
CS3101b – Theory of High-performance
Computing

Marc Moreno Maza

University of Western Ontario, London, Ontario (Canada)

CS3101

Plan

1 Hardware Acceleration Technologies

2 High-performance Computing

3 Optimizing Code for Data Locality: A Case Study

4 Multicore Programming: Code Examples

5 CS3101 Course Outline

Hardware Acceleration Technologies

Plan

1 Hardware Acceleration Technologies

2 High-performance Computing

3 Optimizing Code for Data Locality: A Case Study

4 Multicore Programming: Code Examples

5 CS3101 Course Outline

Hardware Acceleration Technologies

Electronic Numerical Integrator And Computer (ENIAC). The first
general-purpose, electronic computer. It was a Turing-complete, digital

computer capable of being reprogrammed and was running at 5,000 cycles
per second for operations on the 10-digit numbers.

Hardware Acceleration Technologies

The IBM Personal Computer, commonly known as the IBM PC
(Introduced on August 12, 1981).

Hardware Acceleration Technologies

The Pentium Family.

Hardware Acceleration Technologies

Hardware Acceleration Technologies

Hardware Acceleration Technologies

Core Core Core Core

L1
inst

L1
data

L1
ins

L1
data

L1
ins

L1
data

L1
ins

L1
data

L2 L2

Main Memory

Hardware Acceleration Technologies

Hardware Acceleration Technologies

L1 Data Cache
Size Line Size Latency Associativty
32 KB 64 bytes 3 cycles 8‐way32 KB 64 bytes 3 cycles 8‐way

L1 Instruction Cache
Size Line Size Latency Associativty
32 KB 64 bytes 3 cycles 8‐way

L2 CacheL2 Cache
Size Line Size Latency Associativty
6 MB 64 bytes 14 cycles 24‐way

Typical cache specifications of a multicore in 2008.

Hardware Acceleration Technologies

Capacity
Access Time
Cost

Staging
Xfer Unit

CPU Registers
100s Bytes
300 – 500 ps (0.3-0.5 ns)

L1 d L2 C h

Registers

L1 Cache
Instr. Operands prog./compiler

1-8 bytes

Upper Level

faster

L1 and L2 Cache
10s-100s K Bytes
~1 ns - ~10 ns
$1000s/ GByte

L1 Cache
Blocks

cache cntl
32-64 bytes

L2 Cache
h tl

Main Memory
G Bytes
80ns- 200ns
~ $100/ GByte

Memory
OS

cache cntl
64-128 bytesBlocks

Disk
10s T Bytes, 10 ms
(10,000,000 ns)
~ $1 / GByte

Disk

Pages OS
4K-8K bytes

user/operator $1 / GByte

Tape
infinite
sec-min

Tape

Files user/operator
Mbytes

Lower Level
Larger

sec min
~$1 / GByte

Hardware Acceleration Technologies

Once uopn a time, every thing was slow in a computer . . .

High-performance Computing

Plan

1 Hardware Acceleration Technologies

2 High-performance Computing

3 Optimizing Code for Data Locality: A Case Study

4 Multicore Programming: Code Examples

5 CS3101 Course Outline

High-performance Computing

Why is Performance Important?

Acceptable response time (Anti-lock break system, Mpeg decoder,
Google Search, etc.)

Ability to scale (from hundred to millions of users/documents/data)

Use less power / resource (viability of cell phones dictated by battery
life, etc.)

High-performance Computing

Improving Performance is Hard

Knowing that there is a performance problem: complexity estimates,
performance analysis software tools, read the generated assembly
code, scalability testing, comparisons to similar programs, experience
and curiosity!

Establishing the leading cause of the problem: examine the algorithm,
the data structures, the data layout; understand the programming
environment and architecture.

Eliminating the performance problem: (Re-)design the algorithm,
data structures and data layout, write programs close to the metal
(C/C++), adhere to software engineering principles (simplicity,
modularity, portability)

Golden rule: Be reactive, not proactive!

Optimizing Code for Data Locality: A Case Study

Plan

1 Hardware Acceleration Technologies

2 High-performance Computing

3 Optimizing Code for Data Locality: A Case Study

4 Multicore Programming: Code Examples

5 CS3101 Course Outline

Optimizing Code for Data Locality: A Case Study

A typical matrix multiplication C code

#define IND(A, x, y, d) A[(x)*(d)+(y)]

uint64_t testMM(const int x, const int y, const int z)

{

double *A; double *B; double *C; double *Cx;

long started, ended;

float timeTaken;

int i, j, k;

srand(getSeed());

A = (double *)malloc(sizeof(double)*x*y);

B = (double *)malloc(sizeof(double)*x*z);

C = (double *)malloc(sizeof(double)*y*z);

for (i = 0; i < x*z; i++) B[i] = (double) rand() ;

for (i = 0; i < y*z; i++) C[i] = (double) rand() ;

for (i = 0; i < x*y; i++) A[i] = 0 ;

started = example_get_time();

for (i = 0; i < x; i++)

for (j = 0; j < y; j++)

for (k = 0; k < z; k++)

// A[i][j] += B[i][k] + C[k][j];

IND(A,i,j,y) += IND(B,i,k,z) * IND(C,k,j,z);

ended = example_get_time();

timeTaken = (ended - started)/1.f;

return timeTaken;

}

Optimizing Code for Data Locality: A Case Study

Issues with matrix representation

A

=

B

C
x

Contiguous accesses are better:
• Data fetch as cache line (Core 2 Duo 64 byte L2 Cache line)
• With contiguous data, a single cache fetch supports 8 reads of doubles.
• Transposing the matrix C should reduce L1 cache misses!

Optimizing Code for Data Locality: A Case Study

Transposing for optimizing spatial locality

float testMM(const int x, const int y, const int z)

{

double *A; double *B; double *C; double *Cx;

long started, ended; float timeTaken; int i, j, k;

A = (double *)malloc(sizeof(double)*x*y);

B = (double *)malloc(sizeof(double)*x*z);

C = (double *)malloc(sizeof(double)*y*z);

Cx = (double *)malloc(sizeof(double)*y*z);

srand(getSeed());

for (i = 0; i < x*z; i++) B[i] = (double) rand() ;

for (i = 0; i < y*z; i++) C[i] = (double) rand() ;

for (i = 0; i < x*y; i++) A[i] = 0 ;

started = example_get_time();

for(j =0; j < y; j++)

for(k=0; k < z; k++)

IND(Cx,j,k,z) = IND(C, k, j, y);

for (i = 0; i < x; i++)

for (j = 0; j < y; j++)

for (k = 0; k < z; k++)

IND(A, i, j, y) += IND(B, i, k, z) *IND(Cx, j, k, z);

ended = example_get_time();

timeTaken = (ended - started)/1.f;

return timeTaken;

}

Optimizing Code for Data Locality: A Case Study

Issues with data reuse

C

1024 1024384

4

A B

C= x

10
24

10
24

38
4

Naive calculation of a row of A, so computing 1024 coefficients: 1024
accesses in A, 384 in B and 1024× 384 = 393, 216 in C. Total
= 394, 524.

Computing a 32× 32-block of A, so computing again 1024
coefficients: 1024 accesses in A, 384× 32 in B and 32× 384 in C.
Total = 25, 600.

The iteration space is traversed so as to reduce memory accesses.

Optimizing Code for Data Locality: A Case Study

Blocking for optimizing temporal locality

float testMM(const int x, const int y, const int z)

{

double *A; double *B; double *C; double *Cx;

long started, ended; float timeTaken; int i, j, k, i0, j0, k0;

A = (double *)malloc(sizeof(double)*x*y);

B = (double *)malloc(sizeof(double)*x*z);

C = (double *)malloc(sizeof(double)*y*z);

srand(getSeed());

for (i = 0; i < x*z; i++) B[i] = (double) rand() ;

for (i = 0; i < y*z; i++) C[i] = (double) rand() ;

for (i = 0; i < x*y; i++) A[i] = 0 ;

started = example_get_time();

for (i = 0; i < x; i += BLOCK_X)

for (j = 0; j < y; j += BLOCK_Y)

for (k = 0; k < z; k += BLOCK_Z)

for (i0 = i; i0 < min(i + BLOCK_X, x); i0++)

for (j0 = j; j0 < min(j + BLOCK_Y, y); j0++)

for (k0 = k; k0 < min(k + BLOCK_Z, z); k0++)

IND(A,i0,j0,y) += IND(B,i0,k0,z) * IND(C,k0,j0,z);

ended = example_get_time();

timeTaken = (ended - started)/1.f;

return timeTaken;

}

Optimizing Code for Data Locality: A Case Study

Transposing and blocking for optimizing data locality

float testMM(const int x, const int y, const int z)

{

double *A; double *B; double *C; double *Cx;

long started, ended; float timeTaken; int i, j, k, i0, j0, k0;

A = (double *)malloc(sizeof(double)*x*y);

B = (double *)malloc(sizeof(double)*x*z);

C = (double *)malloc(sizeof(double)*y*z);

srand(getSeed());

for (i = 0; i < x*z; i++) B[i] = (double) rand() ;

for (i = 0; i < y*z; i++) C[i] = (double) rand() ;

for (i = 0; i < x*y; i++) A[i] = 0 ;

started = example_get_time();

for (i = 0; i < x; i += BLOCK_X)

for (j = 0; j < y; j += BLOCK_Y)

for (k = 0; k < z; k += BLOCK_Z)

for (i0 = i; i0 < min(i + BLOCK_X, x); i0++)

for (j0 = j; j0 < min(j + BLOCK_Y, y); j0++)

for (k0 = k; k0 < min(k + BLOCK_Z, z); k0++)

IND(A,i0,j0,y) += IND(B,i0,k0,z) * IND(C,j0,k0,z);

ended = example_get_time();

timeTaken = (ended - started)/1.f;

return timeTaken;

}

Optimizing Code for Data Locality: A Case Study

Experimental results

Computing the product of two n× n matrices on my laptop (Core2 Duo
CPU P8600 @ 2.40GHz, L1 cache of 3072 KB, 4 GBytes of RAM)

n naive transposed speedup 64× 64-tiled speedup t. & t. speedup
128 7 3 7 2
256 26 43 155 23
512 1805 265 6.81 1928 0.936 187 9.65
1024 24723 3730 6.62 14020 1.76 1490 16.59
2048 271446 29767 9.11 112298 2.41 11960 22.69
4096 2344594 238453 9.83 1009445 2.32 101264 23.15

Timings are in milliseconds.

The cache-oblivious multiplication (more on this later) runs within 12978
and 106758 for n = 2048 and n = 4096 respectively.

Multicore Programming: Code Examples

Plan

1 Hardware Acceleration Technologies

2 High-performance Computing

3 Optimizing Code for Data Locality: A Case Study

4 Multicore Programming: Code Examples

5 CS3101 Course Outline

Multicore Programming: Code Examples

Cilk and CilkPlus

Cilk has been developed since 1994 at the MIT Laboratory for
Computer Science by Prof. Charles E. Leiserson and his group, in
particular by Matteo Frigo.

Cilk has been integrated into Intel C compiler under the name
CilkPlus, see http://www.cilk.com/

CilkPlus (resp. Cilk) is a small set of linguistic extensions to C++

(resp. C) supporting fork-join parallelism

Both Cilk and CilkPlus feature a provably efficient work-stealing
scheduler.

CilkPlus provides a hyperobject library for parallelizing code with
global variables and performing reduction for data aggregation.

CilkPlus includes the Cilkscreen race detector and the Cilkview

performance analyzer.

Multicore Programming: Code Examples

Nested Parallelism in CilkPlus

int fib(int n)

{

if (n < 2) return n;

int x, y;

x = cilk_spawn fib(n-1);

y = fib(n-2);

cilk_sync;

return x+y;

}

The named child function cilk spawn fib(n-1) may execute in
parallel with its parent

CilkPlus keywords cilk spawn and cilk sync grant permissions
for parallel execution. They do not command parallel execution.

Multicore Programming: Code Examples

Scheduling

Memory I/O

Network

P$ $ $…P
P P P
$ $ $

A scheduler’s job is to map a computation to particular processors. Such
a mapping is called a schedule.

If decisions are made at runtime, the scheduler is online, otherwise, it
is offline

Cilk++’s scheduler maps strands onto processors dynamically at
runtime.

Multicore Programming: Code Examples

The CilkPlus Platform

Cilk++
Compiler

Conventional

Hyperobject
Library1

2 3int fib (int n) {
if (n<2) return (n);
else {

int x,y;
x = cilk_spawn fib(n-1);
y = fib(n-2);

Cilk++source

Conventional
Compiler

y b();
cilk_sync;
return (x+y);

}
}

Cilkview
S l bilit A l

6

BinaryBinary Cilkscreen

Linker

5

int fib (int n) {
if (n<2) return (n);

else {
int x,y;
x = fib(n-1);
y = fib(n 2);

int fib (int n) {
if (n<2) return (n);

else {
int x,y;
x = fib(n-1);
y = fib(n 2);

Scalability Analyzer

BinaryBinary Cilkscreen
Race Detector

y = fib(n-2);
return (x+y);

}
}

y = fib(n-2);
return (x+y);

}
} Serialization

Runtime4Conventional
Regression Tests

Parallel
Regression Tests

Runtime
System

4

Reliable Single-
Threaded Code

Exceptional
Performance

Reliable Multi-
Threaded Code

Multicore Programming: Code Examples

Benchmarks for the parallel version of the divide-n-conquer mm

Multiplying a 4000x8000 matrix by a 8000x4000 matrix

on 32 cores = 8 sockets x 4 cores (Quad Core AMD Opteron 8354)
per socket.

The 32 cores share a L3 32-way set-associative cache of 2 Mbytes.

#core Elision (s) Parallel (s) speedup

8 420.906 51.365 8.19
16 432.419 25.845 16.73
24 413.681 17.361 23.83
32 389.300 13.051 29.83

Multicore Programming: Code Examples

Benchmarks using Cilkview

CS3101 Course Outline

Plan

1 Hardware Acceleration Technologies

2 High-performance Computing

3 Optimizing Code for Data Locality: A Case Study

4 Multicore Programming: Code Examples

5 CS3101 Course Outline

CS3101 Course Outline

Course Topics

Week 1: Course presentation and orientation

Week 2-3: Cache memories and their impact on the performance of
computer programs

Week 4: Analyzing the cache complexity of algorithms

Week 5: Multicore architectures and the fork-join multithreaded
parallelism

Week 6: Analysis of fork-join multithreaded algorithms

Weeks 7: Work stealing schedulers: model and implementation

Week 8: Synchronizing without locks

Week 9: Fundamental models of concurrent computations (PRAM
and its variants)

Week 10: Analysis of algorithms in the PRAM family models

Week 11: Highly data parallel architecture models (pipeline, stream,
vector, etc.)

Weeks 12: Many-core processors (GPGPUs)

Weeks 13: Multi-processed parallelism, message passing: an overview

CS3101 Course Outline

About this course

Prerequisites: Computer Science 2101A/B or 2211A/B.

Objectives: introducing students to the necessary theoretical
background (architectures, models of computations, algorithms) in
order to understand and practice high-performance computing.

This course can be seen as extension of other CS courses such as
3331A - Foundations of Computer Science I 3305B - Operating
Systems 3340B 3340B - Analysis of Algorithms I 3350B - Computer
Architecture, providing the parallel dimension of Today’s Computer
Science.

It will become next year a preliminary requirement to 4402B -
Distributed and Parallel Systems.

We will cover a large of materials and we will have tutorial every week.

	Hardware Acceleration Technologies
	High-performance Computing
	Optimizing Code for Data Locality: A Case Study
	Multicore Programming: Code Examples
	CS3101 Course Outline

