
cn1 cn2 ⋯ cnn an1 an2 ⋯ ann bn1 bn2 ⋯ bnn

C A B
We will study three approaches:

∎ a naive and iterative one
∎ a divide-and-conquer one
∎ a divide-and-conquer one with memory management consideration

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 82 / 107

Matrix multiplication

c11 c12 ⋯ c1n
c c c

a11 a12 ⋯ a1n
a a a

b11 b12 ⋯ b1n
b b bc21 c22 ⋯ c2n

⋮ ⋮ ⋱ ⋮
c 1 c 2 c

a21 a22 ⋯ a2n
⋮ ⋮ ⋱ ⋮
a 1 a 2 a

b21 b22 ⋯ b2n
⋮ ⋮ ⋱ ⋮
b 1 b 2 b

= ·
cn1 cn2 ⋯ cnn an1 an2 ⋯ ann bn1 bn2 ⋯ bnn

C A B
We will study three approaches:
∎ a naive and iterative one

∎ a divide-and-conquer one
∎ a divide-and-conquer one with memory management consideration

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 82 / 107

Matrix multiplication

c11 c12 ⋯ c1n
c c c

a11 a12 ⋯ a1n
a a a

b11 b12 ⋯ b1n
b b bc21 c22 ⋯ c2n

⋮ ⋮ ⋱ ⋮
c 1 c 2 c

a21 a22 ⋯ a2n
⋮ ⋮ ⋱ ⋮
a 1 a 2 a

b21 b22 ⋯ b2n
⋮ ⋮ ⋱ ⋮
b 1 b 2 b

= ·
cn1 cn2 ⋯ cnn an1 an2 ⋯ ann bn1 bn2 ⋯ bnn

C A B
We will study three approaches:
∎ a naive and iterative one
∎ a divide-and-conquer one

∎ a divide-and-conquer one with memory management consideration

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 82 / 107

Matrix multiplication

c11 c12 ⋯ c1n
c c c

a11 a12 ⋯ a1n
a a a

b11 b12 ⋯ b1n
b b bc21 c22 ⋯ c2n

⋮ ⋮ ⋱ ⋮
c 1 c 2 c

a21 a22 ⋯ a2n
⋮ ⋮ ⋱ ⋮
a 1 a 2 a

b21 b22 ⋯ b2n
⋮ ⋮ ⋱ ⋮
b 1 b 2 b

= ·
cn1 cn2 ⋯ cnn an1 an2 ⋯ ann bn1 bn2 ⋯ bnn

C A B
We will study three approaches:
∎ a naive and iterative one
∎ a divide-and-conquer one
∎ a divide-and-conquer one with memory management consideration

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 82 / 107

Naive iterative matrix multiplication

cilk_for (int i=1; i<n; ++i) {
cilk_for (int j=0; j<n; ++j) {

for (int k=0; k<n; ++k {
C[i][j] += A[i][k] * B[k][j];

}
}

∎ Work: ?
∎ Span: ?
∎ Parallelism: ?

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 83 / 107

Naive iterative matrix multiplication

cilk_for (int i=1; i<n; ++i) {
cilk_for (int j=0; j<n; ++j) {

for (int k=0; k<n; ++k {
C[i][j] += A[i][k] * B[k][j];

}
}

∎ Work: ?

∎ Span: ?
∎ Parallelism: ?

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 83 / 107

Naive iterative matrix multiplication

cilk_for (int i=1; i<n; ++i) {
cilk_for (int j=0; j<n; ++j) {

for (int k=0; k<n; ++k {
C[i][j] += A[i][k] * B[k][j];

}
}

∎ Work: ?
∎ Span: ?

∎ Parallelism: ?

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 83 / 107

Naive iterative matrix multiplication

cilk_for (int i=1; i<n; ++i) {
cilk_for (int j=0; j<n; ++j) {

for (int k=0; k<n; ++k {
C[i][j] += A[i][k] * B[k][j];

}
}

∎ Work: ?
∎ Span: ?
∎ Parallelism: ?

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 83 / 107

Naive iterative matrix multiplication

cilk_for (int i=1; i<n; ++i) {
cilk_for (int j=0; j<n; ++j) {

for (int k=0; k<n; ++k {
C[i][j] += A[i][k] * B[k][j];

}
}

∎ Work: Θ(𝑛3)

∎ Span: Θ(𝑛)

∎ Parallelism: Θ(𝑛2)

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 84 / 107

Naive iterative matrix multiplication

cilk_for (int i=1; i<n; ++i) {
cilk_for (int j=0; j<n; ++j) {

for (int k=0; k<n; ++k {
C[i][j] += A[i][k] * B[k][j];

}
}

∎ Work: Θ(𝑛3)

∎ Span: Θ(𝑛)

∎ Parallelism: Θ(𝑛2)

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 84 / 107

Naive iterative matrix multiplication

cilk_for (int i=1; i<n; ++i) {
cilk_for (int j=0; j<n; ++j) {

for (int k=0; k<n; ++k {
C[i][j] += A[i][k] * B[k][j];

}
}

∎ Work: Θ(𝑛3)

∎ Span: Θ(𝑛)

∎ Parallelism: Θ(𝑛2)

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 84 / 107

Naive iterative matrix multiplication

cilk_for (int i=1; i<n; ++i) {
cilk_for (int j=0; j<n; ++j) {

for (int k=0; k<n; ++k {
C[i][j] += A[i][k] * B[k][j];

}
}

∎ Work: Θ(𝑛3)

∎ Span: Θ(𝑛)

∎ Parallelism: Θ(𝑛2)

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 84 / 107

Matrix multiplication based on block decomposition

C C A A B BC11 C12

C C
= ·

A11 A12

A A

B11 B12

B BC21 C22 A21 A22 B21 B22

A11B11 A11B12 A12B21 A12B22= +
A11B11 A11B12

A21B11 A21B12

A12B21 A12B22

A22B21 A22B2221 11 21 12 22 21 22 22

The divide-and-conquer approach is simply the one based on blocking,
presented in the previous lecture.

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 85 / 107

Divide-and-conquer matrix multiplication

// C <- C + A * B
void MMult(T *C, T *A, T *B, int n, int size) {

T *D = new T[n*n];
//base case & partition matrices
cilk_spawn MMult(C11, A11, B11, n/2, size);
cilk_spawn MMult(C12, A11, B12, n/2, size);
cilk_spawn MMult(C22, A21, B12, n/2, size);
cilk_spawn MMult(C21, A21, B11, n/2, size);
cilk_spawn MMult(D11, A12, B21, n/2, size);
cilk_spawn MMult(D12, A12, B22, n/2, size);
cilk_spawn MMult(D22, A22, B22, n/2, size);

MMult(D21, A22, B21, n/2, size);
cilk_sync;
MAdd(C, D, n, size); // C += D;
delete[] D;

}

Work ? Span ? Parallelism ?
Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 86 / 107

Divide-and-conquer matrix multiplication

void MMult(T *C, T *A, T *B, int n, int size) {
T *D = new T[n*n];
//base case & partition matrices
cilk_spawn MMult(C11, A11, B11, n/2, size);
cilk_spawn MMult(C12, A11, B12, n/2, size);
cilk_spawn MMult(C22, A21, B12, n/2, size);
cilk_spawn MMult(C21, A21, B11, n/2, size);
cilk_spawn MMult(D11, A12, B21, n/2, size);
cilk_spawn MMult(D12, A12, B22, n/2, size);
cilk_spawn MMult(D22, A22, B22, n/2, size);

MMult(D21, A22, B21, n/2, size);
cilk_sync; MAdd(C, D, n, size); // C += D;
delete[] D; }

∎ 𝐴𝑝(𝑛) and 𝑀𝑝(𝑛): times on 𝑝 proc. for 𝑛 × 𝑛 Add and Mult.

∎ 𝐴1(𝑛) = 4𝐴1(𝑛⇑2) +Θ(1) = Θ(𝑛2)

∎ 𝐴∞(𝑛) = 𝐴∞(𝑛⇑2) +Θ(1) = Θ(lg𝑛)
∎ 𝑀1(𝑛) = 8𝑀1(𝑛⇑2) +𝐴1(𝑛) = 8𝑀1(𝑛⇑2) +Θ(𝑛2) = Θ(𝑛3)

∎ 𝑀∞(𝑛) =𝑀∞(𝑛⇑2) +Θ(lg𝑛) = Θ(lg2 𝑛)

∎ 𝑀1(𝑛)⇑𝑀∞(𝑛) = Θ(𝑛3⇑ lg2 𝑛)

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 87 / 107

Divide-and-conquer matrix multiplication

void MMult(T *C, T *A, T *B, int n, int size) {
T *D = new T[n*n];
//base case & partition matrices
cilk_spawn MMult(C11, A11, B11, n/2, size);
cilk_spawn MMult(C12, A11, B12, n/2, size);
cilk_spawn MMult(C22, A21, B12, n/2, size);
cilk_spawn MMult(C21, A21, B11, n/2, size);
cilk_spawn MMult(D11, A12, B21, n/2, size);
cilk_spawn MMult(D12, A12, B22, n/2, size);
cilk_spawn MMult(D22, A22, B22, n/2, size);

MMult(D21, A22, B21, n/2, size);
cilk_sync; MAdd(C, D, n, size); // C += D;
delete[] D; }

∎ 𝐴𝑝(𝑛) and 𝑀𝑝(𝑛): times on 𝑝 proc. for 𝑛 × 𝑛 Add and Mult.
∎ 𝐴1(𝑛) = 4𝐴1(𝑛⇑2) +Θ(1) = Θ(𝑛2)

∎ 𝐴∞(𝑛) = 𝐴∞(𝑛⇑2) +Θ(1) = Θ(lg𝑛)
∎ 𝑀1(𝑛) = 8𝑀1(𝑛⇑2) +𝐴1(𝑛) = 8𝑀1(𝑛⇑2) +Θ(𝑛2) = Θ(𝑛3)

∎ 𝑀∞(𝑛) =𝑀∞(𝑛⇑2) +Θ(lg𝑛) = Θ(lg2 𝑛)

∎ 𝑀1(𝑛)⇑𝑀∞(𝑛) = Θ(𝑛3⇑ lg2 𝑛)

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 87 / 107

Divide-and-conquer matrix multiplication

void MMult(T *C, T *A, T *B, int n, int size) {
T *D = new T[n*n];
//base case & partition matrices
cilk_spawn MMult(C11, A11, B11, n/2, size);
cilk_spawn MMult(C12, A11, B12, n/2, size);
cilk_spawn MMult(C22, A21, B12, n/2, size);
cilk_spawn MMult(C21, A21, B11, n/2, size);
cilk_spawn MMult(D11, A12, B21, n/2, size);
cilk_spawn MMult(D12, A12, B22, n/2, size);
cilk_spawn MMult(D22, A22, B22, n/2, size);

MMult(D21, A22, B21, n/2, size);
cilk_sync; MAdd(C, D, n, size); // C += D;
delete[] D; }

∎ 𝐴𝑝(𝑛) and 𝑀𝑝(𝑛): times on 𝑝 proc. for 𝑛 × 𝑛 Add and Mult.
∎ 𝐴1(𝑛) = 4𝐴1(𝑛⇑2) +Θ(1) = Θ(𝑛2)

∎ 𝐴∞(𝑛) = 𝐴∞(𝑛⇑2) +Θ(1) = Θ(lg𝑛)

∎ 𝑀1(𝑛) = 8𝑀1(𝑛⇑2) +𝐴1(𝑛) = 8𝑀1(𝑛⇑2) +Θ(𝑛2) = Θ(𝑛3)

∎ 𝑀∞(𝑛) =𝑀∞(𝑛⇑2) +Θ(lg𝑛) = Θ(lg2 𝑛)

∎ 𝑀1(𝑛)⇑𝑀∞(𝑛) = Θ(𝑛3⇑ lg2 𝑛)

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 87 / 107

Divide-and-conquer matrix multiplication

void MMult(T *C, T *A, T *B, int n, int size) {
T *D = new T[n*n];
//base case & partition matrices
cilk_spawn MMult(C11, A11, B11, n/2, size);
cilk_spawn MMult(C12, A11, B12, n/2, size);
cilk_spawn MMult(C22, A21, B12, n/2, size);
cilk_spawn MMult(C21, A21, B11, n/2, size);
cilk_spawn MMult(D11, A12, B21, n/2, size);
cilk_spawn MMult(D12, A12, B22, n/2, size);
cilk_spawn MMult(D22, A22, B22, n/2, size);

MMult(D21, A22, B21, n/2, size);
cilk_sync; MAdd(C, D, n, size); // C += D;
delete[] D; }

∎ 𝐴𝑝(𝑛) and 𝑀𝑝(𝑛): times on 𝑝 proc. for 𝑛 × 𝑛 Add and Mult.
∎ 𝐴1(𝑛) = 4𝐴1(𝑛⇑2) +Θ(1) = Θ(𝑛2)

∎ 𝐴∞(𝑛) = 𝐴∞(𝑛⇑2) +Θ(1) = Θ(lg𝑛)
∎ 𝑀1(𝑛) = 8𝑀1(𝑛⇑2) +𝐴1(𝑛) = 8𝑀1(𝑛⇑2) +Θ(𝑛2) = Θ(𝑛3)

∎ 𝑀∞(𝑛) =𝑀∞(𝑛⇑2) +Θ(lg𝑛) = Θ(lg2 𝑛)

∎ 𝑀1(𝑛)⇑𝑀∞(𝑛) = Θ(𝑛3⇑ lg2 𝑛)

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 87 / 107

Divide-and-conquer matrix multiplication

void MMult(T *C, T *A, T *B, int n, int size) {
T *D = new T[n*n];
//base case & partition matrices
cilk_spawn MMult(C11, A11, B11, n/2, size);
cilk_spawn MMult(C12, A11, B12, n/2, size);
cilk_spawn MMult(C22, A21, B12, n/2, size);
cilk_spawn MMult(C21, A21, B11, n/2, size);
cilk_spawn MMult(D11, A12, B21, n/2, size);
cilk_spawn MMult(D12, A12, B22, n/2, size);
cilk_spawn MMult(D22, A22, B22, n/2, size);

MMult(D21, A22, B21, n/2, size);
cilk_sync; MAdd(C, D, n, size); // C += D;
delete[] D; }

∎ 𝐴𝑝(𝑛) and 𝑀𝑝(𝑛): times on 𝑝 proc. for 𝑛 × 𝑛 Add and Mult.
∎ 𝐴1(𝑛) = 4𝐴1(𝑛⇑2) +Θ(1) = Θ(𝑛2)

∎ 𝐴∞(𝑛) = 𝐴∞(𝑛⇑2) +Θ(1) = Θ(lg𝑛)
∎ 𝑀1(𝑛) = 8𝑀1(𝑛⇑2) +𝐴1(𝑛) = 8𝑀1(𝑛⇑2) +Θ(𝑛2) = Θ(𝑛3)

∎ 𝑀∞(𝑛) =𝑀∞(𝑛⇑2) +Θ(lg𝑛) = Θ(lg2 𝑛)

∎ 𝑀1(𝑛)⇑𝑀∞(𝑛) = Θ(𝑛3⇑ lg2 𝑛)

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 87 / 107

Divide-and-conquer matrix multiplication

void MMult(T *C, T *A, T *B, int n, int size) {
T *D = new T[n*n];
//base case & partition matrices
cilk_spawn MMult(C11, A11, B11, n/2, size);
cilk_spawn MMult(C12, A11, B12, n/2, size);
cilk_spawn MMult(C22, A21, B12, n/2, size);
cilk_spawn MMult(C21, A21, B11, n/2, size);
cilk_spawn MMult(D11, A12, B21, n/2, size);
cilk_spawn MMult(D12, A12, B22, n/2, size);
cilk_spawn MMult(D22, A22, B22, n/2, size);

MMult(D21, A22, B21, n/2, size);
cilk_sync; MAdd(C, D, n, size); // C += D;
delete[] D; }

∎ 𝐴𝑝(𝑛) and 𝑀𝑝(𝑛): times on 𝑝 proc. for 𝑛 × 𝑛 Add and Mult.
∎ 𝐴1(𝑛) = 4𝐴1(𝑛⇑2) +Θ(1) = Θ(𝑛2)

∎ 𝐴∞(𝑛) = 𝐴∞(𝑛⇑2) +Θ(1) = Θ(lg𝑛)
∎ 𝑀1(𝑛) = 8𝑀1(𝑛⇑2) +𝐴1(𝑛) = 8𝑀1(𝑛⇑2) +Θ(𝑛2) = Θ(𝑛3)

∎ 𝑀∞(𝑛) =𝑀∞(𝑛⇑2) +Θ(lg𝑛) = Θ(lg2 𝑛)

∎ 𝑀1(𝑛)⇑𝑀∞(𝑛) = Θ(𝑛3⇑ lg2 𝑛)

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 87 / 107

Divide-and-conquer matrix multiplication: No temporaries!

template <typename T>
void MMult2(T *C, T *A, T *B, int n, int size) {

//base case & partition matrices
cilk_spawn MMult2(C11, A11, B11, n/2, size);
cilk_spawn MMult2(C12, A11, B12, n/2, size);
cilk_spawn MMult2(C22, A21, B12, n/2, size);

MMult2(C21, A21, B11, n/2, size);
cilk_sync;
cilk_spawn MMult2(C11, A12, B21, n/2, size);
cilk_spawn MMult2(C12, A12, B22, n/2, size);
cilk_spawn MMult2(C22, A22, B22, n/2, size);

MMult2(C21, A22, B21, n/2, size);
cilk_sync; }

Work ? Span ? Parallelism ?

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 88 / 107

Divide-and-conquer matrix multiplication: No temporaries!

template <typename T>
void MMult2(T *C, T *A, T *B, int n, int size) {

//base case & partition matrices
cilk_spawn MMult2(C11, A11, B11, n/2, size);
cilk_spawn MMult2(C12, A11, B12, n/2, size);
cilk_spawn MMult2(C22, A21, B12, n/2, size);

MMult2(C21, A21, B11, n/2, size);
cilk_sync;
cilk_spawn MMult2(C11, A12, B21, n/2, size);
cilk_spawn MMult2(C12, A12, B22, n/2, size);
cilk_spawn MMult2(C22, A22, B22, n/2, size);

MMult2(C21, A22, B21, n/2, size);
cilk_sync; }

∎ 𝑀𝐴𝑝(𝑛): time on 𝑝 proc. for 𝑛 × 𝑛 Mult-Add.

∎ 𝑀𝐴1(𝑛) = Θ(𝑛3)

∎ 𝑀𝐴∞(𝑛) = 2𝑀𝐴∞(𝑛⇑2) +Θ(1) = Θ(𝑛)

∎ 𝑀𝐴1(𝑛)⇑𝑀𝐴∞(𝑛) = Θ(𝑛2)

∎ Besides, saving space often saves time due to hierarchical memory.

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 89 / 107

Divide-and-conquer matrix multiplication: No temporaries!

template <typename T>
void MMult2(T *C, T *A, T *B, int n, int size) {

//base case & partition matrices
cilk_spawn MMult2(C11, A11, B11, n/2, size);
cilk_spawn MMult2(C12, A11, B12, n/2, size);
cilk_spawn MMult2(C22, A21, B12, n/2, size);

MMult2(C21, A21, B11, n/2, size);
cilk_sync;
cilk_spawn MMult2(C11, A12, B21, n/2, size);
cilk_spawn MMult2(C12, A12, B22, n/2, size);
cilk_spawn MMult2(C22, A22, B22, n/2, size);

MMult2(C21, A22, B21, n/2, size);
cilk_sync; }

∎ 𝑀𝐴𝑝(𝑛): time on 𝑝 proc. for 𝑛 × 𝑛 Mult-Add.
∎ 𝑀𝐴1(𝑛) = Θ(𝑛3)

∎ 𝑀𝐴∞(𝑛) = 2𝑀𝐴∞(𝑛⇑2) +Θ(1) = Θ(𝑛)

∎ 𝑀𝐴1(𝑛)⇑𝑀𝐴∞(𝑛) = Θ(𝑛2)

∎ Besides, saving space often saves time due to hierarchical memory.

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 89 / 107

Divide-and-conquer matrix multiplication: No temporaries!

template <typename T>
void MMult2(T *C, T *A, T *B, int n, int size) {

//base case & partition matrices
cilk_spawn MMult2(C11, A11, B11, n/2, size);
cilk_spawn MMult2(C12, A11, B12, n/2, size);
cilk_spawn MMult2(C22, A21, B12, n/2, size);

MMult2(C21, A21, B11, n/2, size);
cilk_sync;
cilk_spawn MMult2(C11, A12, B21, n/2, size);
cilk_spawn MMult2(C12, A12, B22, n/2, size);
cilk_spawn MMult2(C22, A22, B22, n/2, size);

MMult2(C21, A22, B21, n/2, size);
cilk_sync; }

∎ 𝑀𝐴𝑝(𝑛): time on 𝑝 proc. for 𝑛 × 𝑛 Mult-Add.
∎ 𝑀𝐴1(𝑛) = Θ(𝑛3)

∎ 𝑀𝐴∞(𝑛) = 2𝑀𝐴∞(𝑛⇑2) +Θ(1) = Θ(𝑛)

∎ 𝑀𝐴1(𝑛)⇑𝑀𝐴∞(𝑛) = Θ(𝑛2)

∎ Besides, saving space often saves time due to hierarchical memory.

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 89 / 107

Divide-and-conquer matrix multiplication: No temporaries!

template <typename T>
void MMult2(T *C, T *A, T *B, int n, int size) {

//base case & partition matrices
cilk_spawn MMult2(C11, A11, B11, n/2, size);
cilk_spawn MMult2(C12, A11, B12, n/2, size);
cilk_spawn MMult2(C22, A21, B12, n/2, size);

MMult2(C21, A21, B11, n/2, size);
cilk_sync;
cilk_spawn MMult2(C11, A12, B21, n/2, size);
cilk_spawn MMult2(C12, A12, B22, n/2, size);
cilk_spawn MMult2(C22, A22, B22, n/2, size);

MMult2(C21, A22, B21, n/2, size);
cilk_sync; }

∎ 𝑀𝐴𝑝(𝑛): time on 𝑝 proc. for 𝑛 × 𝑛 Mult-Add.
∎ 𝑀𝐴1(𝑛) = Θ(𝑛3)

∎ 𝑀𝐴∞(𝑛) = 2𝑀𝐴∞(𝑛⇑2) +Θ(1) = Θ(𝑛)

∎ 𝑀𝐴1(𝑛)⇑𝑀𝐴∞(𝑛) = Θ(𝑛2)

∎ Besides, saving space often saves time due to hierarchical memory.

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 89 / 107

Divide-and-conquer matrix multiplication: No temporaries!

template <typename T>
void MMult2(T *C, T *A, T *B, int n, int size) {

//base case & partition matrices
cilk_spawn MMult2(C11, A11, B11, n/2, size);
cilk_spawn MMult2(C12, A11, B12, n/2, size);
cilk_spawn MMult2(C22, A21, B12, n/2, size);

MMult2(C21, A21, B11, n/2, size);
cilk_sync;
cilk_spawn MMult2(C11, A12, B21, n/2, size);
cilk_spawn MMult2(C12, A12, B22, n/2, size);
cilk_spawn MMult2(C22, A22, B22, n/2, size);

MMult2(C21, A22, B21, n/2, size);
cilk_sync; }

∎ 𝑀𝐴𝑝(𝑛): time on 𝑝 proc. for 𝑛 × 𝑛 Mult-Add.
∎ 𝑀𝐴1(𝑛) = Θ(𝑛3)

∎ 𝑀𝐴∞(𝑛) = 2𝑀𝐴∞(𝑛⇑2) +Θ(1) = Θ(𝑛)

∎ 𝑀𝐴1(𝑛)⇑𝑀𝐴∞(𝑛) = Θ(𝑛2)

∎ Besides, saving space often saves time due to hierarchical memory.
Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 89 / 107

Outline

1. Cilk: the fork-join model in action
1.1 The language and the compiler
1.2 The runtime system
1.3 Matrix multiplication in Cilk

2. The Fork-Join Model

3. Scheduling Theory and Implementation

4. Analysis of Multithreaded Algorithms
4.1 Review of Complexity Notions
4.2 Divide-and-Conquer Recurrences
4.3 Matrix Multiplication
4.4 Merge Sort
4.5 Tableau Construction

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 90 / 107

Merging two sorted arrays

void Merge(T *C, T *A, T *B, int na, int nb) {
while (na>0 && nb>0) {

if (*A <= *B) {
*C++ = *A++; na--;

} else {
*C++ = *B++; nb--;

}
}
while (na>0) {

*C++ = *A++; na--;
}
while (nb>0) {

*C++ = *B++; nb--;
}

}

Time for merging 𝑛 elements is Θ(𝑛).
Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 91 / 107

Merge sort

46143 4 12 19 21 33

46 333 12 19 4 14 21

46143 4 12 19 21 33
merge

4 3319 46 143 12 21merge

merge

g
144619 3 12 33 4 21

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 92 / 107

Parallel merge sort with serial merge

template <typename T>
void MergeSort(T *B, T *A, int n) {

if (n==1) {
B[0] = A[0];

} else {
T* C[n];
cilk_spawn MergeSort(C, A, n/2);

MergeSort(C+n/2, A+n/2, n-n/2);
cilk_sync;
Merge(B, C, C+n/2, n/2, n-n/2);

}

∎ Work?
∎ Span?

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 93 / 107

Parallel merge sort with serial merge

template <typename T>
void MergeSort(T *B, T *A, int n) {

if (n==1) {
B[0] = A[0];

} else {
T* C[n];
cilk_spawn MergeSort(C, A, n/2);

MergeSort(C+n/2, A+n/2, n-n/2);
cilk_sync;
Merge(B, C, C+n/2, n/2, n-n/2);

}

∎ Work?

∎ Span?

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 93 / 107

Parallel merge sort with serial merge

template <typename T>
void MergeSort(T *B, T *A, int n) {

if (n==1) {
B[0] = A[0];

} else {
T* C[n];
cilk_spawn MergeSort(C, A, n/2);

MergeSort(C+n/2, A+n/2, n-n/2);
cilk_sync;
Merge(B, C, C+n/2, n/2, n-n/2);

}

∎ Work?
∎ Span?

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 93 / 107

Parallel merge sort with serial merge

template <typename T>
void MergeSort(T *B, T *A, int n) {

if (n==1) {
B[0] = A[0];

} else {
T* C[n];
cilk_spawn MergeSort(C, A, n/2);

MergeSort(C+n/2, A+n/2, n-n/2);
cilk_sync;
Merge(B, C, C+n/2, n/2, n-n/2);

}

∎ 𝑇1(𝑛) = 2𝑇1(𝑛⇑2) +Θ(𝑛) thus 𝑇1(𝑛) = Θ(𝑛 lg𝑛).
∎ 𝑇∞(𝑛) = 𝑇∞(𝑛⇑2) +Θ(𝑛) thus 𝑇∞(𝑛) = Θ(𝑛).
∎ 𝑇1(𝑛)⇑𝑇∞(𝑛) = Θ(lg𝑛). Puny parallelism!
∎ We need to parallelize the merge!

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 94 / 107

Parallel merge sort with serial merge

template <typename T>
void MergeSort(T *B, T *A, int n) {

if (n==1) {
B[0] = A[0];

} else {
T* C[n];
cilk_spawn MergeSort(C, A, n/2);

MergeSort(C+n/2, A+n/2, n-n/2);
cilk_sync;
Merge(B, C, C+n/2, n/2, n-n/2);

}

∎ 𝑇1(𝑛) = 2𝑇1(𝑛⇑2) +Θ(𝑛) thus 𝑇1(𝑛) = Θ(𝑛 lg𝑛).

∎ 𝑇∞(𝑛) = 𝑇∞(𝑛⇑2) +Θ(𝑛) thus 𝑇∞(𝑛) = Θ(𝑛).
∎ 𝑇1(𝑛)⇑𝑇∞(𝑛) = Θ(lg𝑛). Puny parallelism!
∎ We need to parallelize the merge!

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 94 / 107

Parallel merge sort with serial merge

template <typename T>
void MergeSort(T *B, T *A, int n) {

if (n==1) {
B[0] = A[0];

} else {
T* C[n];
cilk_spawn MergeSort(C, A, n/2);

MergeSort(C+n/2, A+n/2, n-n/2);
cilk_sync;
Merge(B, C, C+n/2, n/2, n-n/2);

}

∎ 𝑇1(𝑛) = 2𝑇1(𝑛⇑2) +Θ(𝑛) thus 𝑇1(𝑛) = Θ(𝑛 lg𝑛).
∎ 𝑇∞(𝑛) = 𝑇∞(𝑛⇑2) +Θ(𝑛) thus 𝑇∞(𝑛) = Θ(𝑛).

∎ 𝑇1(𝑛)⇑𝑇∞(𝑛) = Θ(lg𝑛). Puny parallelism!
∎ We need to parallelize the merge!

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 94 / 107

Parallel merge sort with serial merge

template <typename T>
void MergeSort(T *B, T *A, int n) {

if (n==1) {
B[0] = A[0];

} else {
T* C[n];
cilk_spawn MergeSort(C, A, n/2);

MergeSort(C+n/2, A+n/2, n-n/2);
cilk_sync;
Merge(B, C, C+n/2, n/2, n-n/2);

}

∎ 𝑇1(𝑛) = 2𝑇1(𝑛⇑2) +Θ(𝑛) thus 𝑇1(𝑛) = Θ(𝑛 lg𝑛).
∎ 𝑇∞(𝑛) = 𝑇∞(𝑛⇑2) +Θ(𝑛) thus 𝑇∞(𝑛) = Θ(𝑛).
∎ 𝑇1(𝑛)⇑𝑇∞(𝑛) = Θ(lg𝑛). Puny parallelism!

∎ We need to parallelize the merge!

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 94 / 107

Parallel merge sort with serial merge

template <typename T>
void MergeSort(T *B, T *A, int n) {

if (n==1) {
B[0] = A[0];

} else {
T* C[n];
cilk_spawn MergeSort(C, A, n/2);

MergeSort(C+n/2, A+n/2, n-n/2);
cilk_sync;
Merge(B, C, C+n/2, n/2, n-n/2);

}

∎ 𝑇1(𝑛) = 2𝑇1(𝑛⇑2) +Θ(𝑛) thus 𝑇1(𝑛) = Θ(𝑛 lg𝑛).
∎ 𝑇∞(𝑛) = 𝑇∞(𝑛⇑2) +Θ(𝑛) thus 𝑇∞(𝑛) = Θ(𝑛).
∎ 𝑇1(𝑛)⇑𝑇∞(𝑛) = Θ(lg𝑛). Puny parallelism!
∎ We need to parallelize the merge!

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 94 / 107

Parallel merge

A
0 nama = na/2

≤ A[ma] ≥ A[ma]A

Binary SearchRecursive Recursive

≤ A[ma] ≥ A[ma]

B na ≥ nb≤ A[ma] ≥ A[ma]

Binary SearchP_Merge P_Merge

B
0 nb

na ≥ nb≤ A[ma] ≥ A[ma]
mb-1 mb

Idea: if the total number of elements to be sorted in 𝑛 = 𝑛𝑎 + 𝑛𝑏 then the
maximum number of elements in any of the two merges is at most 3𝑛⇑4.

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 95 / 107

Parallel merge

template <typename T>
void P_Merge(T *C, T *A, T *B, int na, int nb) {

if (na < nb) {
P_Merge(C, B, A, nb, na);

} else if (na==0) {
return;

} else {
int ma = na/2;
int mb = BinarySearch(A[ma], B, nb);
C[ma+mb] = A[ma];
cilk_spawn P_Merge(C, A, B, ma, mb);
P_Merge(C+ma+mb+1, A+ma+1, B+mb, na-ma-1, nb-mb);
cilk_sync;

}
}

∎ One should coarsen the base case for efficiency.
∎ Work? Span?

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 96 / 107

Parallel merge

template <typename T>
void P_Merge(T *C, T *A, T *B, int na, int nb) {

if (na < nb) {
P_Merge(C, B, A, nb, na);

} else if (na==0) {
return;

} else {
int ma = na/2;
int mb = BinarySearch(A[ma], B, nb);
C[ma+mb] = A[ma];
cilk_spawn P_Merge(C, A, B, ma, mb);
P_Merge(C+ma+mb+1, A+ma+1, B+mb, na-ma-1, nb-mb);
cilk_sync;

}
}

∎ One should coarsen the base case for efficiency.

∎ Work? Span?

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 96 / 107

Parallel merge

template <typename T>
void P_Merge(T *C, T *A, T *B, int na, int nb) {

if (na < nb) {
P_Merge(C, B, A, nb, na);

} else if (na==0) {
return;

} else {
int ma = na/2;
int mb = BinarySearch(A[ma], B, nb);
C[ma+mb] = A[ma];
cilk_spawn P_Merge(C, A, B, ma, mb);
P_Merge(C+ma+mb+1, A+ma+1, B+mb, na-ma-1, nb-mb);
cilk_sync;

}
}

∎ One should coarsen the base case for efficiency.
∎ Work? Span?

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 96 / 107

Parallel merge

template <typename T>
void P_Merge(T *C, T *A, T *B, int na, int nb) {

if (na < nb) {
P_Merge(C, B, A, nb, na);

} else if (na==0) {
return;

} else {
int ma = na/2;
int mb = BinarySearch(A[ma], B, nb);
C[ma+mb] = A[ma];
cilk_spawn P_Merge(C, A, B, ma, mb);
P_Merge(C+ma+mb+1, A+ma+1, B+mb, na-ma-1, nb-mb);
cilk_sync; } }

∎ Let 𝑃𝑀𝑝(𝑛) be the 𝑝-processor running time of P-Merge.
∎ In the worst case, the span of P-Merge is

𝑃𝑀∞(𝑛) ≤ 𝑃𝑀∞(3𝑛⇑4) +Θ(lg𝑛) = 𝑂(lg2 𝑛)

∎ The worst-case work of P-Merge satisfies the recurrence
𝑃𝑀1(𝑛) ≤ 𝑃𝑀1(𝛼𝑛) + 𝑃𝑀1((1 − 𝛼)𝑛) +Θ(lg𝑛)

, where 𝛼 is a constant in the range 1⇑4 ≤ 𝛼 ≤ 3⇑4.

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 97 / 107

Parallel merge

template <typename T>
void P_Merge(T *C, T *A, T *B, int na, int nb) {

if (na < nb) {
P_Merge(C, B, A, nb, na);

} else if (na==0) {
return;

} else {
int ma = na/2;
int mb = BinarySearch(A[ma], B, nb);
C[ma+mb] = A[ma];
cilk_spawn P_Merge(C, A, B, ma, mb);
P_Merge(C+ma+mb+1, A+ma+1, B+mb, na-ma-1, nb-mb);
cilk_sync; } }

∎ Let 𝑃𝑀𝑝(𝑛) be the 𝑝-processor running time of P-Merge.

∎ In the worst case, the span of P-Merge is
𝑃𝑀∞(𝑛) ≤ 𝑃𝑀∞(3𝑛⇑4) +Θ(lg𝑛) = 𝑂(lg2 𝑛)

∎ The worst-case work of P-Merge satisfies the recurrence
𝑃𝑀1(𝑛) ≤ 𝑃𝑀1(𝛼𝑛) + 𝑃𝑀1((1 − 𝛼)𝑛) +Θ(lg𝑛)

, where 𝛼 is a constant in the range 1⇑4 ≤ 𝛼 ≤ 3⇑4.

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 97 / 107

Parallel merge

template <typename T>
void P_Merge(T *C, T *A, T *B, int na, int nb) {

if (na < nb) {
P_Merge(C, B, A, nb, na);

} else if (na==0) {
return;

} else {
int ma = na/2;
int mb = BinarySearch(A[ma], B, nb);
C[ma+mb] = A[ma];
cilk_spawn P_Merge(C, A, B, ma, mb);
P_Merge(C+ma+mb+1, A+ma+1, B+mb, na-ma-1, nb-mb);
cilk_sync; } }

∎ Let 𝑃𝑀𝑝(𝑛) be the 𝑝-processor running time of P-Merge.
∎ In the worst case, the span of P-Merge is

𝑃𝑀∞(𝑛) ≤ 𝑃𝑀∞(3𝑛⇑4) +Θ(lg𝑛) = 𝑂(lg2 𝑛)

∎ The worst-case work of P-Merge satisfies the recurrence
𝑃𝑀1(𝑛) ≤ 𝑃𝑀1(𝛼𝑛) + 𝑃𝑀1((1 − 𝛼)𝑛) +Θ(lg𝑛)

, where 𝛼 is a constant in the range 1⇑4 ≤ 𝛼 ≤ 3⇑4.

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 97 / 107

Parallel merge

template <typename T>
void P_Merge(T *C, T *A, T *B, int na, int nb) {

if (na < nb) {
P_Merge(C, B, A, nb, na);

} else if (na==0) {
return;

} else {
int ma = na/2;
int mb = BinarySearch(A[ma], B, nb);
C[ma+mb] = A[ma];
cilk_spawn P_Merge(C, A, B, ma, mb);
P_Merge(C+ma+mb+1, A+ma+1, B+mb, na-ma-1, nb-mb);
cilk_sync; } }

∎ Let 𝑃𝑀𝑝(𝑛) be the 𝑝-processor running time of P-Merge.
∎ In the worst case, the span of P-Merge is

𝑃𝑀∞(𝑛) ≤ 𝑃𝑀∞(3𝑛⇑4) +Θ(lg𝑛) = 𝑂(lg2 𝑛)

∎ The worst-case work of P-Merge satisfies the recurrence
𝑃𝑀1(𝑛) ≤ 𝑃𝑀1(𝛼𝑛) + 𝑃𝑀1((1 − 𝛼)𝑛) +Θ(lg𝑛)

, where 𝛼 is a constant in the range 1⇑4 ≤ 𝛼 ≤ 3⇑4.Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 97 / 107

Analyzing parallel merge

∎ Recall 𝑃𝑀1(𝑛) ≤ 𝑃𝑀1(𝛼𝑛) + 𝑃𝑀1((1 − 𝛼)𝑛) +Θ(lg𝑛) for some
1⇑4 ≤ 𝛼 ≤ 3⇑4.

∎ To solve this hairy equation we use the substitution method.
∎ We assume there exist some constants 𝑎, 𝑏 > 0 such that
𝑃𝑀1(𝑛) ≤ 𝑎𝑛 − 𝑏 lg𝑛 holds for all 1⇑4 ≤ 𝛼 ≤ 3⇑4 and all 𝑛 > 1.

∎ After substitution, this hypothesis implies:
𝑃𝑀1(𝑛) ≤ 𝑎(𝛼 + (1 − 𝛼)𝑛 − 𝑏 lg(𝛼𝑛) − 𝑏 lg𝑛 +Θ(lg𝑛).

∎ We can pick 𝑏 large enough such that we have 𝑃𝑀1(𝑛) ≤ 𝑎𝑛 − 𝑏 lg𝑛
for all 1⇑4 ≤ 𝛼 ≤ 3⇑4 and all 𝑛 > 1.

∎ Then pick 𝑎 large enough to satisfy the base conditions, leading to
𝑃𝑀1(𝑛) ∈ 𝑂(𝑛).

∎ Since we clearly have 𝑃𝑀1(𝑛) ∈ Ω(𝑛) (because 𝑛 array elements are
accessed anyway), we finally have 𝑃𝑀1(𝑛) = Θ(𝑛).

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 98 / 107

Analyzing parallel merge

∎ Recall 𝑃𝑀1(𝑛) ≤ 𝑃𝑀1(𝛼𝑛) + 𝑃𝑀1((1 − 𝛼)𝑛) +Θ(lg𝑛) for some
1⇑4 ≤ 𝛼 ≤ 3⇑4.

∎ To solve this hairy equation we use the substitution method.

∎ We assume there exist some constants 𝑎, 𝑏 > 0 such that
𝑃𝑀1(𝑛) ≤ 𝑎𝑛 − 𝑏 lg𝑛 holds for all 1⇑4 ≤ 𝛼 ≤ 3⇑4 and all 𝑛 > 1.

∎ After substitution, this hypothesis implies:
𝑃𝑀1(𝑛) ≤ 𝑎(𝛼 + (1 − 𝛼)𝑛 − 𝑏 lg(𝛼𝑛) − 𝑏 lg𝑛 +Θ(lg𝑛).

∎ We can pick 𝑏 large enough such that we have 𝑃𝑀1(𝑛) ≤ 𝑎𝑛 − 𝑏 lg𝑛
for all 1⇑4 ≤ 𝛼 ≤ 3⇑4 and all 𝑛 > 1.

∎ Then pick 𝑎 large enough to satisfy the base conditions, leading to
𝑃𝑀1(𝑛) ∈ 𝑂(𝑛).

∎ Since we clearly have 𝑃𝑀1(𝑛) ∈ Ω(𝑛) (because 𝑛 array elements are
accessed anyway), we finally have 𝑃𝑀1(𝑛) = Θ(𝑛).

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 98 / 107

Analyzing parallel merge

∎ Recall 𝑃𝑀1(𝑛) ≤ 𝑃𝑀1(𝛼𝑛) + 𝑃𝑀1((1 − 𝛼)𝑛) +Θ(lg𝑛) for some
1⇑4 ≤ 𝛼 ≤ 3⇑4.

∎ To solve this hairy equation we use the substitution method.
∎ We assume there exist some constants 𝑎, 𝑏 > 0 such that
𝑃𝑀1(𝑛) ≤ 𝑎𝑛 − 𝑏 lg𝑛 holds for all 1⇑4 ≤ 𝛼 ≤ 3⇑4 and all 𝑛 > 1.

∎ After substitution, this hypothesis implies:
𝑃𝑀1(𝑛) ≤ 𝑎(𝛼 + (1 − 𝛼)𝑛 − 𝑏 lg(𝛼𝑛) − 𝑏 lg𝑛 +Θ(lg𝑛).

∎ We can pick 𝑏 large enough such that we have 𝑃𝑀1(𝑛) ≤ 𝑎𝑛 − 𝑏 lg𝑛
for all 1⇑4 ≤ 𝛼 ≤ 3⇑4 and all 𝑛 > 1.

∎ Then pick 𝑎 large enough to satisfy the base conditions, leading to
𝑃𝑀1(𝑛) ∈ 𝑂(𝑛).

∎ Since we clearly have 𝑃𝑀1(𝑛) ∈ Ω(𝑛) (because 𝑛 array elements are
accessed anyway), we finally have 𝑃𝑀1(𝑛) = Θ(𝑛).

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 98 / 107

Analyzing parallel merge

∎ Recall 𝑃𝑀1(𝑛) ≤ 𝑃𝑀1(𝛼𝑛) + 𝑃𝑀1((1 − 𝛼)𝑛) +Θ(lg𝑛) for some
1⇑4 ≤ 𝛼 ≤ 3⇑4.

∎ To solve this hairy equation we use the substitution method.
∎ We assume there exist some constants 𝑎, 𝑏 > 0 such that
𝑃𝑀1(𝑛) ≤ 𝑎𝑛 − 𝑏 lg𝑛 holds for all 1⇑4 ≤ 𝛼 ≤ 3⇑4 and all 𝑛 > 1.

∎ After substitution, this hypothesis implies:
𝑃𝑀1(𝑛) ≤ 𝑎(𝛼 + (1 − 𝛼)𝑛 − 𝑏 lg(𝛼𝑛) − 𝑏 lg𝑛 +Θ(lg𝑛).

∎ We can pick 𝑏 large enough such that we have 𝑃𝑀1(𝑛) ≤ 𝑎𝑛 − 𝑏 lg𝑛
for all 1⇑4 ≤ 𝛼 ≤ 3⇑4 and all 𝑛 > 1.

∎ Then pick 𝑎 large enough to satisfy the base conditions, leading to
𝑃𝑀1(𝑛) ∈ 𝑂(𝑛).

∎ Since we clearly have 𝑃𝑀1(𝑛) ∈ Ω(𝑛) (because 𝑛 array elements are
accessed anyway), we finally have 𝑃𝑀1(𝑛) = Θ(𝑛).

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 98 / 107

Analyzing parallel merge

∎ Recall 𝑃𝑀1(𝑛) ≤ 𝑃𝑀1(𝛼𝑛) + 𝑃𝑀1((1 − 𝛼)𝑛) +Θ(lg𝑛) for some
1⇑4 ≤ 𝛼 ≤ 3⇑4.

∎ To solve this hairy equation we use the substitution method.
∎ We assume there exist some constants 𝑎, 𝑏 > 0 such that
𝑃𝑀1(𝑛) ≤ 𝑎𝑛 − 𝑏 lg𝑛 holds for all 1⇑4 ≤ 𝛼 ≤ 3⇑4 and all 𝑛 > 1.

∎ After substitution, this hypothesis implies:
𝑃𝑀1(𝑛) ≤ 𝑎(𝛼 + (1 − 𝛼)𝑛 − 𝑏 lg(𝛼𝑛) − 𝑏 lg𝑛 +Θ(lg𝑛).

∎ We can pick 𝑏 large enough such that we have 𝑃𝑀1(𝑛) ≤ 𝑎𝑛 − 𝑏 lg𝑛
for all 1⇑4 ≤ 𝛼 ≤ 3⇑4 and all 𝑛 > 1.

∎ Then pick 𝑎 large enough to satisfy the base conditions, leading to
𝑃𝑀1(𝑛) ∈ 𝑂(𝑛).

∎ Since we clearly have 𝑃𝑀1(𝑛) ∈ Ω(𝑛) (because 𝑛 array elements are
accessed anyway), we finally have 𝑃𝑀1(𝑛) = Θ(𝑛).

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 98 / 107

Analyzing parallel merge

∎ Recall 𝑃𝑀1(𝑛) ≤ 𝑃𝑀1(𝛼𝑛) + 𝑃𝑀1((1 − 𝛼)𝑛) +Θ(lg𝑛) for some
1⇑4 ≤ 𝛼 ≤ 3⇑4.

∎ To solve this hairy equation we use the substitution method.
∎ We assume there exist some constants 𝑎, 𝑏 > 0 such that
𝑃𝑀1(𝑛) ≤ 𝑎𝑛 − 𝑏 lg𝑛 holds for all 1⇑4 ≤ 𝛼 ≤ 3⇑4 and all 𝑛 > 1.

∎ After substitution, this hypothesis implies:
𝑃𝑀1(𝑛) ≤ 𝑎(𝛼 + (1 − 𝛼)𝑛 − 𝑏 lg(𝛼𝑛) − 𝑏 lg𝑛 +Θ(lg𝑛).

∎ We can pick 𝑏 large enough such that we have 𝑃𝑀1(𝑛) ≤ 𝑎𝑛 − 𝑏 lg𝑛
for all 1⇑4 ≤ 𝛼 ≤ 3⇑4 and all 𝑛 > 1.

∎ Then pick 𝑎 large enough to satisfy the base conditions, leading to
𝑃𝑀1(𝑛) ∈ 𝑂(𝑛).

∎ Since we clearly have 𝑃𝑀1(𝑛) ∈ Ω(𝑛) (because 𝑛 array elements are
accessed anyway), we finally have 𝑃𝑀1(𝑛) = Θ(𝑛).

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 98 / 107

Analyzing parallel merge

∎ Recall 𝑃𝑀1(𝑛) ≤ 𝑃𝑀1(𝛼𝑛) + 𝑃𝑀1((1 − 𝛼)𝑛) +Θ(lg𝑛) for some
1⇑4 ≤ 𝛼 ≤ 3⇑4.

∎ To solve this hairy equation we use the substitution method.
∎ We assume there exist some constants 𝑎, 𝑏 > 0 such that
𝑃𝑀1(𝑛) ≤ 𝑎𝑛 − 𝑏 lg𝑛 holds for all 1⇑4 ≤ 𝛼 ≤ 3⇑4 and all 𝑛 > 1.

∎ After substitution, this hypothesis implies:
𝑃𝑀1(𝑛) ≤ 𝑎(𝛼 + (1 − 𝛼)𝑛 − 𝑏 lg(𝛼𝑛) − 𝑏 lg𝑛 +Θ(lg𝑛).

∎ We can pick 𝑏 large enough such that we have 𝑃𝑀1(𝑛) ≤ 𝑎𝑛 − 𝑏 lg𝑛
for all 1⇑4 ≤ 𝛼 ≤ 3⇑4 and all 𝑛 > 1.

∎ Then pick 𝑎 large enough to satisfy the base conditions, leading to
𝑃𝑀1(𝑛) ∈ 𝑂(𝑛).

∎ Since we clearly have 𝑃𝑀1(𝑛) ∈ Ω(𝑛) (because 𝑛 array elements are
accessed anyway), we finally have 𝑃𝑀1(𝑛) = Θ(𝑛).

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 98 / 107

Parallel merge sort with parallel merge

template <typename T>
void P_MergeSort(T *B, T *A, int n) {

if (n==1) {
B[0] = A[0];

} else {
T C[n];
cilk_spawn P_MergeSort(C, A, n/2);
P_MergeSort(C+n/2, A+n/2, n-n/2);
cilk_sync;

P_Merge(B, C, C+n/2, n/2, n-n/2);
}

}

∎ Work?
∎ Span?

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 99 / 107

Parallel merge sort with parallel merge

template <typename T>
void P_MergeSort(T *B, T *A, int n) {

if (n==1) {
B[0] = A[0];

} else {
T C[n];
cilk_spawn P_MergeSort(C, A, n/2);
P_MergeSort(C+n/2, A+n/2, n-n/2);
cilk_sync;

P_Merge(B, C, C+n/2, n/2, n-n/2);
}

}

∎ Work?

∎ Span?

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 99 / 107

Parallel merge sort with parallel merge

template <typename T>
void P_MergeSort(T *B, T *A, int n) {

if (n==1) {
B[0] = A[0];

} else {
T C[n];
cilk_spawn P_MergeSort(C, A, n/2);
P_MergeSort(C+n/2, A+n/2, n-n/2);
cilk_sync;

P_Merge(B, C, C+n/2, n/2, n-n/2);
}

}

∎ Work?
∎ Span?

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 99 / 107

Parallel merge sort with parallel merge

template <typename T>
void P_MergeSort(T *B, T *A, int n) {

if (n==1) {
B[0] = A[0];

} else {
T C[n];
cilk_spawn P_MergeSort(C, A, n/2);
P_MergeSort(C+n/2, A+n/2, n-n/2);
cilk_sync;

P_Merge(B, C, C+n/2, n/2, n-n/2);
}

}

∎ The work satisfies 𝑇1(𝑛) = 2𝑇1(𝑛⇑2) +Θ(𝑛) (as usual) and we have
𝑇1(𝑛) = Θ(𝑛log(𝑛)).

∎ The worst case critical-path length of the Merge-Sort now satisfies
𝑇∞(𝑛) = 𝑇∞(𝑛⇑2) +Θ(lg2 𝑛) = Θ(lg3 𝑛)

.
∎ The parallelism is now Θ(𝑛 lg𝑛)⇑Θ(lg3 𝑛) = Θ(𝑛⇑ lg2 𝑛).

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 100 / 107

Parallel merge sort with parallel merge

template <typename T>
void P_MergeSort(T *B, T *A, int n) {

if (n==1) {
B[0] = A[0];

} else {
T C[n];
cilk_spawn P_MergeSort(C, A, n/2);
P_MergeSort(C+n/2, A+n/2, n-n/2);
cilk_sync;

P_Merge(B, C, C+n/2, n/2, n-n/2);
}

}

∎ The work satisfies 𝑇1(𝑛) = 2𝑇1(𝑛⇑2) +Θ(𝑛) (as usual) and we have
𝑇1(𝑛) = Θ(𝑛log(𝑛)).

∎ The worst case critical-path length of the Merge-Sort now satisfies
𝑇∞(𝑛) = 𝑇∞(𝑛⇑2) +Θ(lg2 𝑛) = Θ(lg3 𝑛)

.
∎ The parallelism is now Θ(𝑛 lg𝑛)⇑Θ(lg3 𝑛) = Θ(𝑛⇑ lg2 𝑛).

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 100 / 107

Parallel merge sort with parallel merge

template <typename T>
void P_MergeSort(T *B, T *A, int n) {

if (n==1) {
B[0] = A[0];

} else {
T C[n];
cilk_spawn P_MergeSort(C, A, n/2);
P_MergeSort(C+n/2, A+n/2, n-n/2);
cilk_sync;

P_Merge(B, C, C+n/2, n/2, n-n/2);
}

}

∎ The work satisfies 𝑇1(𝑛) = 2𝑇1(𝑛⇑2) +Θ(𝑛) (as usual) and we have
𝑇1(𝑛) = Θ(𝑛log(𝑛)).

∎ The worst case critical-path length of the Merge-Sort now satisfies
𝑇∞(𝑛) = 𝑇∞(𝑛⇑2) +Θ(lg2 𝑛) = Θ(lg3 𝑛)

.

∎ The parallelism is now Θ(𝑛 lg𝑛)⇑Θ(lg3 𝑛) = Θ(𝑛⇑ lg2 𝑛).

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 100 / 107

Parallel merge sort with parallel merge

template <typename T>
void P_MergeSort(T *B, T *A, int n) {

if (n==1) {
B[0] = A[0];

} else {
T C[n];
cilk_spawn P_MergeSort(C, A, n/2);
P_MergeSort(C+n/2, A+n/2, n-n/2);
cilk_sync;

P_Merge(B, C, C+n/2, n/2, n-n/2);
}

}

∎ The work satisfies 𝑇1(𝑛) = 2𝑇1(𝑛⇑2) +Θ(𝑛) (as usual) and we have
𝑇1(𝑛) = Θ(𝑛log(𝑛)).

∎ The worst case critical-path length of the Merge-Sort now satisfies
𝑇∞(𝑛) = 𝑇∞(𝑛⇑2) +Θ(lg2 𝑛) = Θ(lg3 𝑛)

.
∎ The parallelism is now Θ(𝑛 lg𝑛)⇑Θ(lg3 𝑛) = Θ(𝑛⇑ lg2 𝑛).

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 100 / 107

Outline

1. Cilk: the fork-join model in action
1.1 The language and the compiler
1.2 The runtime system
1.3 Matrix multiplication in Cilk

2. The Fork-Join Model

3. Scheduling Theory and Implementation

4. Analysis of Multithreaded Algorithms
4.1 Review of Complexity Notions
4.2 Divide-and-Conquer Recurrences
4.3 Matrix Multiplication
4.4 Merge Sort
4.5 Tableau Construction

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 101 / 107

Tableau construction

00 01 02 03 04 05 06 07
10 11 12 13 14 15 16 1710 11 12 13 14 15 16 17
20 21 22 23 24 25 26 27
30 31 32 33 34 35 36 3730 31 32 33 34 35 36 37
40 41 42 43 44 45 46 47
50 51 52 53 54 55 56 57
60 61 62 63 64 65 66 67
70 71 72 73 74 75 76 77

Constructing a tableau 𝐴 satisfying a relation of the form:

𝐴(︀𝑖, 𝑗⌋︀ = 𝑅(𝐴(︀𝑖 − 1, 𝑗⌋︀,𝐴(︀𝑖 − 1, 𝑗 − 1⌋︀,𝐴(︀𝑖, 𝑗 − 1⌋︀). (43)

The work is Θ(𝑛2).
Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 102 / 107

Recursive construction

n Parallel code
I;
cilk_spawn II;
III;I II

n

;
cilk_sync;
IV;

I II

III IV

∎ 𝑇1(𝑛) = 4𝑇1(𝑛⇑2) +Θ(1), thus 𝑇1(𝑛) = Θ(𝑛2).
∎ 𝑇∞(𝑛) = 3𝑇∞(𝑛⇑2) +Θ(1), thus 𝑇∞(𝑛) = Θ(𝑛log2 3).
∎ Parallelism: Θ(𝑛2−log2 3) = Ω(𝑛0.41).

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 103 / 107

Recursive construction

n Parallel code
I;
cilk_spawn II;
III;I II

n

;
cilk_sync;
IV;

I II

III IV

∎ 𝑇1(𝑛) = 4𝑇1(𝑛⇑2) +Θ(1), thus 𝑇1(𝑛) = Θ(𝑛2).

∎ 𝑇∞(𝑛) = 3𝑇∞(𝑛⇑2) +Θ(1), thus 𝑇∞(𝑛) = Θ(𝑛log2 3).
∎ Parallelism: Θ(𝑛2−log2 3) = Ω(𝑛0.41).

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 103 / 107

Recursive construction

n Parallel code
I;
cilk_spawn II;
III;I II

n

;
cilk_sync;
IV;

I II

III IV

∎ 𝑇1(𝑛) = 4𝑇1(𝑛⇑2) +Θ(1), thus 𝑇1(𝑛) = Θ(𝑛2).
∎ 𝑇∞(𝑛) = 3𝑇∞(𝑛⇑2) +Θ(1), thus 𝑇∞(𝑛) = Θ(𝑛log2 3).

∎ Parallelism: Θ(𝑛2−log2 3) = Ω(𝑛0.41).

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 103 / 107

Recursive construction

n Parallel code
I;
cilk_spawn II;
III;I II

n

;
cilk_sync;
IV;

I II

III IV

∎ 𝑇1(𝑛) = 4𝑇1(𝑛⇑2) +Θ(1), thus 𝑇1(𝑛) = Θ(𝑛2).
∎ 𝑇∞(𝑛) = 3𝑇∞(𝑛⇑2) +Θ(1), thus 𝑇∞(𝑛) = Θ(𝑛log2 3).
∎ Parallelism: Θ(𝑛2−log2 3) = Ω(𝑛0.41).

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 103 / 107

A more parallel construction

I;
ilk II

n

cilk_spawn II;
III;
cilk_sync;
cilk spawn IV;

I II IV
cilk_spawn IV;
cilk_spawn V;
VI;
cilk sync;

III V VIIn
cilk_sync;
cilk_spawn VII;
VIII;
cilk_sync;
IX

VI VIII IX
IX;

∎ 𝑇1(𝑛) = 9𝑇1(𝑛⇑3) +Θ(1), thus 𝑇1(𝑛) = Θ(𝑛2).
∎ 𝑇∞(𝑛) = 5𝑇∞(𝑛⇑3) +Θ(1), thus 𝑇∞(𝑛) = Θ(𝑛log3 5).
∎ Parallelism: Θ(𝑛2−log3 5) = Ω(𝑛0.53).
∎ This nine-way d-n-c has more parallelism than the four way but

exhibits more cache complexity.

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 104 / 107

A more parallel construction

I;
ilk II

n

cilk_spawn II;
III;
cilk_sync;
cilk spawn IV;

I II IV
cilk_spawn IV;
cilk_spawn V;
VI;
cilk sync;

III V VIIn
cilk_sync;
cilk_spawn VII;
VIII;
cilk_sync;
IX

VI VIII IX
IX;

∎ 𝑇1(𝑛) = 9𝑇1(𝑛⇑3) +Θ(1), thus 𝑇1(𝑛) = Θ(𝑛2).

∎ 𝑇∞(𝑛) = 5𝑇∞(𝑛⇑3) +Θ(1), thus 𝑇∞(𝑛) = Θ(𝑛log3 5).
∎ Parallelism: Θ(𝑛2−log3 5) = Ω(𝑛0.53).
∎ This nine-way d-n-c has more parallelism than the four way but

exhibits more cache complexity.

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 104 / 107

A more parallel construction

I;
ilk II

n

cilk_spawn II;
III;
cilk_sync;
cilk spawn IV;

I II IV
cilk_spawn IV;
cilk_spawn V;
VI;
cilk sync;

III V VIIn
cilk_sync;
cilk_spawn VII;
VIII;
cilk_sync;
IX

VI VIII IX
IX;

∎ 𝑇1(𝑛) = 9𝑇1(𝑛⇑3) +Θ(1), thus 𝑇1(𝑛) = Θ(𝑛2).
∎ 𝑇∞(𝑛) = 5𝑇∞(𝑛⇑3) +Θ(1), thus 𝑇∞(𝑛) = Θ(𝑛log3 5).

∎ Parallelism: Θ(𝑛2−log3 5) = Ω(𝑛0.53).
∎ This nine-way d-n-c has more parallelism than the four way but

exhibits more cache complexity.

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 104 / 107

A more parallel construction

I;
ilk II

n

cilk_spawn II;
III;
cilk_sync;
cilk spawn IV;

I II IV
cilk_spawn IV;
cilk_spawn V;
VI;
cilk sync;

III V VIIn
cilk_sync;
cilk_spawn VII;
VIII;
cilk_sync;
IX

VI VIII IX
IX;

∎ 𝑇1(𝑛) = 9𝑇1(𝑛⇑3) +Θ(1), thus 𝑇1(𝑛) = Θ(𝑛2).
∎ 𝑇∞(𝑛) = 5𝑇∞(𝑛⇑3) +Θ(1), thus 𝑇∞(𝑛) = Θ(𝑛log3 5).
∎ Parallelism: Θ(𝑛2−log3 5) = Ω(𝑛0.53).

∎ This nine-way d-n-c has more parallelism than the four way but
exhibits more cache complexity.

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 104 / 107

A more parallel construction

I;
ilk II

n

cilk_spawn II;
III;
cilk_sync;
cilk spawn IV;

I II IV
cilk_spawn IV;
cilk_spawn V;
VI;
cilk sync;

III V VIIn
cilk_sync;
cilk_spawn VII;
VIII;
cilk_sync;
IX

VI VIII IX
IX;

∎ 𝑇1(𝑛) = 9𝑇1(𝑛⇑3) +Θ(1), thus 𝑇1(𝑛) = Θ(𝑛2).
∎ 𝑇∞(𝑛) = 5𝑇∞(𝑛⇑3) +Θ(1), thus 𝑇∞(𝑛) = Θ(𝑛log3 5).
∎ Parallelism: Θ(𝑛2−log3 5) = Ω(𝑛0.53).
∎ This nine-way d-n-c has more parallelism than the four way but

exhibits more cache complexity.
Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 104 / 107

Acknowledgements

∎ Charles E. Leiserson (MIT) and Matteo Frigo (Oracle) for providing
me with the sources of their lecture notes.

∎ My former students Yuzhen Xie and Liyun Li or generating the
experimental data.

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 105 / 107

References

∎ Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. The
Implementation of the Cilk-5 Multithreaded Language. Proceedings
of the ACM SIGPLAN ’98 Conference on Programming Language
Design and Implementation, Pages: 212-223. June, 1998.

∎ Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul,
Charles E. Leiserson, Keith H. Randall, and Yuli Zhou. Cilk: An
Efficient Multithreaded Runtime System. Journal of Parallel and
Distributed Computing, 55-69, August 25, 1996.

∎ Robert D. Blumofe and Charles E. Leiserson. Scheduling
Multithreaded Computations by Work Stealing. Journal of the ACM,
Vol. 46, No. 5, pp. 720-748. September 1999.

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 106 / 107

Marc Moreno Maza The Fork-Join Model CS4402 - CS9535 107 / 107

	Cilk: the fork-join model in action
	The language and the compiler
	The runtime system
	Matrix multiplication in Cilk

	The Fork-Join Model
	Scheduling Theory and Implementation
	Analysis of Multithreaded Algorithms
	Review of Complexity Notions
	Divide-and-Conquer Recurrences
	Matrix Multiplication
	Merge Sort
	Tableau Construction

