
Integrating High-Performance Polynomial

Arithmetic into Maple

Xin Li and Wei Pan

30 January 2009

With the need of achieving high performance on practical problems, com-
puter algebra systems devote more and more effort on implementation tech-
niques. This phenomenon is certainly accentuated by the democratization of
parallel architectures (multicores) and other hardware accelerating technologies.

In this report, we describe the integration of a C library offering highly op-
timized routines for symbolic computation with polynomials, into the computer
algebra system Maple. By bridging these low-level and architecture-aware rou-
tines to high-level mathematical code, large speed-up factors are obtained for
commands solving systems of non-linear equations. Moreover, the Maple end-
user can rely on new powerful routines for implementing algebraic packages.

1 Background

1.1 Computer algebra software and high-performance com-

puting

The computations performed by computer algebra systems (CAS) are mainly
symbolic. As a result, they suffer from the well-phenomenon of expression swell

that each of us can experiment when solving systems of equations by hand.
In addition, computer algebra algorithms are often computationally intensive,
not to say hard. For instance, solving a polynomial system in n unknowns and
where each polynomial has degree d requires “at least” dn operations, simply
because such a system may have dn solutions. This complexity barrier put
the designers of CAS to challenge. In fact, naive implementation of computer
algebra algorithms can often limit the applicability of CAS to problems that
experimented scientists and engineers can solve by hand anyway.

Different tricks can be applied to allow better performances in symbolic com-
putation. Among the most famous techniques are the so-called modular methods

which reduce computations (say solving systems of linear or non-linear equa-
tions) with integer coefficients to computations modulo prime numbers. Either
the Chinese Remaindering Algorithm or Newton Iteration are used to combine
these modular calculations and obtain the desired result with integer coeffi-

1

cients. See [3] for details. Not only this principle allows to control expression
swell but it also often reduces the complexity of computations.

Another important trick is the use of “faster algorithms” for performing fun-
damental operations such as polynomial or matrix multiplication. Indeed, the
complexity of higher-level algorithms is often a function of that of those basic
operations. Asymptotically fast algorithms for exact polynomial and matrix
multiplication have been known for more than forty years. Among others, the
work of Karatsuba [5], Cooley and Tukey [1], and Strassen [15] has initiated
an intense activity in this area. Unfortunately, its impact on CAS has been
slight until recently. One reason was, probably, the belief that these algorithms
were of very limited practical interest. In [4] p. 132, referring to [12], the au-
thors state that the FFT-based univariate polynomial multiplication is “better
than the classical method approximately when n + m ≥ 600”, where n and m

are the degrees of the input polynomials. In [6] p. 501, quoting Brent, Knuth
writes “He (R. P. Brent) estimated that Strassen’s scheme would not begin to
excel over Winograd’s until n ≈ 250 and such enormous matrices rarely oc-
cur in practice unless they are very sparse, when other techniques apply.” In
[14], Shoup announced that his implementation of FFT-based univariate multi-
plication could outperform classical multiplication methods from input degrees
n,m ≥ 32. Therefore, the question became how to put into practice asymptoti-
cally fast polynomial arithmetic algorithms, since there was no doubt anymore
that they could help. This question is addressed in [2] where the authors dis-
cuss how those algorithms could be made available in high-level programming
language environment.

High-performance computing applied to CAS involve not only the use of
“faster algorithms” but also the use of “finer implementation techniques”. The
success of Shoup and his followers is based on a sharp understanding of the
targeted architecture and its features such as a memory hierarchy. It is well-
recognized today that, for those fundamental arithmetic operations, both cache
complexity and algebraic complexity are two important efficiency measures.
With the move toward parallel computing, the parallel efficiency (that is, the
speed-up factor divided by the number of processors) is another one.

1.2 The modpn library

Following the work of Shoup, our supervisor, Dr. Marc Moreno Maza, imple-
mented asymptotically fast algorithms in the Aldor programming language.
The objective was to achieve high-performance within a high-level language.
The study reported in [2] shows a relative success in this enterprise and sug-
gests that a C implementation is needed in order to better control the machine
resources (CPU, memory).

In 2004, the first author started to implement FFT-based polynomial arith-
metic operations in C. A major focus was put on univariate and multivariate
polynomial multiplication for about two years in order to compete with the
best known packages. As illustrated by the results published in [2], not only
this goal was reached but our code often outperforms the packages with similar

2

specifications.
In 2006, more advanced operations were considered such as polynomial sim-

plification (i.e. normal form of a polynomial w.r.t. a set of rules). New algo-
rithms (with best known complexity) were designed and implemented [10]. The
experimental results extended the success of [2]. More recently, asymptotically
fast algorithms for solving systems of equations (under some assumptions) have
been worked out by the two others [9]. Once again, comparative experimenta-
tion brought results favorable to our code.

Today, the modpn library is the set of those highly optimized C routines for
multivariate polynomials. Dense and sparse representations are supported by
means of techniques based on FFT and SLP (Straight-Line Programs). The
source code amounts to 36,000 lines.

1.3 The RegularChains library

The Aldor library of our supervisor led to the realization of another package
(this time in the Maple language) called the RegularChains library [7]. The
second author and other students of Dr. Marc Moreno Maza participate to the
development of this library which amounts today to 121 commands and 70,000
lines of C Code

The original motivation for the RegularChains library is to design new high-
level algorithms for solving systems of polynomial equations symbolically and
studying their solutions. Key features are: solving parametric systems, com-
puting the real solutions of polynomial systems (including in the parametric
case), performing linear algebra over non-integral domains etc. Until the work
reported here, the RegularChains library was relying exclusively on the Maple

built-in polynomial arithmetic, which implement classical (and non-fast) poly-
nomial arithmetic.

1.4 A first integration experience

In previous work [2, 8, 11] we have investigated the integration of asymptot-
ically fast arithmetic operations into the computer algebra system AXIOM.
Since AXIOM is based on GNU Common Lisp (GCL), we took the following
approach. We realized highly optimized implementations of our fast routines in
C and made them available to the AXIOM programming environment through
the kernel of GCL. Therefore, library functions written in the AXIOM high-
level language could be compiled down to binary code and then linked against
our C code. To observe significant speed-up factors, it was sufficient to enhance
existing AXIOM polynomial types with our fast routines (for univariate mul-
tiplication, division, GCD etc.) and call them in existing generic packages (for
instance, for univariate square-free factorization). See [11] for details.

3

2 Integration into Maple

In this section, we discuss the integration into Maple of our fast arithmetic
operations implemented in the modpn library. Most of Maple library functions
are high-level interpreted code. This is the case for those of the RegularChains
library and we shall illustrate in Section 3 how they could benefit from modpn.

2.1 Main challenges

With respect to our work with the computer algebra system AXIOM, see Sec-
tion 1.4, this Maple integration was made more difficult by the following fac-
tors. First, compiled C code and Maple interpreted code are executed by two
different runtime systems. This leads to data conversion, see Section 2.2.

Secondly, end-user objects must be allocated and de-allocated by Maple,
which implies that most data conversions between C and Maple must be per-
formed on the Maple side. (Clearly, one would prefer to implement them on
the C side, as compiled and optimized code.) Thus data conversions can become
major bottlenecks, see Section 2.4.

The fact that the Maple language does not enforce “modular programming”
or “generic programming” is a third disadvantage compared to our AXIOM in-
tegration. Providing a Maple connection-package capable of calling our efficient
C routines will not be sufficient to speed-up all Maple libraries using polyno-
mial arithmetic. Clearly, high-level Maple code needs to be rewritten to call
this connection-package and obtain improved performances. This is one of the
goals of FastArithmeticTools, a new module of the RegularChains library
discussed in Section 2.3.

Finally, the port of our C code to the different platforms that Maple support
is discussed in Section 2.5.

2.2 Interface architecture

The high performance of the C code of modpn relies on its polynomial data-
structures and the basic functions operating on them. For instance, while
performing operations on multi-dimensional arrays (such as multi-dimensional
FFTs), we transpose the data in order to optimize cache locality.

Two polynomial representations are used: multi-dimensional arrays for FFT-
based computations and direct acyclic graphs (DAGs) for SLP-based computa-
tions. By default, Maple polynomials are encoded with DAGs too. In addition,
Maple also makes use of a recursive dense representations, called recden.

We have implemented at the Maple level an interface between our C code
and Maple. This interface, also called modpn, performs conversions between
Maple-level and C-level polynomials. In addition, this interface wraps our C
functions such that a Maple user can call them in a transparent manner.

The implementation of this interface uses, in fact, five polynomial encodings
shown in Figure 1. The Maple-Dag and Maple-Recursive-Dense polynomials are
the Maple built-in types mentioned above; the C-Dag and C-Cube polynomials

4

Maple−Dag

Maple−

Recursive−

Dense

C−Dag

C−Cube

C level

Maple Level

6

7

3
4

C−2−Vector

8
9

5

1

2

Figure 1: The polynomial data representations.

are our C encodings for SLP-based and FFT-based computations. The last type,
C-2-Vector, has only one purpose: speed-up conversions between C polynomials
and Maple polynomials. Indeed, the conversions between dense objects and
fragmented-and-sparse objects can be relatively expensive.

2.3 The FastArithmeticTools module

As mentioned above, making the modpn library available to Maple users does
not imply that polynomial computations in Maple will automatically become
faster. The first reason, discussed in Section 2.2, is that modpn and Maple

polynomials are encoded differently. Even after implementing the necessary
data conversions, one still needs to invoke these conversions. In addition, modpn
polynomials work modulo prime numbers. Therefore, it is necessary to use them
through modular methods such that computations with integer coefficients could
take advantage of them.

All these reasons have led to the development of FastArithmeticTools,
a new module of the RegularChains library where we have re-implemented
core operations of this library, such as polynomials GCDs modulo a regular

chain or iterated resultant of a polynomial modulo a regular chain. For these
operations, we have transformed the original algorithms of [13] in order to create
opportunities for using fast polynomial arithmetic through modular methods.
We report on experimental results in Sections 2.4 and 3.

2.4 Dealing with conversion overheads

The frequency of conversions is application dependent; it turns out that it can
happen quite often in our algorithms for solving polynomial systems. Hence,

5

we try to reuse C objects as much as possible. Many conversions are “vol-
untary”: we are willing to conduct them, expecting that better algorithms or
better implementations can then be used in C. However, some conversions are
“involuntary”. Indeed, even if we would like all computationally intensive op-
erations be carried out at the C level, our algorithms are complex, so that it
becomes unrealistic to implement everything in C. Thus, there are cases where
we have to convert polynomials from C to Maple and use its library operations.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10 20 30 40

Other time%
Conversion time%

Recden time%
C level time%

Figure 2: Bivariate solver: profiling information.

Figure 2 illustrates how time is spent when one of polynomial system solvers
of the module FastArithmeticTools is used. On the horizontal axis is the
degree of any of the input polynomials. The Maple code of this solver (which
is specialized in solving two equations in two variables) is relatively short, about
100 lines. From modpn, it makes use of its basic polynomial operations, such as
polynomial GCD, evaluation and interpolation.

One can see than less than 10% of the total running time is spent at the
C level, despite of the fact that all the expensive algebraic computations are
performed at that level! At the Maple level, only operations such as memory
allocation, data conversions and checking the degrees of polynomials (done by
recden) are performed.

For some applications, we were led to “push down” to C some piece of code
that was originally written at the Maple level in our FastArithmeticTools

module. Figure 3 shows running times (for increasing input data size) for 3
implementations of the same operation: in pure Maple code, in mixed code
(combining Maple and C) and in pure C code. In this latter case, the only
computations performed at the Maple level are the conversions of the input
data and result. This benchmarked operation is the computation of so called
iterated resultants, here of the form res(res(p, T3,X3), T2,X2) where p, T3 are
trivariate polynomials in X3,X2,X1 and T2 is a bivariate polynomial in X2,X1,

6

 0

 20

 40

 60

 80

 100

 120

 0 10 20 30 40 50 60 70 80 90 100

tim
e

total degree

Maple
Mixed Code

C Code

Figure 3: Invertibility test: mixed code vs Magma vs unmixed code.

all modulo a 27-bit prime number. Figure 3 shows that, for this operation, data
conversions occuring during the intermediate computations are a bottleneck.
Therefore, it was necessary to implement the whole operation in C.

2.5 Architecture port and build sequence

The integration of the C code of modpn has required its adaptation such that
it could compile and run correctly on all the platforms that Maple supports.
Since modpn was originally developed with gcc under Linux 32bit, this port has
been relatively easy for the UNIX platforms. However, much more work was
needed in the case of Windows. A last step was to include the compilation of the
C-level of the modpn library into the build sequence of the whole Maple system.
This part is obviously specific to Maple and was an interesting experience.

We are grateful to the Maplesoft people for their wonderful help during
this integration experience.

3 Experimental Results and Outcomes

3.1 Maple vs Magma

We report here two comparative experimentations between FastArithmeticTools

(our Maple code supported by the modpn library) and the computer algebra
system Magma. This latter is a well-known reference for efficient implementa-
tion of polynomial arithmetic. First, we consider solving systems of bivariate
polynomials. Figure 4 shows running times for our code and Magma on generic
input systems with partial degrees d1 and d2. It is clear that, when the input
data are large enough, our code outperforms Magma.

7

 6 12 18 24 30 36 0 5 10 15 20 25 30 35 40
 0

 50
 100
 150
 200
 250
 300
 350
 400
 450
 500

Time
Magma

our code

d1
d2

Time

Figure 4: Generic bivariate systems: Magma vs. us.

 60 120 180 240 300 0 20 40 60 80 100 120
 0
 2
 4
 6
 8

 10
 12
 14
 16

Time
Magma

Our code

d1 d2
d3

Time

Figure 5: Normal forms, Magma vs. our code.

Secondly, we consider normal form computations. More technically, given
polynomials P (X1), T1(X1), T2(X1,X2), T3(X1,X2,X3), (where T1, T2, T3 is a
triangular set) such that Ti has partial degree dj w.r.t. Xj and P has partial
degree 2dj w.r.t. Xj (for 1 ≤ i ≤ j ≤ 3) one computes the remainder (or normal
form) of P w.r.t T1, T2, T3. Once again, our code outperforms Magma.

3.2 A HPC programming tool for Maple end-users

We have shown that our modpn library provides the computer algebra system
Maple with highly efficient routines for polynomial arithmetic. The new mod-
ule FastArithmeticTools of the RegularChains illustrates that the fact that
modpn can be used to support high-level and reach high-performance. We believe
that modpn can become a powerful tool for Maple end-users.

8

References

[1] J. Cooley and J. Tukey. An algorithm for the machine calculation of com-
plex Fourier +series. Math. Comp., 19:297–301, 1965.

[2] A. Filatei, X. Li, M. M. Maza, and E. Schost. Implementation techniques
for fast polynomial arithmetic in a high-level programming environment.
In Proc. ISSAC’06. ACM Press, 2006. to appear.

[3] J. Gathen and J. Gerhard. Modern Computer Algebra. Cambridge Univer-
sity Press, 1999.

[4] K. Geddes, S. Czapor, and G. Labahn. Algorithms for Computer Algebra.
Kluwer Academic Publishers, 1992.

[5] A. Karatsuba and Y. Ofman. Multiplication of multidigit numbers on
automata. Soviet Physics Doklady, (7):595–596, 1963.

[6] D. E. Knuth. The Art of Computer Programming, volume 2. Addison
Wesley, 1999.

[7] F. Lemaire, M. Moreno Maza, and Y. Xie. The RegularChains library. In
I. S. Kotsireas, editor, Maple Conference 2005, pages 355–368, 2005.

[8] X. Li and M. Moreno Maza. Efficient implementation of polynomial arith-
metic in a multiple-level programming environment. In ICMS’06, pages
12–23. Springer, 2006.

[9] X. Li, M. Moreno Maza, and W. Pan. Computations modulo regular chains,
2009. Submitted to ISSAC’09.

[10] X. Li, M. Moreno Maza, and É. Schost. Fast arithmetic for triangular sets:
From theory to practice. In ISSAC’07, pages 269–276. ACM, 2007.

[11] X. Li, M. Moreno Maza, and É. Schost. On the virtues of generic program-
ming for symbolic computation. In ICCS’07, volume 4488 of Lecture Notes

in Computer Science, pages 251–258. Springer, 2007.

[12] R. T. Moenck. Practical fast polynomial multiplication. In SYMSAC ’76:

Proceedings of the third ACM symposium on Symbolic and algebraic com-

putation, pages 136–148, New York, NY, USA, 1976. ACM Press.

[13] M. Moreno Maza. On triangular decompositions of algebraic vari-
eties. Technical Report TR 4/99, NAG Ltd, Oxford, UK, 1999.
http://www.csd.uwo.ca/∼moreno.

[14] V. Shoup. A new polynomial factorization algorithm and its implementa-
tion. J. Symb. Comp., 20(4):363–397, 1995.

[15] V. Strassen. Gaussian elimination is not optimal. Numerische Mathematik.,
13:354–356, 1969.

9

