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Introduction

1 void mergeSort(int* A, int i, int j) {
2 if (j <= i) {
3 return;
4 }
5 int k = i + (j-1)/2;
6 mergeSort(A, i, k);
7 mergeSort(A, k, j);
8 merge(A, i, k, j);
9 }

→ Where recursive calls are independent, those function calls can be
executed concurrently

→ Fork the execution control flow and then join or sync them

→ Hardware must support parallelism with multi-core or multi-processors
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Compiler-Level Automatic Parallelization

→ Cilk and OpenMP provide automatic parallelization though
compiler extensions

→ Very easy but flexibility more challenging

void mergeSort(int* A, int i, int j) {
//... base case, k
cilk_spawn mergeSort(A, i, k);
mergeSort(A, k, j);
cilk_sync
merge(A, i, k, j);

}

void mergeSort(int* A, int i, int j) {
//... base case, k
#pragma omp parallel num_threads(2)
{

#pragma omp sections {
#pragma omp section {

mergeSort(A, i, k);
}
#pragma omp section {

mergeSort(A, k, j);
}

}
}
merge(A, i, k, j);

}
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Fork-Join Parallelism with BPAS

→ Object-oriented

→ Standard C++, no compiler extensions

1 void mergeSort(int* A, int i, int j) {
2 //... base case, k
3 threadID id;
4 ExecutorThreadPool& pool =
5 ExecutorThreadPool::getThreadPool();
6
7 pool.obtainThread(id);
8 pool.executeTask(id, std::bind(mergeSort, A, i, k));
9 mergeSort(A, k, j);

10
11 pool.returnThread(id);
12
13 merge(A, i, k, j);
14 }
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What is Multithreading?

Multithreading is not multi-core or multiprocessor.
ë But together they give us performance.

Multithreading is a programming model which allows for multiple,
concurrent threads of execution, each with their own context.
→ Thread: the smallest processing unit that can be scheduled by the OS.
→ Context: A thread’s own and unique local variables, PC, register

values, stack.
→ But, threads within the same process share an address space (heap).

Process: An instance of a program being executed. Usually handled by
the operating system and requires a lot of overhead to instantiate and
set-up properly. A process can contain many threads.
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Multithreading Memory Model (1/2)
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Multihreading Memory Model (2/2)

It is also possible to separate the heap into “thread-local” or private
memory and shared memory.

Different programming languages allow this construct.
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Multithreading and Multi-core

Using multiple threads does not require multiple cores (processors).
→ A single processor can handle multiple threads via time-division

multiplexing: the sharing of time on the datapath between threads.
ë This requires context switching—updating the state of the processor’s

register file, PC, stack pointer, etc. to match the thread’s context.

→ With multiple cores (processors), threads can run simultaneously.
ë Each core/processor has its own registers, etc. ⇒ no context switching.
ë If the number of threads exceeds the number of processors (cores) then

multiple threads must run on one processor (core) via context
switching.

→ Thread scheduling is hard. The OS and hardware typically handle it
ë Preemptive scheduling: threads are interrupted and context switches

are forced.
ë Non-Preemptive scheduling: a.k.a cooperative scheduling, threads yield

themselves to allow others to run. Threads are not interrupted.
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Context Switching

→ To switch contexts, the context/state being switched from must first
be saved in some way.

→ Generally, this occurs by storing all the values of the registers, PC,
etc. in some special data structure (e.g. a process control block) and
storing that somewhere in memory.

ë Usually in the operating system’s memory address space.

→ Context switching is expensive, particularly if threads are not from the
same processes.

ë Of course, an operating system can switch between multiple processes.
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Data Races

→ Via MESI (CS3350), we know
cache coherency is a problem.

→ If two threads both attempt to
write to same memory location
at the same time, one must be
first.

→ Recall: transaction serialization.
→ But, what order do the writes

occur?
→ Non-Determinism

void setAddress(int* addr, int val) {
*addr =val;

}

int main(int argc, char** argv) {
int* p =new int[1];
*p = 0;

std::thread t1(setAddress, p, 1);
std::thread t2(setAddress, p, 2);
t1.join();
t2.join();
std::cerr << "p: " << *p << "\n";
return 0;

}

Alexander Brandt Building Object-Oriented Parallelization from C++ Primitives March 23, 2022 11 / 64



Data Races In Action
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More Data Races

→ What happens if multiple
threads reading and writing?

ë Need synchronization between
threads.

→ What are the possible values of
p that could be printed?

→ 1 or 2 ⇒ non-determinism.
→ Context switch could occur

between reading from address
and writing back updated result.

void incrAddr(int* address) {
int val =*address;
val++;
*address =val;

}

int main(int argc, char** argv) {
int* p =new int[1];
*p = 0;

std::thread t1(incrAddr, p);
std::thread t2(incrAddr, p);
t1.join();
t2.join();
std::cerr << "p: " << *p << "\n";
return 0;

}
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Scheduling Multiple Threads

→ The interleaving of instructions for multiple threads being executed
simultaneously is non-deterministic.

Case 1:
Time Step Thread 1 Thread 2
1 val = *addr
2 val++
3 *addr = val
4 val = *addr
5 val++
6 *addr = val

The final value is 2.

Case 2:
Time Step Thread 1 Thread 2
1 val = *addr
2 val++
3 val = *addr
4 *addr = val
5 val++
6 *addr = val

The final value is 1.
Address was read from twice
before it was ever updated. Both
threads read 0 from *addr and
both write 1 to *addr.
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Fixing Data Races
→ To fix data races we need thread synchronization.

ë Only one thread can execute some critical section at one time.
ë This is called mutual exclusion.

→ We generally use locks whose “ownership” allows a thread to access a
critical section.

→ If a thread tries to “lock” (a.k.a take/own/capture) a lock that is
already locked by another thread, it waits for the lock to be unlocked
and then tries to lock it again.

std::mutex mutex;
void incrAddr(int* address) {

mutex.lock(); //wait here until successful lock
int val =*address;
val++;
*address =val;
mutex.unlock();

}
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Implementing a Lock
Semaphore: a counter used to control access to a critical section.
→ Locks usually use a specialized binary semaphore: its value is 0 or 1.

The simplest lock is a spinlock.
→ It waits by “spinning ” until the lock can be acquired.
→ A bad, non-working, but simple example:

void spinlock::lock() {
int spins =0;
while(this.semaphore ==1) {

++spins;
}
this.semaphore =1;

}
→ If multiple threads spinning on same spinlock, which one is first to set

the semaphore to 1? (i.e. which one owns the lock?) Which one goes
back to spinning?
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Better Lock Implementation: “Test and Set”
→ “Test and set” is an atomic operation that

sets a variable’s value, returning its old value.
→ Atomic: an operation (many instructions)

which is viewed as happening instantly across
all threads. Cannot be interrupted by a
context switch.

→ this.setSemaphore() is atomic.

void spinlock::lock() {
int spins =0;
while(this.semaphore ==1) {

++spins;
}
int oldVal =this.setSemaphore(1);
if (oldVal ==1) {

//another thread got there first
this.lock();

}
}
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Threads

→ Within a process, threads are independent control flows
→ Programs can spawn threads as needed
→ In C++, thread object creation automatically spawns thread;

thread exits once assigned code segment finishes executing

1 std::thread t( []() -> void {
2 std::cout << "A thread started.\n"
3 int n = 0;
4 for (int i = 0; i < 1000; ++i) {
5 n += i;
6 }
7 std::cout << "A thread finished.\n"
8 });
9

10 doSomethingElse();
11
12 t.join();
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Threading Primitives
C++11 introduced the Thread Support Library
∎ std::thread

ë C++ class encapsulating a thread (often a pthread) and its low-level
spawn and join

∎ std::mutex
ë shared object between threads to indicate mutual exclusion to a

critical region.
ë mutex is locked or owned by at most one thread at a time.

∎ std::lock_guard, std::unique_lock
ë temporary object wrapping a mutex whose object lifetime

automatically locks and unlocks the mutex.
ë the constructor blocks and only returns once the shared mutex is

successfully owned by the calling thread.

∎ std::condition_variable
ë blocks the current thread and temporarily releases a lock
ë receives notification from another thread to awaken the blocked thread
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Parallel Overheads

Creating and managing multiple threads of execution can be expensive
→ Every thread spawn requires non-insignificant amount of time
→ If more threads are active than the hardware supports,

over-subscription occurs and repeated context switching slows
down the program

→ Thread synchronization, locking mutexs, accessing critical regions
require special care

Thread pools mitigate the first two, by supplying a fixed number of
long-running threads.

Parallel programming patterns are algorithmic designs for efficient
thread scheduling and minimizing locking
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Thread Pools
→ Highly parallel programs benefit greatly for a thread pool

→ A fixed number of threads are spawned, only once, at the beginning
of the program

→ Threads remain active for the program lifetime

→ Threads receive tasks, code blocks or functions, to execute as needed

→ Threads return to the pool upon completing their task
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Long-Running Threads

Threads typically terminate once their assigned function/code block
finishes

We require a mechanism which allows threads to:
1 Remain active until explicitly told to exit (or the entire program exits)

2 Receive new code blocks to execute on demand
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std::function

Functors, function objects, callable objects
→ First-class objects which are callable using normal function syntax
→ Are often constructed by passing function names, function pointers
→ std::bind binds arguments to a function or function object,

returning a function object which requires fewer arguments

1 void printInteger(int a) {
2 std::cout << a << std::endl;
3 }
4
5 //Function object from function name
6 std::function<void(int)> f_printInt(printInteger);
7 f_printInt(12);
8
9 //Function object binding arguments to function name

10 std::function<void()> f_print42( std::bind(printInteger,42) );
11 f_print42();
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Lambda Expressions

Creates an anonymous function using a closure and returns a
function object
→ Can capture variables in the enclosing scope
→ Can define the body of function object at point of creation

1 //Lambda expression with two parameters
2 std::function<int(int,int)> f_addInts( [](int a, int b) -> int {
3 return a + b;
4 });
5 f_addInts(4, 6);
6
7 int x = 12, y = 27;
8 //Lambda expression capturing variables in scope by reference
9 std::function<void()> f_printXY( [&]() -> void {

10 std::cout << "x: " << x << ", y: " << y << std::endl;
11 });
12 f_printXY();
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Function Executor Thread

FunctionExecutorThread

→ A class encapsulating a long-running thread that receives function
objects as tasks to execute asynchronously

→ Spawns an internal std::thread on object creation, joining thread
on destruction

→ sendRequest(std::function<void()>)): execute a task, store
task in internal queue if thread currently busy

→ waitForThread(): useful helper function which blocks until all tasks
are complete

→ Results available through passed objects or pointers
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Function Executor Thread: Usage

1 int A[N];
2 int* ret = new int();
3 FunctionExecutorThread t;
4
5 t.sendRequest( [=]() void -> {
6 int s = 0;
7 for (int i = 0; i < N; ++i) {
8 s += A[i];
9 }

10 *ret = s;
11 });
12
13 doSomethingElse();
14
15 //make sure result is available before continuing
16 t.waitForThread();
17
18 std::cout << "sum: " << *ret << std::endl;
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Function Executor Thread: Implementation
1 class FunctionExecutorThread {
2
3 AsyncObjectStream<std::function<void()>> requestQueue;
4 std::thread m_worker;
5
6 std::mutex m_mutex;
7 std::condition_variable m_cv;
8
9 FunctionExecutorThread() {

10 //member functions require pointer to member
11 m_worker = std::thread(
12 &FunctionExecutorThread::eventLoop, this);
13 }
14
15 //NOTE: copy constructor and copy operator are deleted
16
17 void eventLoop();
18
19 void sendRequest(std::function<void()>);
20
21 void waitForThread();
22 }
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Function Executor Thread: Implementation Details
1 class FunctionExecutorThread {
2 void eventLoop() {
3 std::function<void()> task;
4 while(requestQueue.getNextObject(task)) {
5 task();
6 std::unique_lock<std::mutex> lk(m_mutex);
7 bool notify = requestQueue.streamEmpty();
8 lk.unlock();
9 if (notify) m_cv.notify_all();

10 }
11 }
12
13 void sendRequest(std::function<void()> f) {
14 std::lock_guard<std::mutex> lk(m_mutex);
15 requestQueue.addResult(f);
16 }
17
18 void waitForThread() {
19 std::unique_lock<std::mutex> lk(m_mutex);
20 while (!requestQueue.streamEmpty()) {
21 m_cv.wait(lk);
22 }
23 }
24 }
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Object Streams

The AyncObjectStream class provides:
1 a queue for tasks, or any object, and
2 a blocking mechanism to keep the FunctionExecutorThread alive

and idle when waiting for tasks

→ Actually a class template for any kind of object being passed between
two threads

→ Implements a queue satisfying the producer-consumer problem
(explained later)

→ A std::queue combined with a mutex and condition variable
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AsyncObjectStream Interface
1 template <class Object>
2 class AsyncObjectStream {
3
4 std::queue<Object> retObjs;
5 std::mutex m_mutex;
6 std::condition_variable m_cv;
7 bool finished; //is the stream still open?
8
9 //Producer: add an object to the queue

10 void addResult(Object&& res);
11
12 //Producer: close the producer end of stream,
13 // no more objects to produce
14 void resultsFinished();
15
16 //Consumer: pop an object from the queue, return true
17 // iff stream is open and objects available
18 bool getNextObject(Object& res);
19
20 //Consumer: determine if queue is currently empty
21 void streamEmpty();
22 };
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AsyncObjectStream: getNextObject

1 bool getNextObject(Object& res) {
2 std::unique_lock<std::mutex> lk(m_mutex);
3 if (finished && retObjs.empty()) {
4 lk.unlock();
5 return false;
6 }
7
8 //Wait in a loop in case of spurious wake ups
9 while (!finished && retObjs.empty() {

10 m_cv.wait(lk);
11 }
12
13 if (finished && retObjs.empty()) {
14 lk.unlock();
15 return false;
16 } else {
17 res = retObjs.front();
18 retObjs.pop();
19 lk.unlock();
20 return true;
21 }
22 }
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Recap

std::function

→ First-class objects encapsulating functions to be used as tasks

FunctionExecutorThread

→ A long-running thread that receives and asynchronously executes
function objects

AsyncObjectStream

→ A blocking queue used inside FunctionExecutorThread

→ Passes function objects to worker thread; keeps thread alive while
waiting for new tasks
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Thread Pools

A thread pool manages a collection of long-running threads and a queue
of tasks
→ spawn all threads once at the beginning of program
→ idle threads receive and execute tasks as required
→ if all threads busy, tasks are added to queue
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ExecutorThreadPool

→ A thread pool built using FunctionExecutorThreads
→ An internal queue of tasks and queue of threads
→ When threads are busy, they are temporarily removed from the pool
→ When all threads busy, tasks are added to task queue

1 class ExecutorThreadPool {
2
3 private:
4 std::deque<FunctionExecutorThread*> threadPool;
5 std::deque<std::function<void()>> taskPool;
6 std::mutex m_mutex;
7 std::condition_variable m_cv; //used in waitForThreads
8
9 void tryPullTask();

10 void putBackThread(FunctionExecutorThread* t);
11
12 public:
13 void addTask(std::function<void()> f);
14 void waitForThreads();
15 }
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ExecutorThreadPool: addTask

1 void addTask(std::function<void()> f) {
2 std::unique_lock<std::mutex> lk(m_mutex);
3 taskPool.push_back(f);
4 lk.unlock();
5 tryPullTask();
6 }
7
8 void tryPullTask() {
9 std::unique_lock<std::mutex> lk(m_mutex);

10
11 if (!taskPool.empty() && !threadPool.empty()) {
12 FunctionExecutorThread* worker = threadPool.front();
13 threadPool.pop_front();
14
15 std::function<void()> f = taskPool.front();
16 taskPool.pop_front();
17 worker->sendRequest(f);
18 }
19
20 lk.unlock();
21 }
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FunctionExecutorThread Callback (1/2)
How does a worker thread notify the thread pool that it has become idle?
→ A callback function inserts the thread itself back into the pool

1 ExecutorThreadPool(int nthreads) {
2 //...
3 FunctionExecutorThread* t = new FunctionExecutorThread();
4 t->setCallback(std::bind(
5 &ExecutorThreadPool::putBackThread, this));
6 }
7
8 void putBackThread(FunctionExecutorThread* t) {
9 std::unique_lock<std::mutex> lk(m_mutex);

10 if (!taskPool.empty()) {
11 std::function<void()> f = taskPool.front();
12 taskPool.pop_front();
13 worker->sendRequest(f);
14 } else {
15 threadPool.push_back(t);
16 }
17 lk.unlock();
18 m_cv.notify_all(); //notify waitForThreads()
19 }

Alexander Brandt Building Object-Oriented Parallelization from C++ Primitives March 23, 2022 39 / 64



FunctionExecutorThread Callback (2/2)
How does a worker thread notify the thread pool that it has become idle?
→ A callback function inserts the thread itself back into the pool

1 class FunctionExecutorThread {
2
3 std::function<void(FunctionExecutorThread*)> cb;
4
5 void eventLoop() {
6 std::function<void()> task;
7 while(requestQueue.getNextObject(task)) {
8 task();
9

10 if (cb) cb((FunctionExecutorThread*) this);
11
12 std::unique_lock<std::mutex> lk(m_mutex);
13 bool notify = requestQueue.streamEmpty();
14 lk.unlock();
15 if (notify) m_cv.notify_all();
16 }
17 }
18 }
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ExecutorThreadPool: Flexible Usage (1/2)
→ In support of certain parallel patterns, clients can (temporarily)

obtain ownership of threads from the pool, rather than using addTask
→ Abstract away actual threads through thread IDs
→ Once thread obtained, repeat Steps 2–3 as often as necessary

1 class ExecutorThreadPool {
2 //Storage for threads removed from pool by obtainThread
3 std::vector<FunctionExecutorThread*> occupiedThreads;
4
5 //Step 1: obtain a thread’s ID, removing it from the pool
6 void obtainThread(threadID& id);
7
8 //Step 2: execute a task on a particular thread
9 void executeTask(threadID id, std::function<void()>& f);

10
11 //Step 3 (optional): wait for thread to become idle
12 void waitForThread(threadID id);
13
14 //Step 4: return thread to pool (waits before returning)
15 void returnThread(threadID id);
16 }
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ExecutorThreadPool: Flexible Usage (2/2)

→ In support of certain parallel patterns, clients can (temporarily)
obtain ownership of threads from the pool, rather than using addTask

→ Can obtain one thread at a time (previous slide), or multiple threads
at a time

1 class ExecutorThreadPool {
2
3 //Step 1: obtain threadIDs, removing them from the pool
4 void obtainThreads(std::vector<threadID>& ids);
5
6 //Step 2: execute a task on a particular thread
7 void executeTask(threadID id, std::function<void()>& f);
8
9 //Step 3 (optional): wait for threads to become idle

10 void waitForThreads(std::vector<threadID>& ids);
11
12 //Step 4: return threads to pool (waits before returning)
13 void returnThreads(std::vector<threadID>& ids);
14 }
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ExecutorThreadPool Singleton

→ To avoid over-subscription, a program should not use
multiple thread pools

→ All areas of code should share the same thread pool

→ Use a classic singleton pattern

1 class ExecutorThreadPool {
2
3 private:
4 //pool size defaults to 1 less than hardware allows,
5 //the main thread counts as 1
6 ExecutorThreadPool(int nthreads =
7 std::thread::hardware_concurrency() - 1;);
8
9 public:

10 static ExecutorThreadPool& getThreadPool() {
11 static ExecutorTreadPool pool;
12 return pool;
13 }
14 }
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Fork-Join

Fork

Join

→ Fork: divide problem and
execute separate calls in
parallel

→ Join: merge parallel
execution back into serial

→ Recursively applying
fork-join can easily
parallelize a
divide-and-conquer
algorithm
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Fork-Join with ExecutorThreadPool

1 void mergeSort(int* A, int i, int j) {
2 if (j <= i) { return; }
3 int k = i + (j-1)/2;
4 mergeSort(A, i, k);
5 mergeSort(A, k, j);
6 merge(A, i, k, j);
7 }

1 void mergeSort(int* A, int i, int j) {
2 if (j <= i) { return; }
3 int k = i + (j-1)/2;
4 threadID id;
5 ExecutorThreadPool& pool = getThreadPool();
6
7 pool.obtainThread(id);
8 pool.executeTask(id, std::bind(mergeSort, A, i, k));
9 mergeSort(A, k, j);

10
11 pool.returnThread(id);
12 merge(A, i, k, j);
13 }
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Map

→ Simultaneously execute a function on each data item in a collection

→ If more data items than threads, apply the pattern block-wise:
partition the collection and apply one thread to each partition

→ Often simplified as just a parallel_for loop

→ Where multiple map steps are performed in a row,
they must operate in lockstep

Input

Output

Data Item

Function Execution
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Map with ExecutorThreadPool
1 //Apply f to each item of A, returning results in B
2 void MapExample(int* B, int* A, int n,
3 std::function<void(int*,int*)> f) {
4
5 for (int i = 0; i < n; ++i) {
6 f(&B[i], &A[i]);
7 }
8 }

1 void MapExample(int* B, int* A, int n,
2 std::function<void(int*,int*)> f) {
3
4 ExecutorThreadPool& pool = getThreadPool();
5 std::vector<threadID> ids;
6 pool.obtainThreads(n-1, ids); //assume n-1 threads avail.
7
8 for (int i = 0; i < n-1; ++i) {
9 pool.executeTask(ids[i], std::bind(f, &B[i], &A[i]));

10 }
11 f(&B[n-1], &A[n-1]); //use main thread for one call
12
13 pool.returnThreads(ids); //also waits for threads
14 }

Alexander Brandt Building Object-Oriented Parallelization from C++ Primitives March 23, 2022 48 / 64



Workpile
→ Workpile generalizes map pattern to a queue of tasks

→ Tasks in-flight can add new tasks to input queue

→ Threads take tasks from queue until it is empty

→ Very similar in structure to a thread pool

→ Can be seen as a parallel_while loop

...

...

...

Input

Output

Function Execution
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Workpile with ExecutorThreadPool

1 void processInt(std::queue<int> B, int a) {
2 a -= 10;
3 if (a > 0) {
4 getThreadPool().addTask(std::bind(processInt, B, a));
5 } else {
6 B.push(a);
7 }
8 }
9

10 void WorkpileExample(std::queue<int> B, std::queue<int> A) {
11 ExecutorThreadPool& pool = getThreadPool();
12 while (!A.empty()) {
13 pool.addTask( std::bind(processInt, B, A.front()) );
14 A.pop();
15 }
16 pool.waitForAllThreads();
17 }
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Producer-Consumer

→ Two functions connected by a queue

→ The producer produces data items, pushing them to the queue

→ The consumer processes data items, pulling them from the queue

→ Producer and consumer execute simultaneously; at least one must be
active at all times Ô⇒ no deadlock

...

Data QueueProducer Consumer

→ In some circumstances, the producer may be considered
as an iterator or generator
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Generators

→ Generators are special kinds of coroutines which yield data items one
at a time, rather than many as a collection

→ A yield pauses execution of the function, and allows computations to
resume from that point at the next function call

1 void FibonacciGen(int n) {
2 int Fn_1 = 0;
3 int Fn = 1;
4 for (int i = 0; i < n; ++i) {
5 yield Fn_1;
6 Fn = Fn + Fn_1;
7 Fn_1 = Fn - Fn_1;
8 }
9 }

→ Where the generation of data items is itself expensive, generators may
execute asynchronously, following the producer-consumer pattern
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AsyncGenerator and AsyncObjectStream

We want an object-oriented approach to create and use generators.

AsyncObjectStream already solves the producer-consumer problem.
→ It provides a queue which blocks and notifies the consumer as data is

produced, implemented using a condition variable
→ As a class template, can be used within AsyncGenerator to yield any

type of object

1 template <class Object>
2 class AsyncObjectStream {
3 void addResult(Object&& res); //Producer
4
5 void resultsFinished(); //Producer
6
7 bool getNextObject(Object& res); //Consumer
8
9 void streamEmpty(); //Consumer

10 };
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AsyncGenerator

AsyncGenerator is itself a class template, templated by Object, the type
of object to generate.
→ The AsyncGenerator acts as interface between producer and

consumer

→ The consumer constructs the AsyncGenerator, passing the
constructor the producer’s function and arguments

→ The producer’s signature should be:

1 void producerFunction(..., AsyncGenerator<Object>&);

→ The AsyncGenerator being constructed inserts itself into the
producer’s list of arguments so that it has reference to the generator
object
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AsyncGenerator Example
1 void FibonacciGen(int n, AsyncGenerator<int>& gen) {
2 int Fn_1 = 0;
3 int Fn = 1;
4 for (int i = 0; i < n; ++i) {
5 gen.generateObject(Fn_1); //yield Fn_1 and continue
6 Fn = Fn + Fn_1;
7 Fn_1 = Fn - Fn_1;
8 }
9 gen.setComplete();

10 }
11
12 void Fib() {
13 int n;
14 std::cin >> n;
15 AsyncGenerator<int> gen(FibonacciGen, n);
16
17 int fib;
18 //get one integer at a time until generator is finished
19 while (gen.getNextObject(fib)) {
20 std::cerr << fib << std::endl;
21 }
22 }
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AsyncGenerator Implementation
1 template <class Object>
2 class AsyncGenerator {
3 AsyncObjectStream<Object> stream;
4 FunctionExecutorThread t;
5
6 //Create a generator from a function and its arugments
7 template <class Function, class... Args>
8 AsyncGenerator(Funcion& f, Args&...args) {
9 std::function<void()> boundF =

10 std::bind(f, args..., std::ref(*this));
11 t.sendRequest(boundF);
12 }
13
14 //Create a dummy generator which yields items in sequence
15 //from a pre-computed collection
16 AsyncGenerator(std::vector<Object>& A) {
17 for (Object obj : A) { stream.addResult(obj); }
18 stream.resultsFinished();
19 }
20
21 //delegate to stream’s methods
22 void generateObject(Object& obj) //addResult(obj)
23 void setComplete(); //resultsFinished()
24 bool getNextObject(Object& obj); //getNextObject(obj)
25 }
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Pipeline

→ A sequence of stages where the output of one stage is used as the
input to another

→ Two consecutive stages form a producer-consumer pair

→ Internal stages are both producer and consumer

→ Typically, a pipeline is constructed statically through code
organization

→ Pipelines can be created dynamically and implicitly with
AsyncGenerators and the callstack
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Pipelines with AsyncGenerator

1 void intSequence(AsyncGenerator<int>& prevStage, AsyncGenerator<int>&
nextStage) {

2 int i;
3 while(prevStage.getNextObject(i)) {
4 nextStage.generateObject(i);
5 }
6 }
7
8 std::vector<int> A = {1,2,3,4,5,6,7,8,9};
9 AsyncGenerator<int> stageOne(A);

10
11 AsyncGenerator<int> stageTwo(intSequence, stageOne);
12 AsyncGenerator<int> stageThree(intSequence, stageTwo);
13 AsyncGenerator<int> stageFour(intSequence, stageThree);
14
15 //consume from last stage of pipeline
16 int i;
17 while(stageFour.getNextObjext()) {
18 std::cout << i << std::endl;
19 }
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Outline

1 Multithreading

2 Thread-Level Parallelism in C++

3 Thread Pool I: Long-Running Threads

4 Thread Pool II: Thread and Task Queues

5 Parallel Patterns

6 Optional and Cooperative Parallelism
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ExecutorThreadPool Optional Parallelism
Since ExecutorThreadPool contains a finite number of threads,
obtainThread(id) may not be able to obtain an idle thread.
→ In this case, the threadID returned is a special ID which indicates

“not a thread”
→ Then, executeTask(id, task), returnThread(id),

waitForThread(id) behave serially
→ Hence, all calls to executeTask are merely a suggestion for

parallelism, depending on the current state of the thread pool

1 class ExecutorThreadPool {
2 void obtainThread(threadID& id);
3
4 void executeTask(threadID id, std::function<void()>& f);
5
6 void waitForThread(threadID id);
7
8 void returnThread(threadID id);
9 }

Alexander Brandt Building Object-Oriented Parallelization from C++ Primitives March 23, 2022 60 / 64



ExecutorThreadPool Optional Parallelism (2/2)
1 void obtainThread(threadID& id) {
2 std::lock_guard<std::mutex> lk(m_mutex);
3 if (threadPool.empty()) {
4 id = ExecutorThreadPool::notAThread;
5 } else {
6 FunctionExecutorThread* t = threadPool.front();
7 threadPool.pop_front();
8 occupiedThreads.push_back(t);
9 id = t->get_id(); //a std::thread::id

10 }
11 }
12
13 void executeTask(threadID id, std::function<void()>& f) {
14 if (id == ExecutorThreadPool::notAThread) {
15 f();
16 return;
17 } else {
18 std::lock_guard<std::mutex> lk(m_mutex);
19 for (FunctionExecutorThread* t : occupiedThreads) {
20 if (t->get_id() == id) { t.sendRequest(f); }
21 }
22 }
23 }
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AsyncGenerator Optional Parallelism
Rather than AsyncGenerator directly using a
FunctionExecutorThread, use the ExecutorThreadPool.
→ If all threads in the pool are busy, execute the function serially instead
1 template <class Object>
2 class AsyncGenerator {
3 AsyncObjectStream<Object> stream;
4
5 //Create a generator from a function and its arugments
6 template <class Function, class... Args>
7 AsyncGenerator(Funcion& f, Args&...args) {
8 std::function<void()> boundF =
9 std::bind(f, args..., std::ref(*this));

10
11 ExecutorThreadPool& pool = getThreadPool();
12 if (pool.allThreadsBusy()) {
13 boundF();
14 } else {
15 pool.addTask(f);
16 }
17 }
18 }
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Cooperative Parallelism

With several simultaneous clients of ExecutorThreadPool, some tasks
should be given priority.
→ Some tasks are more coarse-grained, offer more potential speed-up
→ Some tasks may expose more parallelism and should be executed first

Often, parallelism coming from Fork-Join or Map is preferred over
Producer-Consumer.
→ Goal: allow Fork-Join and Map to access thread pool threads over

Producer-Consumer while still keeping the latter possible when there
are idle threads

→ Solution: priority tasks
→ addTask() vs addPriorityTask()
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ExecutorThreadPool Priority Tasks

pool.addPriorityTask()

→ If there are idle threads, priority task behaves as normal task
ë pull a thread from the pool and assign the task to it

→ If there are no idle threads:
1 temporarily allow over-subscription and spawn a new priority thread
2 assign the priority task to the new priority thread
3 the next thread returned to the pool is retired to recover a state

without over-subscription

→ If the number of spawned priority threads equals the original number
of threads in the pool, do not spawn any more

ë instead, add the priority task to the head of the task queue so that it is
the next executed task
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