
MetaFork: A Compilation Framework for
Concurrency Platforms Targeting Multicores

Xiaohui Chen, Marc Moreno Maza & Sushek Shekar

University of Western Ontario, Canada

IBM Toronto Lab
February 11, 2015

Plan

Motivation

Plan

Motivation

Motivation: interoperability

Challenge

Different concurrency platforms (e.g: Cilk and OpenMP) can
hardly cooperate at run-time since their schedulers are based on
different strategies (work stealing vs work sharing).

This is unfortunate: there is, indeed, a real need for interoperability.

Example:

In the field of symbolic computation:
• the DMPMC (TRIP project) library provides sparse polynomial

arithmetic and is entirely written in OpenMP,
• the BPAS (UWO) library provides dense polynomial arithmetic is

entirely written in Cilk.

We know that polynomial system solvers require both sparse and
dense polynomial arithmetic and thus could take advantage of a
combination of the DMPMC and BPAS libraries.

Motivation

Motivation: comparative implementation

Challenge:

Performance bottlenecks in multithreaded programs are very hard to
detect:

• algorithm issues: low parallelism, high cache complexity
• hardware issues: memory traffic limitation
• implementation issues: true/false sharing, etc.
• scheduling costs: thread/task management, etc.
• communication costs: thread/task migration, etc.

We propose to use comparative implementation. for narrowing
performance bottlenecks.

Code Translation:

Of course, writing code for two concurrency platforms, say P1, P2, is
clearly more difficult than writing code for P1 only.

Thus, we propose automatic code translation between P1 and P2.

Motivation

Motivation: optimization of parallel programs

Challenge:

A parallel program written and optimized for one architecture may loose
performance when ported, say via translation, to another architecture.
Possible causes:

change of memory access policies (say from multi-cores to GPUs)

change in the number of cores,

change in the cache sizes.

Proposed solution:

Given a parallel algorithm and formal machine parameters (number of
physical cores, cache sizes) generate a parametric parallel code

valid for any values of those parameters in prescribed ranges,

specializable at installation time on a particular machine.

Background: the fork-join concurrency model

Plan

Background: the fork-join concurrency model

The fork-join concurrency model

Principles

The fork-join execution model is a model of computations where
concurrency is expressed as follows.

A parent gives birth to child tasks. Then all tasks (parent and
children) execute code paths concurrently and synchronize at the
point where the child tasks terminate.

On a single core, a child task preempts its parent which resumes its
execution when the child terminates.

CilkPlus and OpenMP

CilkPlus and OpenMP are multithreaded extensions of C/C++,
based on the fork-Join model and primarily targeting shared memory
architectures.

OpenMP introduction

Plan

OpenMP introduction

OpenMP

OpenMP uses the fork-join model:

All OpenMP programs begin as a single thread: the master thread.

The master thread then creates a team of parallel threads when
parallel region construct is encountered.

The statements in the program that are enclosed by the parallel
region construct are then executed in parallel among the various team
threads.

When the team threads complete the statements in the parallel region
construct, they synchronize and terminate, leaving only the master
thread.

OpenMP uses the shared-memory model :

All threads share a common address space (shared memory)

Threads can have private data

OpenMP introduction

OpenMP

Figure: OpenMP fork-join model

OpenMP introduction

OpenMP

A parallel region is a block of code that will be executed by multiple
threads. This is the fundamental OpenMP parallel construct.

The syntax of this construct is as follows:

#pragma omp parallel [private (list), shared (list) ...]

structured_block

When a thread reaches a parallel directive:

It creates a team of threads and becomes the master of the team.

Starting from the beginning of this parallel region, the code is
duplicated and all threads will execute that code.

There is an implied barrier at the end of a parallel region.

Only the master thread continues execution past this point.

OpenMP introduction

OpenMP work-sharing construct

Work-sharing construct

A work-sharing construct divides the execution of the enclosed code
region among the members of the team that encounter it.

Work-sharing constructs do not launch new threads.

There is no implied barrier upon entry to a work-sharing construct,
however there is an implied barrier at the end of a work-sharing
construct.

There are three different work-sharing constructs.

parallel for-loop construct

parallel sections construct

single construct

OpenMP introduction

OpenMP work-sharing construct

OpenMP for-loop shares iterations of a loop across the team.

#pragma omp for [schedule(type [,chunk]), private(list) ...]

for_loop

Example: Saxpy operation:
y = ax + y (1)

void saxpy() {

const int n = 10000;

float x [n], y [n], a;

int i;

#pragma omp parallel
#pragma omp for
for (i=0; i<n; i++) {

y [i] = a * x [i] + y [i];

}

}

OpenMP introduction

OpenMP work-sharing construct

OpenMP sections:

Sections breaks work into separate, discrete sections.
Each section is executed by a thread.

#pragma omp sections [shared(list), private(list) ...]

structured_block

Example:

#define N 1000

int main () {

int i;

double a [N], b [N], c [N], d [N];

for (i=0; i < N; i++) {

a [i] = i * 1.5;

b [i] = i + 22.35;

}

#pragma omp parallel shared(a,b,c,d) private(i)

{

#pragma omp sections
{

#pragma omp section
{

for (i=0; i < N; i++)

c [i] = a [i] + b [i];

}

#pragma omp section
{

for (i=0; i < N; i++)

d [i] = a [i] * b [i];

}

} /* end of sections */

} /* end of parallel section */

}

OpenMP introduction

OpenMP task directives

Parallel sections are established upon compilation and number of threads is fixed.
Sometimes more flexibility is needed, such as parallelism within if or while block.

In OpenMP, an explicit task is specified using the task directive.

whenever a thread encounters a task construct, a new task is generated.
When a thread encounters a task construct, it may choose to execute the task
immediately or defer its execution until a later time.
If task execution is deferred, then the task is placed in a pool of tasks.
A thread that executes a task may be different from the thread that originally
encountered it
The taskwait directive specifies a wait on the completion of children tasks
generated since the beginning of the current task.

Example:

/*pseudo code*/

int main () {

my_pointer = listhead;

#pragma omp parallel
{

#pragma omp single
{

while(my_pointer) {

#pragma omp task
{

do_independent_work(my_pointer);

}

my_pointer = my_pointer->next ;

}

} // End of single

} // End of parallel region - implied barrier here

}

OpenMP introduction

OpenMP synchronization directives

There are various synchronization constructs available to coordinate the
work by multiple threads.

#pragma omp master: species a region that is to be executed only by
the master thread of the team. All other threads on the team skip this
section of code.
#pragma omp critical: species a region of code that must be executed
by only one thread at a time.
#pragma omp barrier: synchronizes all threads in the team. When a
barrier directive is reached, a thread will wait at that point until all
other threads have reached that barrier. All threads then resume
executing in parallel the code that follows the barrier.
#pragma omp atomic: species that a specic memory location must be
updated atomically.

Example: Computing the sum:

#define N 1000

int main () {

int sum = 0, sum_local = 0, a [N];

#pragma omp parallel shared(a,sum) private(sum_local)

{

#pragma omp for
for (i=0; i<N; i++)

sum_local += a [i]; // form per-thread local sum

#pragma omp critical
{

sum += sum_local; // form global sum

}

}

}

MetaFork: fork-join constructs and semantics

Plan

MetaFork: fork-join constructs and semantics

MetaFork

Definition

MetaFork is an extension of C/C++ and a multithreaded language
based on the fork-join concurrency model.
MetaFork differs from the C language only by its parallel constructs.
By its parallel constructs, the MetaFork language is currently a
super-set of CilkPlus and offers counterparts for the following widely
used parallel constructs of OpenMP: #pragma omp parallel,
#pragma omp task, #pragma omp sections, #pragma omp

section, #pragma omp for, #pragma omp taskwait, #pragma

omp barrier, #pragma omp single and #pragma omp master.
However, this language does not compromise itself in any scheduling
strategies (work-stealing, work-sharing) and thus makes no assumptions
about the run-time system.

Motivations

MetaFork principles encourage a programming style limiting thread
communication to a minimum so as to

• prevent from data-races while preserving satisfactory expressiveness,
• minimize parallelism overheads.

The original purpose of MetaFork is to facilitate automatic translations
of programs between the above concurrency platforms.

MetaFork: fork-join constructs and semantics

MetaFork

The compilation framework

Today, our experimental framework includes translators between
CilkPlus and MetaFork (both ways) and, between OpenMP
and MetaFork (both ways).

Hence, through MetaFork, we perform program translations
between CilkPlus and OpenMP (both ways).

The MetaFork language is rich enough to capture the semantics of
large bodies of OpenMP code, such as the Barcelona OpenMP
Tasks Suite and translate faithfully to CilkPlus each of the BOTS
test cases.

MetaFork: fork-join constructs and semantics

MetaFork constructs for parallelism

MetaFork has four parallel constructs:

meta fork 〈function− call〉
• we call this construct a function

spawn,
• it is used to express the fact that

a function call is executed by a
child thread, concurrently to the
execution of the parent thread,

• on the contrary of CilkPlus, no
implicit barrier is assumed at the
end of a function spawn.

Example:

long fib_par(long n) {

long x, y;

if n < 2 return (n);

x = meta_fork fib_par(n-1);

y = fib_par(n-2);

meta_join;
return (x+y);

}

meta for (start, end, stride) 〈loop− body〉

• we call this construct a parallel for-loop,

• the execution of the parent thread is
suspended when it reaches meta for and
resumes when all children threads have
completed their execution,

• there is an implicit barrier at the end of
the parallel area;

Example:

int main()

{

int a[N];

meta_for(int i = 0; i < N; i++)

{

a[i] = i;

}

}

MetaFork: fork-join constructs and semantics

MetaFork constructs for parallelism

meta fork [shared(variable)] 〈body〉
• we call this construct a parallel region,
• is used to express the fact that a block is executed by a child thread,

concurrently to the execution of the parent
• no equivalent in CilkPlus.

Example:

int main()

{

int sum_a=0;

int a[5] = {0,1,2,3,4};

meta_fork shared(sum_a){
for(int i=0; i<5; i++)

sum_a += a[i];

}

}
meta join

• this indicates a synchronization point.

MetaFork: fork-join constructs and semantics

Counterpart directives in CilkPlus & OpenMP

CilkPlus

cilk spawn

no construct for parallel regions

cilk for

cilk sync

OpenMP

pragma omp task

pragma omp sections

pragma omp for

pragma omp taskwait

MetaFork: fork-join constructs and semantics

MetaFork data attribute rules (1/2)
MetaFork

terminology:

Local and non-local variables

Consider a parallel region with block Y (or a parallel for-loop with loop
body Y). X denotes the immediate outer scope of Y . We say that X is
the parent region of Y and that Y is a child region of X.
A variable v defined in Y is said local to Y otherwise we call it an
non-local variable for Y .
Let v be a non-local variable for Y . Assume v gives access to a block of
storage before reaching Y . (Thus, v cannot be a non-initialized pointer.)

Shared and private variables

We say that v is shared by X and Y if its name gives access to the
same block of storage in both X and Y ; otherwise we say that v is
private to Y .
If Y is a parallel for-loop, we say that a local variable w is shared by Y
whenever the name of w gives access to the same block of storage in
any loop iteration of Y ; otherwise we say that w is private to Y .

MetaFork: fork-join constructs and semantics

MetaFork data attribute rules (2/2)

Data attribute rules of meta fork:

A non-local variable v which gives access to a block of storage before
reaching Y is

• shared between the parent X and the child Y whenever v is (1) a global
variable or (2) a file scope variable or (3) a reference-type variable or (4)
declared static or const, or (5) qualified shared.

• otherwise v is private to the child.

In particular, value-type variables (that are not declared static or
const, or qualified shared and, that are not global variables or file
scope variables) are private to the child.

Data attribute rules of meta for:

A non-local variable which gives access to a block of storage before
reaching Y is shared between parent and child.
A variable local to Y is

• shared by Y whenever it is declared static.
• otherwise it is private to Y .

In particular, loop control variables are private to Y .

MetaFork: fork-join constructs and semantics

MetaFork semantics of parallel constructs

Semantics of MetaFork

To formally define the semantics of each of the parallel constructs in
MetaFork, we introduce the serial C-elision of a MetaFork
program M as a C program whose semantics define those of M.
For spawning a function call or executing a parallel for-loop,
MetaFork has the same semantics as CilkPlus. In these cases,
the serial C-elision is obtained by replacing

• meta fork with the empty string,
• meta for with for.

The non-trivial part is to define the serial C-elision of a parallel region
in MetaFork, that is, when the meta fork keyword is followed by a
block of code.
In the dissertation, we formally define the serial C elision of the
meta fork construct when applied to a code block. This is done
essentially by wraping this code block into a function which is, then,
called.

MetaFork: fork-join constructs and semantics

Variable attributes of MetaFork: example

extern int var; //shared

void test(int *array)

{ // array is shared

int basecase = 100; //shared

meta_for(int j=0;j<10;j++)

{ // j is sprivate

static int var1; //shared

int i = array[j]; //private

if(i < basecase)

array[j]++;

}

}

int a; //shared

long par_region(long n)

{ // n is private

int b; //private

int *c=(int*)malloc();//shared

int d[10]; //shared

const int f; //shared

static int g; //shared

meta_fork{

int e = b; //private

foo(c,d);

meta_fork

{ ... }

}

}

MetaFork: interoperability between CilkPlus and
OpenMP

Plan

MetaFork: interoperability between CilkPlus and
OpenMP

Original CilkPlus code and translated MetaFork code

long fib parallel(long n)

{

long x, y;

if (n<2) return n;

else if (n<BASE)

return fib serial(n);

else

{

x = cilk spawn fib parallel(n-1);

y = fib parallel(n-2);

cilk sync;
return (x+y);

}

}

long fib parallel(long n)

{

long x, y;

if (n<2) return n;

else if (n<BASE)

return fib serial(n);

else

{

x = meta fork fib parallel(n-1);

y = fib parallel(n-2);

meta join;
return (x+y);

}

}

MetaFork: interoperability between CilkPlus and
OpenMP

Original MetaFork code and translated OpenMP code

long fib parallel(long n)

{

long x, y;

if (n<2) return n;

else if (n<BASE)

return fib serial(n);

else

{

x = meta fork fib parallel(n-1);

y = fib parallel(n-2);

meta join;
return (x+y);

}

}

long fib parallel(long n)

{

long x, y;

if (n<2) return n;

else if (n<BASE)

return fib serial(n);

else

{

#pragma omp task shared(x)
x = fib parallel(n-1);

y = fib parallel(n-2);

#pragma omp taskwait
return (x+y);

}

}

MetaFork: interoperability between CilkPlus and
OpenMP

Original OpenMP code and translated CilkPlus code

int main()

{

int a[N];

#pragma omp parallel
#pragma omp for
for(int i=0;i<N;i++)

{

a[i] = i;

}

}

int main()

{

int a[N];

meta_for(int i=0;i<N;i++)

{

a[i] = i;

}

}

int main()

{

int a[N];

cilk_for(int i=0;i<N;i++)

{

a[i] = i;

}

}

MetaFork: interoperability between CilkPlus and
OpenMP

Original OpenMP code and translated MetaFork code

void main()

{

int i, j;

#pragma omp parallel
{

#pragma omp sections
{

#pragma omp section
{

i++;

}

#pragma omp section
{

j++;

}

}

}

}

void main()

{

int i, j;

{

meta fork shared(i)
{

i++;

}

meta fork shared(j)
{

j++;

}

meta join;
}

}

MetaFork: interoperability between CilkPlus and
OpenMP

Original MetaFork code and translated CilkPlus code

1 void task() {

2 int a100;

3 int b100;

4 int k = 100;

5 meta_fork shared(a) {

6 for(int i=0;i<k; i++){

7 ai = i;

8 bi = i;

9 }

10 }

11 }

=====================================

Outlined function:

1 static void * _taskFunc0_(void *);

2 void task() {

3 int a 100;

4 int b 100;

5 int k = 100;

6 {

7 struct __taskenv__ {

8 int b 100;

9 int (* a) 100;

10 int k;

11 } * _tenv;

12

13 _tenv = (struct __taskenv__ *) malloc(

14 sizeof(struct __taskenv__));

15 _tenv->a = &a;

16 _tenv->k = k;

17 memcpy((void *) _tenv->b, (void *) b, sizeof(b));

18 cilk_spawn _taskFunc0_(_tenv);

19 }

20 }

21

22 static void * _taskFunc0_(void * __tdata) {

23 struct __taskenv__ {

24 int b 100;

25 int (* a) 100;

26 int k;

27 };

28 struct __taskenv__ * _tenv = (struct __taskenv__ *) __tdata;

29 int (* a) 100 = _tenv->a;

30 int k = _tenv->k;

31 int (* b) 100 = &(_tenv->b);

32 {

33 for (int i = 0; i < k; i++) {

34 (*a)i = i;

35 (*b)i = i;

36 }

37 }

38 free(_tenv);

39 return (void *) 0;

40 }

MetaFork: interoperability between CilkPlus and
OpenMP

Experimentation: set up

Source of code

John Burkardt’s Home Page (Florida State University)
http://people.sc.fsu.edu/ %20jburkardt/c src/openmp/openmp.html

Barcelona OpenMP Tasks Suite (BOTS)
Cilk++ distribution examples
Students’ code

Compiler options

CilkPlus code compiled with GCC 4.8 using -O2 -g -lcilkrts -fcilkplus
OpenMP code compiled with GCC 4.8 using -O2 -g -fopenmp

Architecture

Running time on p = 1, 2, 4, 6, 8, . . . processors. All our compiled programs
were tested on :

Intel Xeon 2.66GHz/6.4GT with 12 physical cores and hyper-threading,
sharing 48GB RAM,
AMD Opteron 6168 48core nodes with 256GB RAM and 12MB L3.

MetaFork: interoperability between CilkPlus and
OpenMP

Validation

Verifying the correctness of our translators was a major requirement.
Depending on the test-case, we could use one or the other following
strategy.

For Cilk++ distribution examples and the BOTS (Barcelona OpenMP
Tasks Suite) examples:

- both a parallel code and its serial elision were executed and the
results were compared,

- since serial elisions remain unchanged by our translators, the
translated programs could be verified by the same procedire.

For FSU (Florida State University) examples:

- Since these examples do not include a serial elision of the parallel
code, they are verified by comparing the result between the original
program and translated program.

MetaFork: interoperability between CilkPlus and
OpenMP

Experimentation: two experiences

Comparing two hand-written codes via translation

For each test-case, we have a hand-written OpenMP program and a
hand-written CilkPlus program
For each test-case, we observe that one program (written by a student)
has a performance bottleneck while its counterpart (written by an expert
programmer) does not.
We translate the efficient program to the other language, then check
whether it incurs the same performance bottleneck as the inefficient
program. This generally help narrowing the issue.

Automatic translation of highly optimized code

For each test-case, we have either a hand-written-and-optimized
CilkPlus program or a hand-written-and-optimized OpenMP program.
We want to determine whether or not the translated programs have
similar serial and parallel running times as their
hand-written-and-optimized counterparts.

MetaFork: interoperability between CilkPlus and
OpenMP

Comparing hand-written codes (1/4)

Figure: Mergesort: n = 5 · 108

Different parallelizations of the same
serial algorithm (merge sort).
The original OpenMP code (written
by a student) misses to parallelize the
merge phase (and simply spawns the
two recursive calls) while the original
CilkPlus code (written by an expert)
does both.
On the figure, the speedup curve of
the translated OpenMP code is as
theoretically expected while the
speedup curve of the original
OpenMP code shows a limited
scalability.
Hence, the translated OpenMP (and
the original CilkPlus program)
exposes more parallelism, thus
narrowing the performance bottleneck
in the original hand-written OpenMP
code.

MetaFork: interoperability between CilkPlus and
OpenMP

Comparing two hand-written codes (2/4)

Figure: Matrix inversion: n = 4096

Here, the two original parallel
programs are based on different
serial algorithms for matrix
inversion.
The original OpenMP code uses
Gauss-Jordan elimination
algorithm while the original
CilkPlus code uses a
divide-and-conquer approach
based on Schur’s complement.
The code translated from
CilkPlus to OpenMP suggests
that the latter algorithm is more
appropriate for fork-join
multithreaded languages targeting
multicores.

MetaFork: interoperability between CilkPlus and
OpenMP

Automatic translation of highly optimized code (2/9)

: DnC MM: 4096 : DnC MM: 8192

Figure: Speedup curve on intel node

About the algorithm (divide-and-conquer matrix multiplication): high
parallelism, data-and-compute-intensive, optimal cache complexity
CilkPlus (original) and OpenMP (translated) codes scale well

MetaFork: interoperability between CilkPlus and
OpenMP

Automatic translation of highly optimized code (7/9)

Figure: Protein alignment sequence:
speedup curves.

Dynamic programming
typical example: relatively
high parallelism but high
communication
/synchronization costs.
The original code was
heavily tuned to address
these latter costs.
OpenMP (original) and
CilkPlus (translated)
codes scale well up to 8
cores.

MetaFork: interoperability between CilkPlus and
OpenMP

Interoperability: automatic translation of highly optimized code

Test Input size CilkPlus OpenMP

T1 T16 T1 T16

8-way 2048 0.423 0.231 0.421 0.213
Toom-Cook 4096 1.849 0.76 1.831 0.644

8192 9.646 2.742 9.241 2.774
16384 39.597 9.477 39.051 8.805
32768 174.365 34.863 172.562 33.032

DnC 2048 0.874 0.259 0.867 0.299
Plain 4096 3.95 1.264 3.925 1.123
Polynomial 8192 18.196 3.335 18.154 4.428
Multiplication 16384 77.867 12.778 75.885 12.674

32768 331.351 55.841 332.126 55.925

Table: BPAS timings with 1 and 16 workers: original CilkPlus code and translated OpenMP code

MetaFork: interoperability between CilkPlus and
OpenMP

Parallelism overhead measurements

Test Input size CilkPlus OpenMP

Serial T1 Serial T1

Protein alignment (for) 100 568.07 566.10 568.79 568.16
quicksort 5 · 108 94.42 96.23 94.15 97.20
prefixsum 1 · 109 27.06 28.48 27.14 28.42
Fibonacci 1 · 109 96.24 96.26 97.56 97.69
DnC MM 1 · 109 752.04 752.74 751.79 750.34
Mandelbrot 500 × 500 0.64 0.64 0.64 0.65

Table: Timings on AMD 48-core: underlined timings refer to original code and non-underlined timings to
translated code.

Experiment conclusion

Our experimental results suggest that our translators can be used to narrow performance
bottlenecks.
The speed-up curves of the original and translated codes either match or have similar shape.
Nevertheless, in some cases, either the original or the translated program outperforms its
counterpart.

Conclusion

Plan

Conclusion

Concluding remarks

Summary

We presented a platform for translating programs between
multithreaded languages based on the fork-join parallelism model.

Translations are performed via MetaFork, a language which
borrows from CilkPlus and OpenMP.

Translation process does not add overheads on the tested examples.

Project website: www.metafork.org.

Work in progress

The MetaFork language is extending to accelerator model(GPU)

The MetaFork framework is being enhanced with automatic
generation of parametric parallel programs

www.metafork.org

