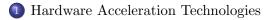
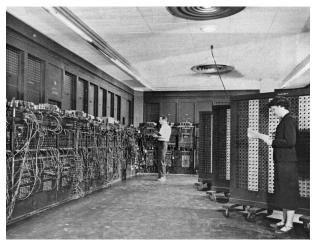

CS3101b – Theory of High-performance Computing

Marc Moreno Maza


University of Western Ontario, London, Ontario (Canada)

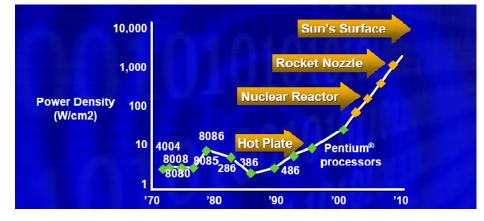
CS3101

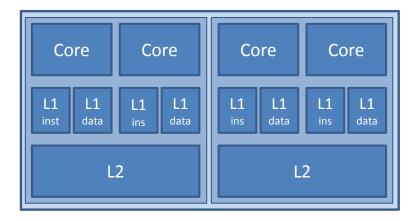


- 2 High-performance Computing
- 3 Optimizing Code for Data Locality: A Case Study
- 4 Multicore Programming: Code Examples
- **(5)** CS3101 Course Outline

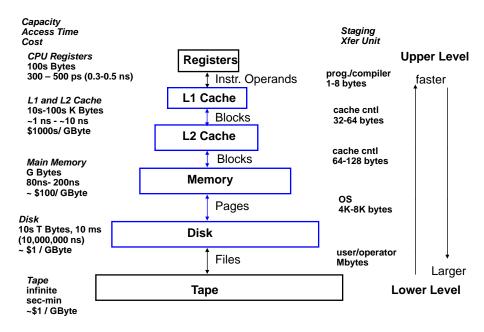
Plan

- 2 High-performance Computing
- 3 Optimizing Code for Data Locality: A Case Study
- Multicore Programming: Code Examples
- 5 CS3101 Course Outline

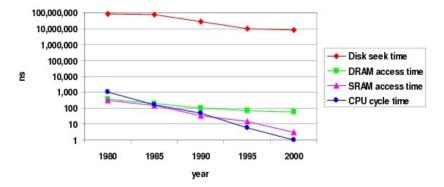

Electronic Numerical Integrator And Computer (ENIAC). The first general-purpose, electronic computer. It was a Turing-complete, digital computer capable of being reprogrammed and was running at 5,000 cycles per second for operations on the 10-digit numbers.


The IBM Personal Computer, commonly known as the IBM PC (Introduced on August 12, 1981).

The Pentium Family.



Main Memory


L1 Data Cache							
Size	Line Size	Latency Associati					
32 KB	64 bytes	3 cycles	8-way				
L1 Instruction Cache							
Size	Line Size	Latency	Associativty				
32 KB	64 bytes	3 cycles 8-way					
L2 Cache							
Size	Line Size	Latency Associati					
6 MB	64 bytes	14 cycles 24-way					

Typical cache specifications of a multicore in 2008.

The CPU-Memory Gap

The increasing gap between DRAM, disk, and CPU speeds.

Once uopn a time, every thing was slow in a computer

Plan

2 High-performance Computing

3 Optimizing Code for Data Locality: A Case Study

- 4 Multicore Programming: Code Examples
- 5 CS3101 Course Outline

Why is Performance Important?

- Acceptable response time (Anti-lock break system, Mpeg decoder, Google Search, etc.)
- Ability to scale (from hundred to millions of users/documents/data)
- Use less power / resource (viability of cell phones dictated by battery life, etc.)

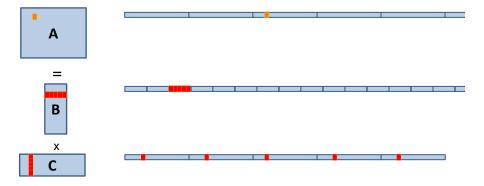
Improving Performance is Hard

- Knowing that there is a performance problem: complexity estimates, performance analysis software tools, read the generated assembly code, scalability testing, comparisons to similar programs, experience and curiosity!
- Establishing the leading cause of the problem: examine the algorithm, the data structures, the data layout; understand the programming environment and architecture.
- Eliminating the performance problem: (Re-)design the algorithm, data structures and data layout, write programs *close to the metal* (C/C++), adhere to software engineering principles (simplicity, modularity, portability)
- Golden rule: Be reactive, not proactive!

Plan

2 High-performance Computing

3 Optimizing Code for Data Locality: A Case Study


- 4 Multicore Programming: Code Examples
- 5 CS3101 Course Outline

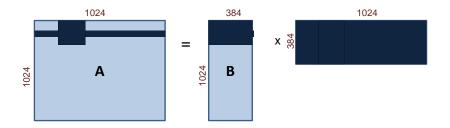
A typical matrix multiplication C code

```
#define IND(A, x, y, d) A[(x)*(d)+(y)]
uint64 t testMM(const int x. const int v. const int z)
Ł
  double *A; double *B; double *C; double *Cx;
        long started, ended;
        float timeTaken;
        int i, j, k;
        srand(getSeed());
        A = (double *)malloc(sizeof(double)*x*y);
        B = (double *)malloc(sizeof(double)*x*z);
        C = (double *)malloc(sizeof(double)*v*z);
        for (i = 0; i < x*z; i++) B[i] = (double) rand();</pre>
        for (i = 0; i < y*z; i++) C[i] = (double) rand() ;</pre>
        for (i = 0; i < x*y; i++) A[i] = 0;
        started = example_get_time();
        for (i = 0; i < x; i++)
          for (j = 0; j < y; j++)
             for (k = 0; k < z; k++)
                    // A[i][i] += B[i][k] + C[k][i];
            IND(A,i,j,y) \neq IND(B,i,k,z) * IND(C,k,j,z);
        ended = example_get_time();
        timeTaken = (ended - started)/1.f;
  return timeTaken;
```

}

Issues with matrix representation

• Contiguous accesses are better:


- Data fetch as cache line (Core 2 Duo 64 byte L2 Cache line)
- With contiguous data, a single cache fetch supports 8 reads of doubles.
- Transposing the matrix C should reduce L1 cache misses!

}

Transposing for optimizing spatial locality

```
float testMM(const int x. const int v. const int z)
ſ
  double *A; double *B; double *C; double *Cx;
        long started, ended; float timeTaken; int i, j, k;
        A = (double *)malloc(sizeof(double)*x*y);
        B = (double *)malloc(sizeof(double)*x*z):
        C = (double *)malloc(sizeof(double)*y*z);
        Cx = (double *)malloc(sizeof(double)*v*z);
        srand(getSeed());
        for (i = 0; i < x*z; i++) B[i] = (double) rand();</pre>
        for (i = 0; i < y*z; i++) C[i] = (double) rand();</pre>
        for (i = 0; i < x*y; i++) A[i] = 0;
        started = example_get_time();
        for(j =0; j < y; j++)</pre>
          for(k=0: k < z: k++)
            IND(Cx,j,k,z) = IND(C, k, j, y);
        for (i = 0; i < x; i++)
          for (j = 0; j < y; j++)
             for (k = 0; k < z; k++)
               IND(A, i, j, y) \neq IND(B, i, k, z) \neq IND(Cx, j, k, z);
        ended = example_get_time();
        timeTaken = (ended - started)/1.f:
  return timeTaken;
```

Issues with data reuse

- Naive calculation of a row of A, so computing 1024 coefficients: 1024 accesses in A, 384 in B and $1024 \times 384 = 393, 216$ in C. Total = 394, 524.
- Computing a 32×32 -block of A, so computing again 1024 coefficients: 1024 accesses in A, 384×32 in B and 32×384 in C. Total = 25,600.
- The iteration space is traversed so as to reduce memory accesses.

Blocking for optimizing temporal locality

```
float testMM(const int x, const int y, const int z)
{
        double *A: double *B: double *C: double *Cx:
        long started, ended; float timeTaken; int i, j, k, i0, j0, k0;
        A = (double *)malloc(sizeof(double)*x*y);
        B = (double *)malloc(sizeof(double)*x*z);
        C = (double *)malloc(sizeof(double)*v*z);
        srand(getSeed());
        for (i = 0; i < x*z; i++) B[i] = (double) rand();</pre>
        for (i = 0; i < y*z; i++) C[i] = (double) rand();</pre>
        for (i = 0; i < x*y; i++) A[i] = 0;
        started = example_get_time();
        for (i = 0; i < x; i += BLOCK_X)
          for (j = 0; j < y; j += BLOCK_Y)
            for (k = 0; k < z; k += BLOCK_Z)
              for (i0 = i: i0 < min(i + BLOCK X, x); i0++)
                for (j0 = j; j0 < min(j + BLOCK_Y, y); j0++)</pre>
                   for (k0 = k; k0 < min(k + BLOCK_Z, z); k0++)
            IND(A,i0,j0,y) += IND(B,i0,k0,z) * IND(C,k0,j0,z);
         ended = example_get_time();
         timeTaken = (ended - started)/1.f:
  return timeTaken:
```

}

}

Transposing and blocking for optimizing data locality

```
float testMM(const int x, const int y, const int z)
{
        double *A: double *B: double *C: double *Cx:
        long started, ended; float timeTaken; int i, j, k, i0, j0, k0;
        A = (double *)malloc(sizeof(double)*x*y);
        B = (double *)malloc(sizeof(double)*x*z);
        C = (double *)malloc(sizeof(double)*y*z);
        srand(getSeed());
        for (i = 0; i < x*z; i++) B[i] = (double) rand();</pre>
        for (i = 0; i < y*z; i++) C[i] = (double) rand();</pre>
        for (i = 0; i < x*y; i++) A[i] = 0;
        started = example_get_time();
        for (i = 0; i < x; i += BLOCK_X)
          for (j = 0; j < y; j += BLOCK_Y)
            for (k = 0; k < z; k += BLOCK_Z)
              for (i0 = i: i0 < min(i + BLOCK X, x); i0++)
                for (j0 = j; j0 < min(j + BLOCK_Y, y); j0++)</pre>
                   for (k0 = k; k0 < min(k + BLOCK_Z, z); k0++)
              IND(A,i0,j0,y) += IND(B,i0,k0,z) * IND(C,j0,k0,z);
        ended = example_get_time();
        timeTaken = (ended - started)/1.f;
        return timeTaken:
```

Experimental results

Computing the product of two $n \times n$ matrices on my laptop (Core2 Duo CPU P8600 @ 2.40GHz, L1 cache of 3072 KB, 4 GBytes of RAM)

n	naive	transposed	speedup	64×64 -tiled	speedup	t. & t.	speedup
128	7	3		7		2	
256	26	43		155		23	
512	1805	265	6.81	1928	0.936	187	9.65
1024	24723	3730	6.62	14020	1.76	1490	16.59
2048	271446	29767	9.11	112298	2.41	11960	22.69
4096	2344594	238453	9.83	1009445	2.32	101264	23.15
Timings are in milliceconds							

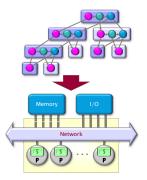
Timings are in milliseconds.

The cache-oblivious multiplication (more on this later) runs within 12978 and 106758 for n = 2048 and n = 4096 respectively.

Plan

- 2 High-performance Computing
- ⁽³⁾ Optimizing Code for Data Locality: A Case Study
- 4 Multicore Programming: Code Examples
 - 5 CS3101 Course Outline

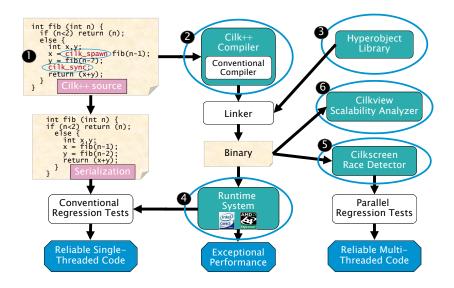
Cilk and CilkPlus


- Cilk has been developed since 1994 at the MIT Laboratory for Computer Science by Prof. Charles E. Leiserson and his group, in particular by Matteo Frigo.
- Cilk has been integrated into Intel C compiler under the name CilkPlus, see http://www.cilk.com/
- CilkPlus (resp. Cilk) is a small set of linguistic extensions to C++ (resp. C) supporting fork-join parallelism
- Both Cilk and CilkPlus feature a provably efficient work-stealing scheduler.
- CilkPlus provides a hyperobject library for parallelizing code with global variables and performing reduction for data aggregation.
- CilkPlus includes the Cilkscreen race detector and the Cilkview performance analyzer.

Nested Parallelism in CilkPlus

```
int fib(int n)
{
    if (n < 2) return n;
    int x, y;
    x = cilk_spawn fib(n-1);
    y = fib(n-2);
    cilk_sync;
    return x+y;
}</pre>
```

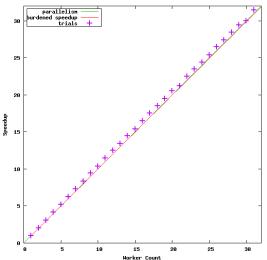
- The named child function cilk_spawn fib(n-1) may execute in parallel with its parent
- CilkPlus keywords cilk_spawn and cilk_sync grant permissions for parallel execution. They do not command parallel execution.


Scheduling

A **scheduler**'s job is to map a computation to particular processors. Such a mapping is called a **schedule**.

- If decisions are made at runtime, the scheduler is *online*, otherwise, it is *offline*
- Cilk++'s scheduler maps strands onto processors dynamically at runtime.

The CilkPlus Platform


Benchmarks for the parallel version of the divide-n-conquer mm

Multiplying a 4000x8000 matrix by a 8000x4000 matrix

- on 32 cores = 8 sockets x 4 cores (Quad Core AMD Opteron 8354) per socket.
- The 32 cores share a L3 32-way set-associative cache of 2 Mbytes.

#core	Elision (s)	Parallel (s)	speedup
8	420.906	51.365	8.19
16	432.419	25.845	16.73
24	413.681	17.361	23.83
32	389.300	13.051	29.83

Benchmarks using Cilkview

Speedup for 'multiply 5000x10000 matrix by 10000x5000 matrix'

Plan

- Hardware Acceleration Technologies
- 2 High-performance Computing
- ⁽³⁾ Optimizing Code for Data Locality: A Case Study
 - 4 Multicore Programming: Code Examples
- **(5)** CS3101 Course Outline

Course Topics

Week 1: Course presentation and orientation

- Week 2-3: Cache memories and their impact on the performance of computer programs
 - Week 4: Analyzing the cache complexity of algorithms
 - Week 5: Multicore architectures and the fork-join multithreaded parallelism
 - Week 6: Analysis of fork-join multithreaded algorithms
 - Weeks 7: Work stealing schedulers: model and implementation
 - Week 8: Synchronizing without locks
 - Week 9: Fundamental models of concurrent computations (PRAM and its variants)
 - Week 10: Analysis of algorithms in the PRAM family models
- Week 11: Highly data parallel architecture models (pipeline, stream, vector, etc.)
- Weeks 12: Many-core processors (GPGPUs)
- Weeks 13: Multi-processed parallelism, message passing: an overview

About this course

- Prerequisites: Computer Science 2101A/B or 2211A/B.
- Objectives: introducing students to the necessary theoretical background (architectures, models of computations, algorithms) in order to understand and practice high-performance computing.
- This course can be seen as extension of other CS courses such as 3331A - Foundations of Computer Science I 3305B - Operating Systems 3340B 3340B - Analysis of Algorithms I 3350B - Computer Architecture, providing the parallel dimension of Today's Computer Science.
- It will become next year a preliminary requirement to 4402B Distributed and Parallel Systems.
- We will cover a large of materials and we will have tutorial every week.