
A Many-core Machine Model for Designing Algorithms
with Minimum Parallelism Overheads

Sardar Anisul Haque Marc Moreno Maza Ning Xie

University of Western Ontario

American University of Beirut
June 16-18, 2014

1 / 37



Plan

1 Overview

2 A Many-core Machine Model

3 Polynomial Division

4 Polynomial Multiplication

5 Conclusion

2 / 37



Parallelism Overheads and Models of Computations

Why is my parallel program not reaching linear speedup? not scaling?

The algorithm could lack of parallelism . . .
The architecture could suffer from limitations . . .
The program does not expose enough parallelism . . .
Or the concurrency platform suffers from overheads (such as
communication and synchronization costs)!

Challenges for models of computations

Retaining the features of actual computers that have a dominant
impact on program performance is hard
Using several complexity measures (work, span, cache complexity) is
necessary, but
how to combine those complexity measures in order to select the best
algorithm among several candidates for a given problem?
Parallelism overheads are often ignored or included with other
performance counters.

3 / 37



Models of computations targeting many-core architectures

Popular models

PRAM (parallel random access machine) supports data parallelism
but not task parallelism. Moreover, cannot support memory traffic
issues (cache complexity, memory contention)
Queue Read Queue Write PRAM considers memory contention,
however, it unifies in a single quantity time spent in arithmetic
operations and time spent in read/write accesses
TMM (Threaded Many-core Memory) model retains many important
characteristics of GPU-type architectures, however, the running time
estimate on P cores is not given by a Graham-Brent theorem

A many-core machine model:

We propose a many-core machine model (MMM) which aims at
optimizing algorithms targeting implementation on GPUs. We insist on

Two-level DAG (directed acyclic graph) programs
Parallelism overhead
A Graham-Brent theorem

4 / 37



How to use this model?

Minimizing parallelism overheads

Let s be a program parameter of an MMM program P that can be
arbitrarily chosen in some range S. Let s0 be a particular value of s.
Assume that, when s varies in S, the work, say WP(s), and the span,
say SP(s), do not vary much, that is, WP(s0)/WP(s) ∈ Θ(1) and
SP(s0)/SP(s) ∈ Θ(1) hold.
Assume also that the parallelism overhead OP(s) varies more
substantially, say OP(s0)/OP(s) ∈ Θ(|s − s0|).
Then, we determine a value smin ∈ S which maximizes the ratio
OP(s0)/OP(s).
We use our version of Graham-Brent’s theorem to check that the
upper bound for the running time (on P streaming multiprocessors)
of P(smin) is no more than that of P(so).

5 / 37



Plan

1 Overview

2 A Many-core Machine Model

3 Polynomial Division

4 Polynomial Multiplication

5 Conclusion

6 / 37



MMM: characteristics

Architecture:

Unbounded number of streaming multiprocessors (SMs) which are all identical

Each SM has a finite number of processing cores and a fixed-size local memory

2-level memory hierarchy, comprising an unbounded global memory with high
latency and low throughput while the SM local memories have low latency and
high throughput

7 / 37



MMM: programs

Each MMM program P is modeled by a directed acyclic graph (K, E), called the
kernel DAG of P, where each node K ∈ K represents a kernel, and each edge
E ∈ E represents a kernel call which must precede another kernel call.

Note: a kernel call can be executed whenever all its predecessors in the DAG
(K, E) have completed their execution

Since each kernel of the program P decomposes into a finite number of
thread-blocks, we map P to a second graph, called the thread block DAG of
P, whose vertex set B(P) consists of all thread-blocks of the kernels of P,
such that (B1,B2) is an edge if B1 is a thread-block of a kernel preceding the
kernel of B2 in P.

8 / 37



MMM: Execution model

Scheduling and synchronization:

At run time, an MMM machine schedules thread-blocks onto the SMs, based
on the dependencies among kernels and the hardware resources required by
each thread-block

Threads within a thread-block cooperate with each other via the local memory
of the SM running the thread-block

Thread-blocks interact with each other via the global memory

Memory access policy:

All threads of a given thread-block can access simultaneously any memory cell
of the local memory or the global memory

Read/Write conflicts are handled by the CREW (concurrent read exclusive
write) policy

9 / 37



MMM: machine parameters

For the purpose of analyzing program performance, we define two machine
parameters

U: Time (expressed in clock cycles) to transfer one machine word between
global memory and the local memory of any SM
Z : Size (expressed in machine words) of the local memory of each SM

For a thread-block B, if each thread executes at most ` local (i.e. arithmetic)
operations, and reads r (resp. writes w) words to the global memory, then to
compute the total running time T of an SM executing B,

the total time TD spent in data transfer between the global memory and the
local memory

TD ≤ (r + w) U

there exists a constant V such that the total time TA spent in local
operations satisfies

TA ≤ `V

we have

T = TA + TD ≤ `+ (r + w) U, with V = 1.
10 / 37



MMM: complexity measures

Work:

The work W (B) of a thread-block B is defined as the total number of
local operations performed by the threads of B

The work W (K ) of a kernel K is defined as the sum of the works of its
thread-blocks

The work W (P) of the entire program P is defined as the total work
of all its kernels

W (P) =
∑
K∈K

W (K )

Parallelism overhead:

The overhead O(B) of a thread-block B is defined as (r + w) U,
assuming that each thread of B reads (at most) r words and writes (at
most) w words to the global memory

The overhead O(K ) of a kernel K is defined as the sum of the
overheads of its thread-blocks

The overhead O(P) of the entire program P is defined as the total
overhead of all its kernels

O(P) =
∑
α

O(α)

11 / 37



MMM: complexity measures

Span:

The span S(B) of a thread-block B is defined as the maximum
number of local operations performed by a thread of B

The span S(K ) of a kernel K is defined as the maximum span of its
thread-blocks

We define the span S(γ) of any path γ from the first kernel to a last
one as

S(γ) =
∑
K∈γ

S(K )

The span S(P) of the entire program P is defined as

S(P) = max
γ

S(γ)

12 / 37



Graham - Brent Theorem: original version

P = 3

In any greedy schedule, there are two types of steps:

I complete step: There are at least p strands that are ready to run.
The greedy scheduler selects any p of them and runs them.

I incomplete step: There are strictly less than p threads that are ready
to run. The greedy scheduler runs them all.

For any greedy schedule, we have Tp ≤ T1/p + T∞

13 / 37



MMM: complexity measures

Theorem (Graham-Brent)

We have the following estimate for the running time Tp of the program P
when executed on p SMs

Tp ≤ (N(P)/p + L(P)) · C (P),
where

N(P) number of vertices in the thread-block DAG of P,
L(P) critical path length (that is, the length of the longest path) in

the thread-block DAG of P,
C (P) = maxB∈B(P) (S(B) + O(B)).

Corollary

Let K be the maximum number of thread blocks along an anti-chain of the
thread-block DAG of P. Then the running time TP of the program P
satisfies:

TP ≤ (N(P)/K + L(P))C (P) (1)

This estimate does not depend on the number of SMs in use to execute P.
14 / 37



Plan

1 Overview

2 A Many-core Machine Model

3 Polynomial Division

4 Polynomial Multiplication

5 Conclusion

15 / 37



Plain division for polynomials

Given two polynomials a and b over a finite field K and with variable X,
where deg(a) = n − 1, and deg(b) = m − 1, compute the remainder in the
Euclidean division of a by b. We shall consider two approaches:

a naive division algorithm
an division algorithm optimized in terms of parallelism overheads.

We assume that
n ≥ m

16 / 37



Plain division algorithms

Naive Division Algorithm Optimized Division Algorithm

Each kernel performs 1 division
step
n −m + 1 kernels are executed
in serial

Each kernel performs s division
steps
dn−m+1

s e kernels are executed in
serial

17 / 37



Analysis for the naive division algorithm

In each kernel call, each thread computes one coefficient of an
intermediate remainder polynomial by means of one multiplication
and one subtraction in the coefficient field K.

Let ` be the number of threads in a thread-block, we note that each
kernel uses dm` e thread-blocks.

We observe that each thread of a kernel reads/writes 3 to 5 words

Since each thread-block performs 2 `+ 1 arithmetic operations and each
thread makes at most 5 accesses to the global memory, we have

Wnai =
(n −m + 1) m (2 `+ 1)

`
, Snai = 3 (n −m + 1),

and

Onai =
5 (n −m + 1) m U

`
.

Moreover, the quantities N(P), L(P) and C (P) are respectively given by

Nnai =
(n −m + 1) m

`
, Lnai = (n −m + 1) and Cnai = 3 + 5 U.

18 / 37



Analysis for the optimized division algorithm

Fixing s ≥ 1, each kernel call performs at most s division steps

To this end, each thread-block

I uses 3 s threads,

I loads the coefficients of X d , X d−1, . . ., X d−s+1 from a (resp. b), that
we call the s-head of a (resp. b), where d is the degree of a (resp. b),

I loads 2 s (resp. 3 s) consecutive coeff. of a (resp. b), say X d1 , X d1−1,
. . ., X d1−2s+1 (X d2 , X d2−1, . . ., X d2−3s+1) for some integer d1 > 0
(resp. d2 > 0) which depends on the thread and thread-block IDs.

Since each thread makes at most 9 accesses to the global memory, we
have the following estimates for the work, span and overhead of the
optimized algorithm

Wopt =
(n −m + 1) m (9 s + 1)

4 s
, Sopt = 3 (n −m + 1),

and

Oopt =
9(n −m + 1)m U

2 s2
.

19 / 37



Comparison of the two plain division algorithms (1/2)

Inequality constraints

We replace ` and s by Z/2 and Z/7, respectively, since 2` or 7s
coefficients must fit into the local memory, that is, 2` ≤ Z and 7s ≤ Z .

We obtain the work ratio and the overhead ratio as

Wnai

Wopt
=

8 (Z + 1)

9 Z + 7
and

Onai

Oopt
=

20

441
Z

Applying the corollary of Theorem 1,

R =
(Nnai/p + Lnai) · Cnai

(Nopt/p + Lopt) · Copt
=

2

3

(3 + 5 U) (2 m + Z p) Z

(Z + 21 U) (7 m + 2 Z p)

20 / 37



Comparison of the two plain division algorithms (1/2)

When m escapes to infinity, the ratio R is equivalent to

4

21

(3 + 5 U) Z

Z + 21 U

We observe that this latter ratio is larger than 1 if and only if
Z > 441U

20U−9 holds
The optimized algorithm is overall better than the naive one

21 / 37



Experimental results for the division and the Euclidean
algorithm

22 / 37



Experimental results for the division and the Euclidean
algorithm

Figure: CUMODP plain polynomial
division vs NTL FFT-based
(asymptotically fast) polynomial
division.

Figure: CUMODP plain Euclidean
algorithm vs NTL FFT-based
polynomial GCD.

23 / 37



Plan

1 Overview

2 A Many-core Machine Model

3 Polynomial Division

4 Polynomial Multiplication

5 Conclusion

24 / 37



Plain multiplication for polynomials (1/2)

Notations

Let K be a field and a, b ∈ K[X ] be two univariate polynomials over
K and with variable X .
Let n and m be positive integers such that deg(a) = n − 1 and
deg(b) = m − 1.
Our multiplication algorithm is based on the well-known long
multiplicatio; we consider two approaches:

I a naive division algorithm
I an division algorithm optimized in terms of parallelism overheads.

Principles

During the multiplication phase, every coefficient of a is multiplied
with every coefficient of b;
the resulting products are accumulated in an intermediate array,
denoted by M.
Then, during the addition phase, these accumulated products are
added together to form the polynomial f .

25 / 37



Plain multiplication for polynomials (2/2)

Principles (recall)

During the multiplication phase, every coefficient of a is multiplied
with every coefficient of b;
the resulting products are accumulated in an intermediate array,
denoted by M.
Then, during the addition phase, these accumulated products are
added together to form the polynomial f .

Program parameter

For this application, the program parameter s an integer s > 0,
representing for each thread-block:

the number of coefficients of b to be multiplied by a number of
coefficients of a in the coefficients multiplication phase,
as well as the number of sums per thread in the addition phase.

As before, we denote by ` the number of threads per thread-block.

26 / 37



Plain multiplication algorithm (1/3)

Figure: Each rectangular is computed by one thread block.

27 / 37



Plain multiplication algorithm (2/3)

28 / 37



Plain multiplication algorithm (3/3)

Multipliaction phase Addition phase

Each thread-block
reads s `+ s − 1 coefficients of
a and s coefficients of b
computes ` s2 products, followed
by ` s (s − 1) of additions

Thus, each thread-block contributes
s ` partial sums to the 2-D array M,
whose format is x · y , where x = m

s
and y = n + s − 1.

The x rows of the auxiliary array
M are added pairwise in log2 x
parallel steps.
When adding rows i and j (for
i < j) at a given parallel step,
each thread-block loads s `
elements of M[i ] and M[j ],
respectively, and then adds M[j ]
to M[i ].

29 / 37



Analysis for the plain multipliaction algorithm (1/4)

Observations

We denote by Ws, Ss and, Os, the work, span and overhead,
respectively for the program with parameter s.
Considering any thread-block of the multiplication phase, we notice
that s coefficients of b and s `+ s − 1 coefficients of a are loaded and
s ` results are written back to global memory.
Hence 2 s `+ 2 s − 1 coefficients must fit into local memory, that is,
we have 2 s `+ 2 s − 1 ≤ Z .

We obtain the following estimates:

Ws = (2 m − 1

2
) (n + s − 1), Ss = 2 s2 + s log2

m

s
− s (2)

and

Os =
(n + s − 1) (5 m s + 2 m − 3 s2) U

s2 `
(3)

30 / 37



Analysis for the plain multipliaction algorithm (2/4)

Graham-Brent Theorem Coefficients

We obtain the quantities characterizing the thread block DAG that are
required in order to apply Graham-Brent Theorem:
Ns = (n+s−1) (2m−s)

s2 `
, Ls = log2

m
s + 1 and Cs = s (2 s − 1) + 2 U (s + 1).

Ratios

We set s = 1, and view the resulting algorithm as a “naive one”.
The work ratio W1/Ws = n

n+s−1 , is asymptotically constant as n
escapes to infinity.
The span ratio S1/Ss = log2 m+1

s (log2 (m/s)+2 s−1) shows that Ss grows
asymptotically with s.
The parallelism overhead ratio, letting m = n:

O1

Os
=

n s2 (7 n − 3)

(n + s − 1) (5 n s + 2 n − 3 s2)
. (4)

We observe that, as n escape to infinity, this latter ratio is
asymptotically equivalent to s. 31 / 37



Analysis for the plain multipliaction algorithm (3/4)

Determining s

Applying the corollary, let R be the ratio of the running time estimate
between the naive algorithm and that for an arbitrary s. We obtain

R =
(n log2 n + 3 n − 1) (1 + 4 U)

(n log2
n
s + 3 n − s) (2 U s + 2 U + 2 s2 − s)

, (5)

which is essentially
2 log2 n

s log2 (n/s)
.

This latter ratio is smaller than 1, such that the “initial” algorithm
(that is for s = 1) performs better.
This also indicates that increasing s makes the algorithm performance
worse.

32 / 37



Analysis for the plain multipliaction algorithm (4/4)

Experimentally

In practice, as shown in tables, setting s = 4 performs best, while with
larger s, the running time becomes slower, which is coherent with our
theoretical analysis.

33 / 37



Experimental results for the plain multipliaction (1/2)

degree GPU Plain multiplication GPU FFT-based multiplication

210 0.00049 0.0044136

211 0.0009 0.004642912

212 0.0032 0.00543696

213 0.01 0.00543696

214 0.045 0.00709072

Table: Comparison between plain and FFT-based polynomial multiplications for
balanced pairs (n = m) on CUDA.

34 / 37



Experimental results for the plain multipliaction (1/2)

degree(A) degree(B) GPU Plain multiplication

210 28 0.00041

211 28 0.0005

211 210 0.00073

212 28 0.00057

212 210 0.0011

213 28 0.00074

213 210 0.0018

213 212 0.0061

214 28 0.0010

214 210 0.0031

214 212 0.011

214 213 0.02

Table: Computation time for plain multiplication on CUDA for unbalance pairs
(n 6= m).

35 / 37



Plan

1 Overview

2 A Many-core Machine Model

3 Polynomial Division

4 Polynomial Multiplication

5 Conclusion

36 / 37



Summary

www.cumodp.org

37 / 37


	Overview
	A Many-core Machine Model
	Polynomial Division
	Polynomial Multiplication
	Conclusion

