
Building Object-Oriented (and Optional) Parallelization
from C++ Primitives

Alexander Brandt

Ontario Research Center for Computer Algebra
Department of Computer Science

University of Western Ontario, Canada

March 23, 2022

Alexander Brandt Building Object-Oriented Parallelization from C++ Primitives March 23, 2022 1 / 64

Introduction

1 void mergeSort(int* A, int i, int j) {
2 if (j <= i) {
3 return;
4 }
5 int k = i + (j-1)/2;
6 mergeSort(A, i, k);
7 mergeSort(A, k, j);
8 merge(A, i, k, j);
9 }

→ Where recursive calls are independent, those function calls can be
executed concurrently

→ Fork the execution control flow and then join or sync them

→ Hardware must support parallelism with multi-core or multi-processors

Alexander Brandt Building Object-Oriented Parallelization from C++ Primitives March 23, 2022 2 / 64

Compiler-Level Automatic Parallelization

→ Cilk and OpenMP provide automatic parallelization though
compiler extensions

→ Very easy but flexibility more challenging

void mergeSort(int* A, int i, int j) {
//... base case, k
cilk_spawn mergeSort(A, i, k);
mergeSort(A, k, j);
cilk_sync
merge(A, i, k, j);

}

void mergeSort(int* A, int i, int j) {
//... base case, k
#pragma omp parallel num_threads(2)
{

#pragma omp sections {
#pragma omp section {

mergeSort(A, i, k);
}
#pragma omp section {

mergeSort(A, k, j);
}

}
}
merge(A, i, k, j);

}

Alexander Brandt Building Object-Oriented Parallelization from C++ Primitives March 23, 2022 3 / 64

Fork-Join Parallelism with BPAS

→ Object-oriented

→ Standard C++, no compiler extensions

1 void mergeSort(int* A, int i, int j) {
2 //... base case, k
3 threadID id;
4 ExecutorThreadPool& pool =
5 ExecutorThreadPool::getThreadPool();
6
7 pool.obtainThread(id);
8 pool.executeTask(id, std::bind(mergeSort, A, i, k));
9 mergeSort(A, k, j);

10
11 pool.returnThread(id);
12
13 merge(A, i, k, j);
14 }

Alexander Brandt Building Object-Oriented Parallelization from C++ Primitives March 23, 2022 4 / 64

Outline

1 Multithreading

2 Thread-Level Parallelism in C++

3 Thread Pool I: Long-Running Threads

4 Thread Pool II: Thread and Task Queues

5 Parallel Patterns

6 Optional and Cooperative Parallelism

Alexander Brandt Building Object-Oriented Parallelization from C++ Primitives March 23, 2022 5 / 64

What is Multithreading?

Multithreading is not multi-core or multiprocessor.
ë But together they give us performance.

Multithreading is a programming model which allows for multiple,
concurrent threads of execution, each with their own context.
→ Thread: the smallest processing unit that can be scheduled by the OS.
→ Context: A thread’s own and unique local variables, PC, register

values, stack.
→ But, threads within the same process share an address space (heap).

Process: An instance of a program being executed. Usually handled by
the operating system and requires a lot of overhead to instantiate and
set-up properly. A process can contain many threads.

Alexander Brandt Building Object-Oriented Parallelization from C++ Primitives March 23, 2022 6 / 64

Multithreading Memory Model (1/2)

Alexander Brandt Building Object-Oriented Parallelization from C++ Primitives March 23, 2022 7 / 64

Multihreading Memory Model (2/2)

It is also possible to separate the heap into “thread-local” or private
memory and shared memory.

Different programming languages allow this construct.

Alexander Brandt Building Object-Oriented Parallelization from C++ Primitives March 23, 2022 8 / 64

Multithreading and Multi-core

Using multiple threads does not require multiple cores (processors).
→ A single processor can handle multiple threads via time-division

multiplexing: the sharing of time on the datapath between threads.
ë This requires context switching—updating the state of the processor’s

register file, PC, stack pointer, etc. to match the thread’s context.

→ With multiple cores (processors), threads can run simultaneously.
ë Each core/processor has its own registers, etc. ⇒ no context switching.
ë If the number of threads exceeds the number of processors (cores) then

multiple threads must run on one processor (core) via context
switching.

→ Thread scheduling is hard. The OS and hardware typically handle it
ë Preemptive scheduling: threads are interrupted and context switches

are forced.
ë Non-Preemptive scheduling: a.k.a cooperative scheduling, threads yield

themselves to allow others to run. Threads are not interrupted.

Alexander Brandt Building Object-Oriented Parallelization from C++ Primitives March 23, 2022 9 / 64

Context Switching

→ To switch contexts, the context/state being switched from must first
be saved in some way.

→ Generally, this occurs by storing all the values of the registers, PC,
etc. in some special data structure (e.g. a process control block) and
storing that somewhere in memory.

ë Usually in the operating system’s memory address space.

→ Context switching is expensive, particularly if threads are not from the
same processes.

ë Of course, an operating system can switch between multiple processes.

Alexander Brandt Building Object-Oriented Parallelization from C++ Primitives March 23, 2022 10 / 64

Data Races

→ Via MESI (CS3350), we know
cache coherency is a problem.

→ If two threads both attempt to
write to same memory location
at the same time, one must be
first.

→ Recall: transaction serialization.
→ But, what order do the writes

occur?
→ Non-Determinism

void setAddress(int* addr, int val) {
*addr =val;

}

int main(int argc, char** argv) {
int* p =new int[1];
*p = 0;

std::thread t1(setAddress, p, 1);
std::thread t2(setAddress, p, 2);
t1.join();
t2.join();
std::cerr << "p: " << *p << "\n";
return 0;

}

Alexander Brandt Building Object-Oriented Parallelization from C++ Primitives March 23, 2022 11 / 64

Data Races In Action

Alexander Brandt Building Object-Oriented Parallelization from C++ Primitives March 23, 2022 12 / 64

More Data Races

→ What happens if multiple
threads reading and writing?

ë Need synchronization between
threads.

→ What are the possible values of
p that could be printed?

→ 1 or 2 ⇒ non-determinism.
→ Context switch could occur

between reading from address
and writing back updated result.

void incrAddr(int* address) {
int val =*address;
val++;
*address =val;

}

int main(int argc, char** argv) {
int* p =new int[1];
*p = 0;

std::thread t1(incrAddr, p);
std::thread t2(incrAddr, p);
t1.join();
t2.join();
std::cerr << "p: " << *p << "\n";
return 0;

}

Alexander Brandt Building Object-Oriented Parallelization from C++ Primitives March 23, 2022 13 / 64

Scheduling Multiple Threads

→ The interleaving of instructions for multiple threads being executed
simultaneously is non-deterministic.

Case 1:
Time Step Thread 1 Thread 2
1 val = *addr
2 val++
3 *addr = val
4 val = *addr
5 val++
6 *addr = val

The final value is 2.

Case 2:
Time Step Thread 1 Thread 2
1 val = *addr
2 val++
3 val = *addr
4 *addr = val
5 val++
6 *addr = val

The final value is 1.
Address was read from twice
before it was ever updated. Both
threads read 0 from *addr and
both write 1 to *addr.

Alexander Brandt Building Object-Oriented Parallelization from C++ Primitives March 23, 2022 14 / 64

Fixing Data Races
→ To fix data races we need thread synchronization.

ë Only one thread can execute some critical section at one time.
ë This is called mutual exclusion.

→ We generally use locks whose “ownership” allows a thread to access a
critical section.

→ If a thread tries to “lock” (a.k.a take/own/capture) a lock that is
already locked by another thread, it waits for the lock to be unlocked
and then tries to lock it again.

std::mutex mutex;
void incrAddr(int* address) {

mutex.lock(); //wait here until successful lock
int val =*address;
val++;
*address =val;
mutex.unlock();

}

Alexander Brandt Building Object-Oriented Parallelization from C++ Primitives March 23, 2022 15 / 64

Implementing a Lock
Semaphore: a counter used to control access to a critical section.
→ Locks usually use a specialized binary semaphore: its value is 0 or 1.

The simplest lock is a spinlock.
→ It waits by “spinning ” until the lock can be acquired.
→ A bad, non-working, but simple example:

void spinlock::lock() {
int spins =0;
while(this.semaphore ==1) {

++spins;
}
this.semaphore =1;

}
→ If multiple threads spinning on same spinlock, which one is first to set

the semaphore to 1? (i.e. which one owns the lock?) Which one goes
back to spinning?

Alexander Brandt Building Object-Oriented Parallelization from C++ Primitives March 23, 2022 16 / 64

Better Lock Implementation: “Test and Set”
→ “Test and set” is an atomic operation that

sets a variable’s value, returning its old value.
→ Atomic: an operation (many instructions)

which is viewed as happening instantly across
all threads. Cannot be interrupted by a
context switch.

→ this.setSemaphore() is atomic.

void spinlock::lock() {
int spins =0;
while(this.semaphore ==1) {

++spins;
}
int oldVal =this.setSemaphore(1);
if (oldVal ==1) {

//another thread got there first
this.lock();

}
}

Alexander Brandt Building Object-Oriented Parallelization from C++ Primitives March 23, 2022 17 / 64

Outline

1 Multithreading

2 Thread-Level Parallelism in C++

3 Thread Pool I: Long-Running Threads

4 Thread Pool II: Thread and Task Queues

5 Parallel Patterns

6 Optional and Cooperative Parallelism

Alexander Brandt Building Object-Oriented Parallelization from C++ Primitives March 23, 2022 18 / 64

Threads

→ Within a process, threads are independent control flows
→ Programs can spawn threads as needed
→ In C++, thread object creation automatically spawns thread;

thread exits once assigned code segment finishes executing

1 std::thread t([]() -> void {
2 std::cout << "A thread started.\n"
3 int n = 0;
4 for (int i = 0; i < 1000; ++i) {
5 n += i;
6 }
7 std::cout << "A thread finished.\n"
8 });
9

10 doSomethingElse();
11
12 t.join();

Alexander Brandt Building Object-Oriented Parallelization from C++ Primitives March 23, 2022 19 / 64

Threading Primitives
C++11 introduced the Thread Support Library
∎ std::thread

ë C++ class encapsulating a thread (often a pthread) and its low-level
spawn and join

∎ std::mutex
ë shared object between threads to indicate mutual exclusion to a

critical region.
ë mutex is locked or owned by at most one thread at a time.

∎ std::lock_guard, std::unique_lock
ë temporary object wrapping a mutex whose object lifetime

automatically locks and unlocks the mutex.
ë the constructor blocks and only returns once the shared mutex is

successfully owned by the calling thread.

∎ std::condition_variable
ë blocks the current thread and temporarily releases a lock
ë receives notification from another thread to awaken the blocked thread

Alexander Brandt Building Object-Oriented Parallelization from C++ Primitives March 23, 2022 20 / 64

Parallel Overheads

Creating and managing multiple threads of execution can be expensive
→ Every thread spawn requires non-insignificant amount of time
→ If more threads are active than the hardware supports,

over-subscription occurs and repeated context switching slows
down the program

→ Thread synchronization, locking mutexs, accessing critical regions
require special care

Thread pools mitigate the first two, by supplying a fixed number of
long-running threads.

Parallel programming patterns are algorithmic designs for efficient
thread scheduling and minimizing locking

Alexander Brandt Building Object-Oriented Parallelization from C++ Primitives March 23, 2022 21 / 64

Thread Pools
→ Highly parallel programs benefit greatly for a thread pool

→ A fixed number of threads are spawned, only once, at the beginning
of the program

→ Threads remain active for the program lifetime

→ Threads receive tasks, code blocks or functions, to execute as needed

→ Threads return to the pool upon completing their task

Alexander Brandt Building Object-Oriented Parallelization from C++ Primitives March 23, 2022 22 / 64

Outline

1 Multithreading

2 Thread-Level Parallelism in C++

3 Thread Pool I: Long-Running Threads

4 Thread Pool II: Thread and Task Queues

5 Parallel Patterns

6 Optional and Cooperative Parallelism

Alexander Brandt Building Object-Oriented Parallelization from C++ Primitives March 23, 2022 23 / 64

Long-Running Threads

Threads typically terminate once their assigned function/code block
finishes

We require a mechanism which allows threads to:
1 Remain active until explicitly told to exit (or the entire program exits)

2 Receive new code blocks to execute on demand

Alexander Brandt Building Object-Oriented Parallelization from C++ Primitives March 23, 2022 24 / 64

std::function

Functors, function objects, callable objects
→ First-class objects which are callable using normal function syntax
→ Are often constructed by passing function names, function pointers
→ std::bind binds arguments to a function or function object,

returning a function object which requires fewer arguments

1 void printInteger(int a) {
2 std::cout << a << std::endl;
3 }
4
5 //Function object from function name
6 std::function<void(int)> f_printInt(printInteger);
7 f_printInt(12);
8
9 //Function object binding arguments to function name

10 std::function<void()> f_print42(std::bind(printInteger,42));
11 f_print42();

Alexander Brandt Building Object-Oriented Parallelization from C++ Primitives March 23, 2022 25 / 64

Lambda Expressions

Creates an anonymous function using a closure and returns a
function object
→ Can capture variables in the enclosing scope
→ Can define the body of function object at point of creation

1 //Lambda expression with two parameters
2 std::function<int(int,int)> f_addInts([](int a, int b) -> int {
3 return a + b;
4 });
5 f_addInts(4, 6);
6
7 int x = 12, y = 27;
8 //Lambda expression capturing variables in scope by reference
9 std::function<void()> f_printXY([&]() -> void {

10 std::cout << "x: " << x << ", y: " << y << std::endl;
11 });
12 f_printXY();

Alexander Brandt Building Object-Oriented Parallelization from C++ Primitives March 23, 2022 26 / 64

Function Executor Thread

FunctionExecutorThread

→ A class encapsulating a long-running thread that receives function
objects as tasks to execute asynchronously

→ Spawns an internal std::thread on object creation, joining thread
on destruction

→ sendRequest(std::function<void()>)): execute a task, store
task in internal queue if thread currently busy

→ waitForThread(): useful helper function which blocks until all tasks
are complete

→ Results available through passed objects or pointers

Alexander Brandt Building Object-Oriented Parallelization from C++ Primitives March 23, 2022 27 / 64

Function Executor Thread: Usage

1 int A[N];
2 int* ret = new int();
3 FunctionExecutorThread t;
4
5 t.sendRequest([=]() void -> {
6 int s = 0;
7 for (int i = 0; i < N; ++i) {
8 s += A[i];
9 }

10 *ret = s;
11 });
12
13 doSomethingElse();
14
15 //make sure result is available before continuing
16 t.waitForThread();
17
18 std::cout << "sum: " << *ret << std::endl;

Alexander Brandt Building Object-Oriented Parallelization from C++ Primitives March 23, 2022 28 / 64

Function Executor Thread: Implementation
1 class FunctionExecutorThread {
2
3 AsyncObjectStream<std::function<void()>> requestQueue;
4 std::thread m_worker;
5
6 std::mutex m_mutex;
7 std::condition_variable m_cv;
8
9 FunctionExecutorThread() {

10 //member functions require pointer to member
11 m_worker = std::thread(
12 &FunctionExecutorThread::eventLoop, this);
13 }
14
15 //NOTE: copy constructor and copy operator are deleted
16
17 void eventLoop();
18
19 void sendRequest(std::function<void()>);
20
21 void waitForThread();
22 }

Alexander Brandt Building Object-Oriented Parallelization from C++ Primitives March 23, 2022 29 / 64

Function Executor Thread: Implementation Details
1 class FunctionExecutorThread {
2 void eventLoop() {
3 std::function<void()> task;
4 while(requestQueue.getNextObject(task)) {
5 task();
6 std::unique_lock<std::mutex> lk(m_mutex);
7 bool notify = requestQueue.streamEmpty();
8 lk.unlock();
9 if (notify) m_cv.notify_all();

10 }
11 }
12
13 void sendRequest(std::function<void()> f) {
14 std::lock_guard<std::mutex> lk(m_mutex);
15 requestQueue.addResult(f);
16 }
17
18 void waitForThread() {
19 std::unique_lock<std::mutex> lk(m_mutex);
20 while (!requestQueue.streamEmpty()) {
21 m_cv.wait(lk);
22 }
23 }
24 }

Alexander Brandt Building Object-Oriented Parallelization from C++ Primitives March 23, 2022 30 / 64

Object Streams

The AyncObjectStream class provides:
1 a queue for tasks, or any object, and
2 a blocking mechanism to keep the FunctionExecutorThread alive

and idle when waiting for tasks

→ Actually a class template for any kind of object being passed between
two threads

→ Implements a queue satisfying the producer-consumer problem
(explained later)

→ A std::queue combined with a mutex and condition variable

Alexander Brandt Building Object-Oriented Parallelization from C++ Primitives March 23, 2022 31 / 64

AsyncObjectStream Interface
1 template <class Object>
2 class AsyncObjectStream {
3
4 std::queue<Object> retObjs;
5 std::mutex m_mutex;
6 std::condition_variable m_cv;
7 bool finished; //is the stream still open?
8
9 //Producer: add an object to the queue

10 void addResult(Object&& res);
11
12 //Producer: close the producer end of stream,
13 // no more objects to produce
14 void resultsFinished();
15
16 //Consumer: pop an object from the queue, return true
17 // iff stream is open and objects available
18 bool getNextObject(Object& res);
19
20 //Consumer: determine if queue is currently empty
21 void streamEmpty();
22 };

Alexander Brandt Building Object-Oriented Parallelization from C++ Primitives March 23, 2022 32 / 64

AsyncObjectStream: getNextObject

1 bool getNextObject(Object& res) {
2 std::unique_lock<std::mutex> lk(m_mutex);
3 if (finished && retObjs.empty()) {
4 lk.unlock();
5 return false;
6 }
7
8 //Wait in a loop in case of spurious wake ups
9 while (!finished && retObjs.empty() {

10 m_cv.wait(lk);
11 }
12
13 if (finished && retObjs.empty()) {
14 lk.unlock();
15 return false;
16 } else {
17 res = retObjs.front();
18 retObjs.pop();
19 lk.unlock();
20 return true;
21 }
22 }

Alexander Brandt Building Object-Oriented Parallelization from C++ Primitives March 23, 2022 33 / 64

Recap

std::function

→ First-class objects encapsulating functions to be used as tasks

FunctionExecutorThread

→ A long-running thread that receives and asynchronously executes
function objects

AsyncObjectStream

→ A blocking queue used inside FunctionExecutorThread

→ Passes function objects to worker thread; keeps thread alive while
waiting for new tasks

Alexander Brandt Building Object-Oriented Parallelization from C++ Primitives March 23, 2022 34 / 64

Outline

1 Multithreading

2 Thread-Level Parallelism in C++

3 Thread Pool I: Long-Running Threads

4 Thread Pool II: Thread and Task Queues

5 Parallel Patterns

6 Optional and Cooperative Parallelism

Alexander Brandt Building Object-Oriented Parallelization from C++ Primitives March 23, 2022 35 / 64

Thread Pools

A thread pool manages a collection of long-running threads and a queue
of tasks
→ spawn all threads once at the beginning of program
→ idle threads receive and execute tasks as required
→ if all threads busy, tasks are added to queue

Alexander Brandt Building Object-Oriented Parallelization from C++ Primitives March 23, 2022 36 / 64

ExecutorThreadPool

→ A thread pool built using FunctionExecutorThreads
→ An internal queue of tasks and queue of threads
→ When threads are busy, they are temporarily removed from the pool
→ When all threads busy, tasks are added to task queue

1 class ExecutorThreadPool {
2
3 private:
4 std::deque<FunctionExecutorThread*> threadPool;
5 std::deque<std::function<void()>> taskPool;
6 std::mutex m_mutex;
7 std::condition_variable m_cv; //used in waitForThreads
8
9 void tryPullTask();

10 void putBackThread(FunctionExecutorThread* t);
11
12 public:
13 void addTask(std::function<void()> f);
14 void waitForThreads();
15 }

Alexander Brandt Building Object-Oriented Parallelization from C++ Primitives March 23, 2022 37 / 64

ExecutorThreadPool: addTask

1 void addTask(std::function<void()> f) {
2 std::unique_lock<std::mutex> lk(m_mutex);
3 taskPool.push_back(f);
4 lk.unlock();
5 tryPullTask();
6 }
7
8 void tryPullTask() {
9 std::unique_lock<std::mutex> lk(m_mutex);

10
11 if (!taskPool.empty() && !threadPool.empty()) {
12 FunctionExecutorThread* worker = threadPool.front();
13 threadPool.pop_front();
14
15 std::function<void()> f = taskPool.front();
16 taskPool.pop_front();
17 worker->sendRequest(f);
18 }
19
20 lk.unlock();
21 }

Alexander Brandt Building Object-Oriented Parallelization from C++ Primitives March 23, 2022 38 / 64

FunctionExecutorThread Callback (1/2)
How does a worker thread notify the thread pool that it has become idle?
→ A callback function inserts the thread itself back into the pool

1 ExecutorThreadPool(int nthreads) {
2 //...
3 FunctionExecutorThread* t = new FunctionExecutorThread();
4 t->setCallback(std::bind(
5 &ExecutorThreadPool::putBackThread, this));
6 }
7
8 void putBackThread(FunctionExecutorThread* t) {
9 std::unique_lock<std::mutex> lk(m_mutex);

10 if (!taskPool.empty()) {
11 std::function<void()> f = taskPool.front();
12 taskPool.pop_front();
13 worker->sendRequest(f);
14 } else {
15 threadPool.push_back(t);
16 }
17 lk.unlock();
18 m_cv.notify_all(); //notify waitForThreads()
19 }

Alexander Brandt Building Object-Oriented Parallelization from C++ Primitives March 23, 2022 39 / 64

FunctionExecutorThread Callback (2/2)
How does a worker thread notify the thread pool that it has become idle?
→ A callback function inserts the thread itself back into the pool

1 class FunctionExecutorThread {
2
3 std::function<void(FunctionExecutorThread*)> cb;
4
5 void eventLoop() {
6 std::function<void()> task;
7 while(requestQueue.getNextObject(task)) {
8 task();
9

10 if (cb) cb((FunctionExecutorThread*) this);
11
12 std::unique_lock<std::mutex> lk(m_mutex);
13 bool notify = requestQueue.streamEmpty();
14 lk.unlock();
15 if (notify) m_cv.notify_all();
16 }
17 }
18 }

Alexander Brandt Building Object-Oriented Parallelization from C++ Primitives March 23, 2022 40 / 64

ExecutorThreadPool: Flexible Usage (1/2)
→ In support of certain parallel patterns, clients can (temporarily)

obtain ownership of threads from the pool, rather than using addTask
→ Abstract away actual threads through thread IDs
→ Once thread obtained, repeat Steps 2–3 as often as necessary

1 class ExecutorThreadPool {
2 //Storage for threads removed from pool by obtainThread
3 std::vector<FunctionExecutorThread*> occupiedThreads;
4
5 //Step 1: obtain a thread’s ID, removing it from the pool
6 void obtainThread(threadID& id);
7
8 //Step 2: execute a task on a particular thread
9 void executeTask(threadID id, std::function<void()>& f);

10
11 //Step 3 (optional): wait for thread to become idle
12 void waitForThread(threadID id);
13
14 //Step 4: return thread to pool (waits before returning)
15 void returnThread(threadID id);
16 }

Alexander Brandt Building Object-Oriented Parallelization from C++ Primitives March 23, 2022 41 / 64

ExecutorThreadPool: Flexible Usage (2/2)

→ In support of certain parallel patterns, clients can (temporarily)
obtain ownership of threads from the pool, rather than using addTask

→ Can obtain one thread at a time (previous slide), or multiple threads
at a time

1 class ExecutorThreadPool {
2
3 //Step 1: obtain threadIDs, removing them from the pool
4 void obtainThreads(std::vector<threadID>& ids);
5
6 //Step 2: execute a task on a particular thread
7 void executeTask(threadID id, std::function<void()>& f);
8
9 //Step 3 (optional): wait for threads to become idle

10 void waitForThreads(std::vector<threadID>& ids);
11
12 //Step 4: return threads to pool (waits before returning)
13 void returnThreads(std::vector<threadID>& ids);
14 }

Alexander Brandt Building Object-Oriented Parallelization from C++ Primitives March 23, 2022 42 / 64

ExecutorThreadPool Singleton

→ To avoid over-subscription, a program should not use
multiple thread pools

→ All areas of code should share the same thread pool

→ Use a classic singleton pattern

1 class ExecutorThreadPool {
2
3 private:
4 //pool size defaults to 1 less than hardware allows,
5 //the main thread counts as 1
6 ExecutorThreadPool(int nthreads =
7 std::thread::hardware_concurrency() - 1;);
8
9 public:

10 static ExecutorThreadPool& getThreadPool() {
11 static ExecutorTreadPool pool;
12 return pool;
13 }
14 }

Alexander Brandt Building Object-Oriented Parallelization from C++ Primitives March 23, 2022 43 / 64

Outline

1 Multithreading

2 Thread-Level Parallelism in C++

3 Thread Pool I: Long-Running Threads

4 Thread Pool II: Thread and Task Queues

5 Parallel Patterns

6 Optional and Cooperative Parallelism

Alexander Brandt Building Object-Oriented Parallelization from C++ Primitives March 23, 2022 44 / 64

Fork-Join

Fork

Join

→ Fork: divide problem and
execute separate calls in
parallel

→ Join: merge parallel
execution back into serial

→ Recursively applying
fork-join can easily
parallelize a
divide-and-conquer
algorithm

Alexander Brandt Building Object-Oriented Parallelization from C++ Primitives March 23, 2022 45 / 64

Fork-Join with ExecutorThreadPool

1 void mergeSort(int* A, int i, int j) {
2 if (j <= i) { return; }
3 int k = i + (j-1)/2;
4 mergeSort(A, i, k);
5 mergeSort(A, k, j);
6 merge(A, i, k, j);
7 }

1 void mergeSort(int* A, int i, int j) {
2 if (j <= i) { return; }
3 int k = i + (j-1)/2;
4 threadID id;
5 ExecutorThreadPool& pool = getThreadPool();
6
7 pool.obtainThread(id);
8 pool.executeTask(id, std::bind(mergeSort, A, i, k));
9 mergeSort(A, k, j);

10
11 pool.returnThread(id);
12 merge(A, i, k, j);
13 }

Alexander Brandt Building Object-Oriented Parallelization from C++ Primitives March 23, 2022 46 / 64

Map

→ Simultaneously execute a function on each data item in a collection

→ If more data items than threads, apply the pattern block-wise:
partition the collection and apply one thread to each partition

→ Often simplified as just a parallel_for loop

→ Where multiple map steps are performed in a row,
they must operate in lockstep

Input

Output

Data Item

Function Execution

Alexander Brandt Building Object-Oriented Parallelization from C++ Primitives March 23, 2022 47 / 64

Map with ExecutorThreadPool
1 //Apply f to each item of A, returning results in B
2 void MapExample(int* B, int* A, int n,
3 std::function<void(int*,int*)> f) {
4
5 for (int i = 0; i < n; ++i) {
6 f(&B[i], &A[i]);
7 }
8 }

1 void MapExample(int* B, int* A, int n,
2 std::function<void(int*,int*)> f) {
3
4 ExecutorThreadPool& pool = getThreadPool();
5 std::vector<threadID> ids;
6 pool.obtainThreads(n-1, ids); //assume n-1 threads avail.
7
8 for (int i = 0; i < n-1; ++i) {
9 pool.executeTask(ids[i], std::bind(f, &B[i], &A[i]));

10 }
11 f(&B[n-1], &A[n-1]); //use main thread for one call
12
13 pool.returnThreads(ids); //also waits for threads
14 }

Alexander Brandt Building Object-Oriented Parallelization from C++ Primitives March 23, 2022 48 / 64

Workpile
→ Workpile generalizes map pattern to a queue of tasks

→ Tasks in-flight can add new tasks to input queue

→ Threads take tasks from queue until it is empty

→ Very similar in structure to a thread pool

→ Can be seen as a parallel_while loop

...

...

...

Input

Output

Function Execution

Alexander Brandt Building Object-Oriented Parallelization from C++ Primitives March 23, 2022 49 / 64

Workpile with ExecutorThreadPool

1 void processInt(std::queue<int> B, int a) {
2 a -= 10;
3 if (a > 0) {
4 getThreadPool().addTask(std::bind(processInt, B, a));
5 } else {
6 B.push(a);
7 }
8 }
9

10 void WorkpileExample(std::queue<int> B, std::queue<int> A) {
11 ExecutorThreadPool& pool = getThreadPool();
12 while (!A.empty()) {
13 pool.addTask(std::bind(processInt, B, A.front()));
14 A.pop();
15 }
16 pool.waitForAllThreads();
17 }

Alexander Brandt Building Object-Oriented Parallelization from C++ Primitives March 23, 2022 50 / 64

Producer-Consumer

→ Two functions connected by a queue

→ The producer produces data items, pushing them to the queue

→ The consumer processes data items, pulling them from the queue

→ Producer and consumer execute simultaneously; at least one must be
active at all times Ô⇒ no deadlock

...

Data QueueProducer Consumer

→ In some circumstances, the producer may be considered
as an iterator or generator

Alexander Brandt Building Object-Oriented Parallelization from C++ Primitives March 23, 2022 51 / 64

Generators

→ Generators are special kinds of coroutines which yield data items one
at a time, rather than many as a collection

→ A yield pauses execution of the function, and allows computations to
resume from that point at the next function call

1 void FibonacciGen(int n) {
2 int Fn_1 = 0;
3 int Fn = 1;
4 for (int i = 0; i < n; ++i) {
5 yield Fn_1;
6 Fn = Fn + Fn_1;
7 Fn_1 = Fn - Fn_1;
8 }
9 }

→ Where the generation of data items is itself expensive, generators may
execute asynchronously, following the producer-consumer pattern

Alexander Brandt Building Object-Oriented Parallelization from C++ Primitives March 23, 2022 52 / 64

AsyncGenerator and AsyncObjectStream

We want an object-oriented approach to create and use generators.

AsyncObjectStream already solves the producer-consumer problem.
→ It provides a queue which blocks and notifies the consumer as data is

produced, implemented using a condition variable
→ As a class template, can be used within AsyncGenerator to yield any

type of object

1 template <class Object>
2 class AsyncObjectStream {
3 void addResult(Object&& res); //Producer
4
5 void resultsFinished(); //Producer
6
7 bool getNextObject(Object& res); //Consumer
8
9 void streamEmpty(); //Consumer

10 };

Alexander Brandt Building Object-Oriented Parallelization from C++ Primitives March 23, 2022 53 / 64

AsyncGenerator

AsyncGenerator is itself a class template, templated by Object, the type
of object to generate.
→ The AsyncGenerator acts as interface between producer and

consumer

→ The consumer constructs the AsyncGenerator, passing the
constructor the producer’s function and arguments

→ The producer’s signature should be:

1 void producerFunction(..., AsyncGenerator<Object>&);

→ The AsyncGenerator being constructed inserts itself into the
producer’s list of arguments so that it has reference to the generator
object

Alexander Brandt Building Object-Oriented Parallelization from C++ Primitives March 23, 2022 54 / 64

AsyncGenerator Example
1 void FibonacciGen(int n, AsyncGenerator<int>& gen) {
2 int Fn_1 = 0;
3 int Fn = 1;
4 for (int i = 0; i < n; ++i) {
5 gen.generateObject(Fn_1); //yield Fn_1 and continue
6 Fn = Fn + Fn_1;
7 Fn_1 = Fn - Fn_1;
8 }
9 gen.setComplete();

10 }
11
12 void Fib() {
13 int n;
14 std::cin >> n;
15 AsyncGenerator<int> gen(FibonacciGen, n);
16
17 int fib;
18 //get one integer at a time until generator is finished
19 while (gen.getNextObject(fib)) {
20 std::cerr << fib << std::endl;
21 }
22 }

Alexander Brandt Building Object-Oriented Parallelization from C++ Primitives March 23, 2022 55 / 64

AsyncGenerator Implementation
1 template <class Object>
2 class AsyncGenerator {
3 AsyncObjectStream<Object> stream;
4 FunctionExecutorThread t;
5
6 //Create a generator from a function and its arugments
7 template <class Function, class... Args>
8 AsyncGenerator(Funcion& f, Args&...args) {
9 std::function<void()> boundF =

10 std::bind(f, args..., std::ref(*this));
11 t.sendRequest(boundF);
12 }
13
14 //Create a dummy generator which yields items in sequence
15 //from a pre-computed collection
16 AsyncGenerator(std::vector<Object>& A) {
17 for (Object obj : A) { stream.addResult(obj); }
18 stream.resultsFinished();
19 }
20
21 //delegate to stream’s methods
22 void generateObject(Object& obj) //addResult(obj)
23 void setComplete(); //resultsFinished()
24 bool getNextObject(Object& obj); //getNextObject(obj)
25 }
Alexander Brandt Building Object-Oriented Parallelization from C++ Primitives March 23, 2022 56 / 64

Pipeline

→ A sequence of stages where the output of one stage is used as the
input to another

→ Two consecutive stages form a producer-consumer pair

→ Internal stages are both producer and consumer

→ Typically, a pipeline is constructed statically through code
organization

→ Pipelines can be created dynamically and implicitly with
AsyncGenerators and the callstack

Alexander Brandt Building Object-Oriented Parallelization from C++ Primitives March 23, 2022 57 / 64

Pipelines with AsyncGenerator

1 void intSequence(AsyncGenerator<int>& prevStage, AsyncGenerator<int>&
nextStage) {

2 int i;
3 while(prevStage.getNextObject(i)) {
4 nextStage.generateObject(i);
5 }
6 }
7
8 std::vector<int> A = {1,2,3,4,5,6,7,8,9};
9 AsyncGenerator<int> stageOne(A);

10
11 AsyncGenerator<int> stageTwo(intSequence, stageOne);
12 AsyncGenerator<int> stageThree(intSequence, stageTwo);
13 AsyncGenerator<int> stageFour(intSequence, stageThree);
14
15 //consume from last stage of pipeline
16 int i;
17 while(stageFour.getNextObjext()) {
18 std::cout << i << std::endl;
19 }

Alexander Brandt Building Object-Oriented Parallelization from C++ Primitives March 23, 2022 58 / 64

Outline

1 Multithreading

2 Thread-Level Parallelism in C++

3 Thread Pool I: Long-Running Threads

4 Thread Pool II: Thread and Task Queues

5 Parallel Patterns

6 Optional and Cooperative Parallelism

Alexander Brandt Building Object-Oriented Parallelization from C++ Primitives March 23, 2022 59 / 64

ExecutorThreadPool Optional Parallelism
Since ExecutorThreadPool contains a finite number of threads,
obtainThread(id) may not be able to obtain an idle thread.
→ In this case, the threadID returned is a special ID which indicates

“not a thread”
→ Then, executeTask(id, task), returnThread(id),

waitForThread(id) behave serially
→ Hence, all calls to executeTask are merely a suggestion for

parallelism, depending on the current state of the thread pool

1 class ExecutorThreadPool {
2 void obtainThread(threadID& id);
3
4 void executeTask(threadID id, std::function<void()>& f);
5
6 void waitForThread(threadID id);
7
8 void returnThread(threadID id);
9 }

Alexander Brandt Building Object-Oriented Parallelization from C++ Primitives March 23, 2022 60 / 64

ExecutorThreadPool Optional Parallelism (2/2)
1 void obtainThread(threadID& id) {
2 std::lock_guard<std::mutex> lk(m_mutex);
3 if (threadPool.empty()) {
4 id = ExecutorThreadPool::notAThread;
5 } else {
6 FunctionExecutorThread* t = threadPool.front();
7 threadPool.pop_front();
8 occupiedThreads.push_back(t);
9 id = t->get_id(); //a std::thread::id

10 }
11 }
12
13 void executeTask(threadID id, std::function<void()>& f) {
14 if (id == ExecutorThreadPool::notAThread) {
15 f();
16 return;
17 } else {
18 std::lock_guard<std::mutex> lk(m_mutex);
19 for (FunctionExecutorThread* t : occupiedThreads) {
20 if (t->get_id() == id) { t.sendRequest(f); }
21 }
22 }
23 }

Alexander Brandt Building Object-Oriented Parallelization from C++ Primitives March 23, 2022 61 / 64

AsyncGenerator Optional Parallelism
Rather than AsyncGenerator directly using a
FunctionExecutorThread, use the ExecutorThreadPool.
→ If all threads in the pool are busy, execute the function serially instead
1 template <class Object>
2 class AsyncGenerator {
3 AsyncObjectStream<Object> stream;
4
5 //Create a generator from a function and its arugments
6 template <class Function, class... Args>
7 AsyncGenerator(Funcion& f, Args&...args) {
8 std::function<void()> boundF =
9 std::bind(f, args..., std::ref(*this));

10
11 ExecutorThreadPool& pool = getThreadPool();
12 if (pool.allThreadsBusy()) {
13 boundF();
14 } else {
15 pool.addTask(f);
16 }
17 }
18 }

Alexander Brandt Building Object-Oriented Parallelization from C++ Primitives March 23, 2022 62 / 64

Cooperative Parallelism

With several simultaneous clients of ExecutorThreadPool, some tasks
should be given priority.
→ Some tasks are more coarse-grained, offer more potential speed-up
→ Some tasks may expose more parallelism and should be executed first

Often, parallelism coming from Fork-Join or Map is preferred over
Producer-Consumer.
→ Goal: allow Fork-Join and Map to access thread pool threads over

Producer-Consumer while still keeping the latter possible when there
are idle threads

→ Solution: priority tasks
→ addTask() vs addPriorityTask()

Alexander Brandt Building Object-Oriented Parallelization from C++ Primitives March 23, 2022 63 / 64

ExecutorThreadPool Priority Tasks

pool.addPriorityTask()

→ If there are idle threads, priority task behaves as normal task
ë pull a thread from the pool and assign the task to it

→ If there are no idle threads:
1 temporarily allow over-subscription and spawn a new priority thread
2 assign the priority task to the new priority thread
3 the next thread returned to the pool is retired to recover a state

without over-subscription

→ If the number of spawned priority threads equals the original number
of threads in the pool, do not spawn any more

ë instead, add the priority task to the head of the task queue so that it is
the next executed task

Alexander Brandt Building Object-Oriented Parallelization from C++ Primitives March 23, 2022 64 / 64

