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Abstract

Generalized network flow problems generalize ordinary network flow problems by specifying a flow
multiplier for each arc . For every unit of flow entering the arc, units of flow exit. We present
parallel algorithms for the all-sources generalized shortest paths problem using Floyd-Warshall and ma-
trix multiplication algorithms and monotonic piecewise-linear functions. The latter algorithm requires
polylogarithmic time on a concurrent-read exclusive-write PRAM with a superpolynomial number of
algorithms.

1 Introduction

Ordinary network flow models require flow conservation on all arcs: The amount of flow on any arc leaving
its tail vertex equals the amount of flow arriving at its head vertex. Generalized network flow models
generalize this conservation by associating a flow multiplier with each arc . For each unit of
flow sent from vertex along the arc, units of flow arrive at . Using flow multipliers permits two
types of modelling not possible with ordinary flow models. Flow multipliers can represent transformations
from one type of object to another. For example, Hong Kong dollars can be converted into South African
rands, and trees can be converted into reams of paper. Multipliers can also modify the amount of flow.
Thus, evaporation from a network of water canals and breakage caused during transport through a delivery
network can be modeled.

Generalized flow problems have been studied [Dan63, Jew62] since Ford and Fulkerson’s book [FF62]
defined network flows as an area of research. All generalized flow problems can be solved as linear programs
in polynomial time [Kha79], but combinatorial polynomial-time algorithms for generalized network flow
problems have only recently appeared [AC91, CM94b, GPT91, Old99, TW98].

Generalized flow problems seem to be more difficult to solve than ordinary network flow problems
because 1) optimal answers include cycles and 2) no known problem formulations permit full distributivity
of path concatenation over path choice, i.e. the underlying abstract domain does not form a semiring. An
optimal answer to a generalized shortest path problem (GSP) instance (also called the restricted generalized
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uncapacitated transshipment problem) is a “lasso”: a simple path from the source vertex ending with a lossy
cycle which “consumes” the flow sent along the path.1 Secondly, flow multipliers prevent “natural” closed
semirings, which are the basis of most ordinary shortest paths algorithms. The effect is that determining the
cheaper of two different paths between the two vertices depends on the path to reach the first vertex. For
ordinary shortest paths, one can just choose the shorter of the two paths, independent of the path to reach
the first vertex.

Previous Work Several sequential polynomial-time algorithms for the GSP exist. The first algorithm fol-
lowed as a corollary of Khachiyan’s proof that linear programming can be solved in polynomial time [Kha79].
Adler and Cosares [AC91] gave an algorithm to convert a solution to the dual of the GSP to a primal solution
using Megiddo’s algorithm to solve two-variable-per-inequality linear programs [Meg83b]. Subsequently,
Cohen and Megiddo [CM94a] and Hochbaum and Naor [HN94] reduced the running time to .
(The number of arcs and vertices are and , respectively.) Recently, Oldham [Old99] gave an algorithm
with the same running time and using binary search, and a Bellman-Ford subroutine to solve directly the
primal problem. In 1978, Charles G. Nelson [Nel78] presented a sequential time algo-
rithm to determine satisfiability of linear programs with only two variables per constraint. In 1986, Lueker,
Megiddo, and Ramachandran [LMR90] converted this to a time CREW PRAM
algorithm requiring at most processors. To decide feasibility, they use many of the same tools,
e.g., sets of piecewise-linear functions and functional composition, as we do. Cohen and Megiddo’s sequen-
tial algorithm can be converted to a parallel algorithm requiring time and
processors. It is also based on the dual of the GSP.

Most lossy generalized flow problems can be solved using algorithms developed for ordinary net-
work flow problems. (Lossy problems have flow multipliers at most one.) For example, Charnes and
Raike [CR66] showed how to solve single-source lossy generalized shortest paths using Dijkstra’s algo-
rithm provided the costs are nonnegative. In 1974, Bakó András [Bak75, Bak76] presented a Floyd-Warshall
algorithm to solve the multiple-sink lossy generalized shortest paths problem requiring exactly the same run-
ning time as solving the all-pairs ordinary shortest paths problem. This result can easily be extended to a
polylogarithmic-time algorithm using matrix multiplication techniques.

Our Contribution We show how to use the Floyd-Warshall and matrix multiplication algorithms [Flo62,
War62, J9́2] to solve the all-sources generalized shortest paths problem. The all-pairs ordinary shortest
paths problem can be solved using these algorithms in and iterations, respectively, on a PRAM
computer. These algorithms are based on closed semirings [AHU74, CLR90] and use distances, i.e., real
numbers as intermediate values. No known closed semirings for generalized problems are known. Only
left-monotonic closed semirings are known. We show how to use monotonic piecewise-linear functions,
i.e., lower envelopes, to create a closed semiring. Each linear function in these lower envelopes has a natural
interpretation: the cost and flow multiplier of a path. This yields a parallel algorithm requiring
time but processors. In contrast to using [LMR90], we directly solve the ASGSP rather than solving
the dual linear program and converting to a primal flow solution. Furthermore, computing the solution does
not require use of Megiddo’s parametric search technique [Meg79, Meg83a] and fewer processors are
required.

1The reader is encouraged to think of a flow as a static object obeying flow conservation constraints at vertices and arc multipliers
along arcs, not as items flowing through a network. This is because vertex flow conservation constraints require more flow through
an augmented path’s lossy cycle than the amount of flow “reaching” the cycle through the path from the source vertex.
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Outline of the Paper In the next section, we define the all-sources generalized shortest path problem and
prove all solutions consist of augmented paths. In Section 3, we illustrate that generalized flows are not
right-distributive and introduce a closed semiring based on lower envelopes of piecewise-linear functions.
In the succeeding section, we show how to use this semiring in the Floyd-Warshall and matrix multiplication
algorithms for ordinary shortest paths.

2 Generalized Shortest Paths Problems

The generalized shortest paths problem (GSP), a generalized variant of the ordinary shortest paths problem,
is to find a minimum-cost flow function obeying flow conservation, arc multipliers, and a supply vertex. The
input consists of

a directed graph ,

an arc multiplier function ,

an arc cost function , and

a vertex with unit supply.

The resulting flow function must obey flow conservation at the vertices, the arc multiplier
function, satisfy the supply, and minimize the flow’s cost. Writing these requirements as a linear program:

Minimize
arcs

subject to vertices

arcs

Here is zero except for the source vertex . The constraints’ equalities ensure flow is conserved at non-
source vertices, but the flow multipliers cumulatively scale the flow along arcs. Without loss of generality,
the cost of a flow on an arc is the product of the arc’s cost and the flow entering .

This problem has no sink vertices (vertices with positive demands) and exactly one source vertex with
unit supply. These restrictions do not limit our ability to model problems. Conceptually, a sink vertex can
be modelled by adding a lossy self-looping arc so any flow reaching a sink will be “consumed” by the lossy
self-loop. We also assume, without loss of generality, a unit supply at the source because any solution can
be scaled by a positive scalar and still remain a solution. Also, without loss of generality, we assume all
vertices are reachable from .

The all-sources generalized shortest paths problem (ASGSP) is to find one minimum-cost flow function
for each source vertex .

The definitions of the flow multiplier and cost functions can be extended to walks. The flow multiplier
of a walk is the product of its arcs’ flow multipliers. The definition ensures flow conservation at the vertices.
A lossy cycle has flow multiplier less than one. The cost of a walk is the cost of sending a unit
of flow along the walk starting at its initial vertex. For example, the cost of the path is

. The multiplier and cost of an empty walk is and , respectively.
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An augmented path is a nonempty path with an extra arc
forming a lossy cycle . An augmented path is a solution to the GSP because its path transports
the source’s unit supply to a lossy cycle which “consumes” the flow reaching it. In fact, they are the only
solutions to the GSP.

Theorem 1 ([Old99]) All solutions of the generalized shortest paths problems are augmented paths.

Proof: Viewing the problem using matrix notation where is the arc adjacency matrix and noting
each of its rows are linearly independent, we see any basis has variables, i.e., one arc out of each vertex.
Thus, the solution must consist of a tree plus an additional arc. Flow conservation implies all flow on paths
not ending with cycles must be zero. Flow conservation at augmented paths’ junction vertices prevents their
having non-lossy cycles. If a solution has more than one augmented path, the cheapest is also a solution.

3 A Lower Envelope Closed Semiring

In this section, we present a closed semiring consisting of monotone piecewise-linear functions, i.e., lower
envelopes. This semiring will be used in the next section to solve the all-sources generalized shortest paths
problem using Floyd-Warshall and matrix multiplication algorithms.

A closed semiring is an algebraic structure for solving path problems in directed graphs.
It consists of a set of elements, a summary operator to determine the cheaper of two paths, an extension
operator yielding the concatenation of two paths, and identities and for the respective operators. See
[AHU74, Section 5.6] or [CLR90, Section 26.4] for details.

The presence of flow multipliers prevent the use of the closed semiring for ordinary shortest paths. Con-
sider a three-vertex directed graph with two parallel arcs followed by one arc. Let the cost and multipliers
of the two parallel arcs be and , respectively, and the last arc have . The cheaper of the
two parallel arcs is , but the cheapest two-arc path uses the arc. This is because using this arc
reduces the flow through the subsequent arc. Thus when solving ordinary shortest paths problems it is no
longer the case that a subpath of a shortest path is a shortest subpath. Instead of summarizing the results of
all paths to a particular vertex using a single number, we use monotonic piecewise-linear functions.

First, we show a linear function summarizes the effect of sending a unit flow along a path . We
represent this by an ordered pair . We can represent this as a generating function with two
terms: . Starting with a unit flow at the beginning of the path, it costs to send that flow
to the path’s end. units of flow emerge at the path’s end. represents the “future cost,” i.e., the cost
of any path appended to the end of this path . Since cost is a linear function of flow, multiplying
and this cost yields the cost of sending units down the path ; the generating function is

. Since each generating function is linear, it can be depicted as a line in
the plane.

Extending one path with another path using the extension operator corresponds to functional compo-
sition:
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Its identity is the generating function . The summary operator yields the cheaper of two paths, i.e.,
the minimum of two functions. Viewed in the plane the minimum is depicted simply by tracking the lower
of the two functions, switching paths at each crossing of the functions. Its identity is .

3.1 Lower Envelope Operations

We extend these operators to work on monotonic piecewise-linear functions, i.e., “lower envelopes.” We
represent a lower envelope as a set of piecewise-linear functions with monotonically decreasing slopes
and intersecting at intersection points. Alternatively, we can represent it as a set of intersecting points
with monotonically increasing - and -coordinates. Linear-time sequential algorithms for the extension
and summary of lower envelopes exist, but we present parallel algorithms requiring time and

processors where is the total number of operands’ linear functions.

Theorem 2 Given two lower envelopes and , there exist parallel algorithms to implement the opera-
tions in Table 1 in the specified parallel time and using the listed number of processors on a CREW PRAM
computer.

Proof: (This proof closely follows that of [LMR90, Section 3].)
As noted above, we can represent a lower envelope as both an ordered sequence of piecewise-linear func-

tions and as an ordered sequence of intersection points. Using one processor per linear piece (or intersection
point), we can convert between the two representations in constant time.

We first consider , i.e., the minimum of the two lower envelopes. In the worst case, the summary
lower envelope has linear pieces. To compute the envelope, merge the sorted intersection points of
the two lower envelopes into one sorted list according to -coordinate, each point remembering from which
envelope it originated. Each point in the merged list determines the two surrounding points from the other
envelope using a nearest-ones algorithm. (A nearest-ones algorithm determines, for each entry in a list, the
closest neighbors to the left and right that are marked one. We can use a pointer jumping algorithm [J9́2].)
Thus, each point can determine if it is on, above, or below the linear piece of the other lower envelope. The
new envelope is computed. Merging the two sorted lists requires time [BH85, Kru83], while
a nearest-ones algorithm requires time. (An algorithm exists for the all near-
est smaller values problem on a COMMON CRCW PRAM [BMR98].) The remaining operations require
constant time and a linear number of processors.

The extension of two lower envelopes extends functional composition to monotonic piecewise-
linear functions. The number of linear pieces is at most because the composition
of two intersecting linear pieces with a line yields two linear pieces. Let and . Com-
puting consists of three steps: computing, for each -coordinate of intersection points, ;

operation no. linear pieces time processors

identity line 1
value of at an -coordinate 0

Table 1: Summary of Parallel Algorithm Times and Resources for Lower Envelope Operations on a CREW
PRAM. and represent lower envelopes, while represents the number of linear pieces in .
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merging these coordinates with the -coordinates of ; and then computing the functional compositions.
To compute , compute the rank of each -coordinate of intersection points with respect to the

-coordinates of ’s intersection points. Using the rank to determine which linear function of is in-
tersected, we can compute . These sorted values can be merged with the -coordinates of , a
nearest-ones algorithm can determine which linear functions should compose, and the extension envelope
can be computed. Computing the ranks requires time [J9́2, Section 4.2.2]. The times
for the other operations are described in the previous paragraph.

To determine which linear piece of the lower envelope has slope less than one and intersects the identity
line , each processor determines the slope of its linear piece . If the slope is less
than one, and if and or and , the linear piece is returned.

To determine the value of a lower envelope at a particular -coordinate, the processor for the linear piece
containing the -coordinate uses its linear formula to compute the answer.

Lemma 3 The set of lower envelopes with , , , and forms a closed semiring.

Proof: The set of lower envelopes is closed under and . is associative, commutative, and idempo-
tent because the minimum of real numbers is associative, commutative, and idempotent. is an identity
with respect to and an annihilator with respect to . distributes over because functional compo-
sition distributes over minima for real numbers. The operations apply to any countable sequence of lower
envelopes.

4 Parallel Generalized Shortest Path Algorithms

In this section, we show how to use the lower envelope closed semirings of the previous section and the
Floyd-Warshall and matrix multiplication algorithms to solve the all-sources generalized shortest paths prob-
lem (ASGSP).

All solutions to the ASGSP consist of one minimum-cost augmented paths for each source vertex . An
augmented path is a path from vertex following by a lossy cycle. Let be the only vertex with in-degree
two in an augmented path starting at . If we know the lower envelopes for all and for all nonempty

, we can compute the minimum cost augmented path. To see this, each linear piece in a lower envelope
encodes the cost of sending one unit of flow at the beginning of its path and the amount of flow exiting the
path. For a cycle with one unit of flow entering the cycle at , flow (and cost) conservation requires
that the “future cost” equal the present cost, i.e.,

This yields the cost of one unit’s flow entering the cycle. In the lower envelope for , we can insert
this value as the future cost to yield the minimum cost of any augmented path with junction vertex . We
must also verify that the intersected linear piece’s slope is less than one to ensure its cycle is lossy. Since the
Floyd-Warshall algorithm computes shortest paths between all pairs of vertices, we can solve the ASGSP
by minimizing over all junction vertices.

The Floyd-Warshall algorithm [Flo62, War62] (Algorithm 1) computes lower envelopes for all pairs
of vertices. The main idea of the recurrence is that shortest paths on a subgraph with interior vertices
numbered at most vertices can be split into at most two pieces: one or two subpaths containing interior
vertices numbered less than possibly connected by vertex .
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Algorithm 1 Floyd-Warshall Algorithm for the ASGSP
// Initialization

for all vertex pairs do
if exists
otherwise

// Recurrences
for iterations do

for all vertex pairs do

// Compute the minimum-cost augmented path.
for all vertices do

is solution to if it exists
for all source vertices do

compute

Algorithm 2 Matrix Multiplication Algorithm for the ASGSP
// Initialization

for all vertex pairs do
if exists
otherwise

// Recurrences
for iterations do

for all vertex pairs do

// Compute the minimum-cost augmented path.
for all vertices do

is solution to if it exists
for all source vertices do

compute
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Alternatively, repeated squaring of the vertex adjacency matrix can be used (Algorithm 2). See, e.g.,
[J9́2, Section 5.5]. Here the lengths of paths are doubled at each iteration whence only iterations are
required.

We have implicitly assumed the given problem has a solution bounded from below. If there exists a
negative cost cycle with flow multiplier reachable from the source vertex and from which a lossy
cycle is reachable, then the solution is not bounded from below. Suppose there did exist a solution despite
the presence of the two paths and the two cycles. A cheaper solution can be constructed by having more
flow around the negative cost cycle one more time before being consumed by the lossy cycle. The existence
of a negative-cost cycle with multiplier greater than one is indicated by a linear piece in a lower envelope

with negative cost and slope at least one. Checking for the existence of a path between a pair of vertices
is equivalent to checking for a nonempty lower envelope for the pair.

4.1 Running Times

Algorithms 1 and 2 require and iterations, respectively. Unfortunately, the number of linear pieces
in each lower envelope increases at each iteration by factors of and , respectively. Using the doubly-
logarithmic lower envelope operations for Algorithm 1 requires time and processors and
for Algorithm 2 time and processors.

Theorem 2 showed the number of linear pieces in the summary of two lower envelopes is at most the
sum of the operands’ number of linear pieces. For an extension, the number of pieces is one less than the
sum. Each iteration of the Floyd-Warshall algorithm (Algorithm 1) at most triples the number of linear
pieces:

Since iterations occur, the number of linear pieces in each of the final lower envelopes is at most .
Each iteration of the matrix multiplication algorithm (Algorithm 2) increases the number of linear pieces

by a factor of :

Since iterations occur, the number of linear pieces in each of the final lower envelopes is at most
.

Theorem 4 The all-sources generalized shortest paths problem (ASGSP) can be solved on a CREW PRAM
in

algorithm time processors
Floyd-Warshall (Algorithm 1)

matrix multiplication (Algorithm 2) .

Proof: The running times follow directly from the number of iterations, the times in Table 1, and the ability
to compute summaries in time.

Since the sizes of the lower envelopes are growing geometrically at each iteration, the size of the last iter-
ation’s envelopes multiplied by the number of vertex pairs determines the necessary number of processors.
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Corollary 5 The single-source generalized shortest paths problem be solved by Algorithms 1 and 2 with
the same running time and number of processors as the all-sources problem.

Proof: As we noted in Section 2, the solution to the all-sources problem consists of one augmented path per
vertex. To compute the minimum-cost augmented path for a particular source vertex , modify the last loop
of each algorithm to find augmented paths for the desired source.
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