
Parallel and Distributed Ccomputing with Julia

Marc Moreno Maza

University of Western Ontario, London, Ontario (Canada)

Chengdu HPC Summer School
July 20-24, 2015

Plan

1 Tasks: Concurrent Function Calls

2 Julia’s Prnciples for Parallel Computing

3 Tips on Moving Code and Data

4 Around the Parallel Julia Code for Fibonacci

5 Parallel Maps and Reductions

6 Distributed Computing with Arrays: First Examples

7 Distributed Arrays

8 Map Reduce

9 Shared Arrays

10 Matrix Multiplication Using Shared Arrays

11 Synchronization

Tasks: Concurrent Function Calls

Plan

1 Tasks: Concurrent Function Calls

2 Julia’s Prnciples for Parallel Computing

3 Tips on Moving Code and Data

4 Around the Parallel Julia Code for Fibonacci

5 Parallel Maps and Reductions

6 Distributed Computing with Arrays: First Examples

7 Distributed Arrays

8 Map Reduce

9 Shared Arrays

10 Matrix Multiplication Using Shared Arrays

11 Synchronization

Tasks: Concurrent Function Calls

Tasks (aka Coroutines)

Tasks

Tasks are a control flow feature that allows computations to be
suspended and resumed in a flexible manner

This feature is sometimes called by other names, such as symmetric
coroutines, lightweight threads, cooperative multitasking, or one-shot
continuations.

When a piece of computing work (in practice, executing a particular
function) is designated as a Task, it becomes possible to interrupt it
by switching to another Task.

The original Task can later be resumed, at which point it will pick up
right where it left off

Tasks: Concurrent Function Calls

Producer-consumer scheme

The producer-consumer scheme

One complex procedure is generating values and another complex
procedure is consuming them.

The consumer cannot simply call a producer function to get a value,
because the producer may have more values to generate and so might
not yet be ready to return.

With tasks, the producer and consumer can both run as long as they
need to, passing values back and forth as necessary.

Julia provides the functions produce and consume for implementing
this scheme.

Tasks: Concurrent Function Calls

Producer-consumer scheme example

function producer()

produce("start")

for n=1:2

produce(2n)

end

produce("stop")

end

To consume values, first the producer is wrapped in a Task, then consume is called
repeatedly on that object:

ulia> p = Task(producer)

Task

julia> consume(p)

"start"

julia> consume(p)

2

julia> consume(p)

4

julia> consume(p)

"stop"

Tasks: Concurrent Function Calls

Tasks as iterators

A Task can be used as an iterable object in a for loop, in which case the
loop variable takes on all the produced values:

julia> for x in Task(producer)

println(x)

end

start

2

4

stop

Tasks: Concurrent Function Calls

More about tasks

julia> for x in [1,2,4] println(x) end

1

2

4

julia> t = @task { for x in [1,2,4] println(x) end }

Task (runnable) @0x00000000045c62e0

julia> istaskdone(t)

false

julia> current_task()

Task (waiting) @0x00000000041473b0

julia> consume(t)

1

2

4

1-element Array{Any,1}:

nothing

Julia’s Prnciples for Parallel Computing

Plan

1 Tasks: Concurrent Function Calls

2 Julia’s Prnciples for Parallel Computing

3 Tips on Moving Code and Data

4 Around the Parallel Julia Code for Fibonacci

5 Parallel Maps and Reductions

6 Distributed Computing with Arrays: First Examples

7 Distributed Arrays

8 Map Reduce

9 Shared Arrays

10 Matrix Multiplication Using Shared Arrays

11 Synchronization

Julia’s Prnciples for Parallel Computing

Julia’s message passing principle

Julia’s message passing

Julia provides a multiprocessing environment based on message
passing to allow programs to run on multiple processors in shared or
distributed memory.

Julias implementation of message passing is one-sided:
• the programmer needs to explicitly manage only one processor in a

two-processor operation
• these operations typically do not look like message send and message

receive but rather resemble higher-level operations like calls to user
functions.

Julia’s Prnciples for Parallel Computing

Remote references and remote calls

Two key notions: remote references and remote calls

A remote reference is an object that can be used from any processor
to refer to an object stored on a particular processor.

A remote call is a request by one processor to call a certain function
on certain arguments on another (possibly the same) processor. A
remote call returns a remote reference.

How remote calls are handled in the program flow

Remote calls return immediately: the processor that made the call
can then proceeds to its next operation while the remote call happens
somewhere else.

You can wait for a remote call to finish by calling wait on its remote
reference, and you can obtain the full value of the result using fetch.

Julia’s Prnciples for Parallel Computing

Remote references and remote calls: example

moreno@gorgosaurus:~$ julia -p 4

julia> r = remotecall(2, rand, 2, 2)

RemoteRef(2,1,6)

julia> fetch(r)

2x2 Array{Float64,2}:

0.675311 0.735236

0.682474 0.569424

julia> s = @spawnat 2 1+fetch(r)

RemoteRef(2,1,8)

julia> fetch(s)

2x2 Array{Float64,2}:

1.67531 1.73524

1.68247 1.56942

Commnets on the example

Starting with julia -p n provides n processors on the local machine.
The first argument to remote call is the index of the processor that will do the
work.
The first line we asked processor 2 to construct a 2-by-2 random matrix, and in the
third line we asked it to add 1 to it.
The @spawnat macro evaluates the expression in the second argument on the
processor specified by the first argument.

Julia’s Prnciples for Parallel Computing

More on remote references

julia> remotecall_fetch(2, getindex, r, 1, 1)

0.675311345332873

remote call fetch

Occasionally you might want a remotely-computed value immediately.

The function remotecall fetch exists for this purpose.

It is equivalent to fetch(remotecall(...)) but is more efficient.

Note that getindex(r,1,1) is equivalent to r[1,1], so this call
fetches the first element of the remote reference r.

Julia’s Prnciples for Parallel Computing

The macro @spawn

The macro @spawn

The syntax of remote call is not especially convenient.
The macro @spawn makes things easier:

• It operates on an expression rather than a function, and
• chooses the processor where to do the operation for you

julia> r = @spawn rand(2,2)

RemoteRef(3,1,12)

julia> s = @spawn 1+fetch(r)

RemoteRef(3,1,13)

julia> fetch(s)

2x2 Array{Float64,2}:

1.6117 1.20542

1.12406 1.51088

Remarks on the example

Note that we used 1+fetch(r) instead of 1+r. This is because we do not know
where the code will run, so in general a fetch might be required to move r to the
processor doing the addition.
In this case, @spawn is smart enough to perform the computation on the processor
that owns r, so the fetch will be a no-op.

Tips on Moving Code and Data

Plan

1 Tasks: Concurrent Function Calls

2 Julia’s Prnciples for Parallel Computing

3 Tips on Moving Code and Data

4 Around the Parallel Julia Code for Fibonacci

5 Parallel Maps and Reductions

6 Distributed Computing with Arrays: First Examples

7 Distributed Arrays

8 Map Reduce

9 Shared Arrays

10 Matrix Multiplication Using Shared Arrays

11 Synchronization

Tips on Moving Code and Data

Availability of a function to processors (1/3)

One important point is that your code must be available on any processor that
runs it. For example, type the following into the julia prompt

julia> function rand2(dims...)

return 2*rand(dims...)

end

julia> rand2(2,2)

2x2 Float64 Array:

0.153756 0.368514

1.15119 0.918912

julia> @spawn rand2(2,2)

RemoteRef(1,1,1)

julia> @spawn rand2(2,2)

RemoteRef(2,1,2)

julia> exception on 2: in anonymous: rand2 not defined

Tips on Moving Code and Data

Availability of a function to processors (2/3)

In the previous example, Processor 1 knew about the function rand2, but
processor 2 did not. To make your code available to all processors, the
require function will automatically load a source file on all currently
available processors:

julia> require("myfile")

In a cluster, the contents of the file (and any files loaded recursively) will
be sent over the network.

Tips on Moving Code and Data

Availability of a function to processors (3/3)

julia> @everywhere id = myid()

julia> remotecall_fetch(2, ()->id)

2

julia> workers()

4-element Array{Int64,1}:

2

3

4

5

The @everywhere macro executes a statement on all processes.

Tips on Moving Code and Data

Running Julia with several proocesses or several machines

Each process has an associated identifier.

The process providing the interactive julia prompt always has an id
equal to 1, as would the julia process running the driver script in the
example above.

The processes used by default for parallel operations are referred to as
workers. When there is only one process, process 1 is considered a
worker.

Otherwise, workers are considered to be all processes other than
process 1.

Tips on Moving Code and Data

Running Julia with several proocesses or several machines

The base Julia installation has in-built support for two types of
clusters:

• A local cluster specified with the -p option as shown above.
• A cluster spanning machines using the –machinefile option. This uses a

passwordless ssh login to start julia worker processes (from the same
path as the current host) on the specified machines.

Functions addprocs, rmprocs, workers, and others are available as
a programmatic means of adding, removing and querying the
processes in a cluster.

Tips on Moving Code and Data

Data Movement (1/4)

Motivation

Sending messages and moving data constitute most of the overhead
in a parallel program.

Reducing the number of messages and the amount of data sent is
critical to achieving performance and scalability.

To this end, it is important to understand the data movement
performed by Julias various parallel programming constructs.

Tips on Moving Code and Data

Data Movement (2/4)

fetch and @spawn

fetch can be considered an explicit data movement operation, since it directly
asks that an object be moved to the local machine.
@spawn (and a few related constructs) also moves data, but this is not as obvious,
hence it can be called an implicit data movement operation.
Consider these two approaches to constructing and squaring a random matrix
Which one is the most efficient?

method 1

A = rand(1000,1000)

Bref = @spawn A^2

...

fetch(Bref)

method 2

Bref = @spawn rand(1000,1000)^2

...

fetch(Bref)

Tips on Moving Code and Data

Data Movement (3/4)

method 1

A = rand(1000,1000)

Bref = @spawn A^2

...

fetch(Bref)

method 2

Bref = @spawn rand(1000,1000)^2

...

fetch(Bref)

Answer to the question

The difference seems trivial, but in fact is quite significant due to the behavior
of @spawn.
In the first method, a random matrix is constructed locally, then sent to
another processor where it is squared.
In the second method, a random matrix is both constructed and squared on
another processor.
Therefore the second method sends much less data than the first.

Tips on Moving Code and Data

Data Movement (4/4)

Remarks on the previous example

In the previous toy example, the two methods are easy to distinguish
and choose from.

However, in a real program designing data movement might require
more thought and very likely some measurement.

For example, if the first processor needs matrix A then the first
method might be better.

Or, if processing A is expensive but only the current processor has it,
then moving it to another processor might be unavoidable.

Or, if the current processor has very little to do between the @spawn

and fetch(Bref) then it might be better to eliminate the parallelism
altogether.

Or imagine rand(1000,1000) is replaced with a more expensive
operation. Then it might make sense to add another @spawn
statement just for this step.

Around the Parallel Julia Code for Fibonacci

Plan

1 Tasks: Concurrent Function Calls

2 Julia’s Prnciples for Parallel Computing

3 Tips on Moving Code and Data

4 Around the Parallel Julia Code for Fibonacci

5 Parallel Maps and Reductions

6 Distributed Computing with Arrays: First Examples

7 Distributed Arrays

8 Map Reduce

9 Shared Arrays

10 Matrix Multiplication Using Shared Arrays

11 Synchronization

Around the Parallel Julia Code for Fibonacci

Fibonacci (1/4)

_ _ _(_)_ | A fresh approach to technical computing

(_) | (_) (_) | Documentation: http://docs.julialang.org

_ _ _| |_ __ _ | Type "help()" to list help topics

| | | | | | |/ _‘ | |

| | |_| | | | (_| | | Version 0.2.0-prerelease+3622

_/ |__’_|_|_|__’_| | Commit c9bb96c 2013-09-04 15:34:41 UTC

|__/ | x86_64-redhat-linux

ulia> addprocs(3)

3-element Array{Any,1}:

2

3

4

julia> @everywhere function fib(n)

if (n < 2) then

return n

else return fib(n-1) + fib(n-2)

end

end

Around the Parallel Julia Code for Fibonacci

Fibonacci (2/4)

julia> z = @spawn fib(10)

RemoteRef(3,1,8)

julia> fetch(z)

55

@time [fib(i) for i=1:45];

elapsed time: 27.646200328 seconds (416 bytes allocated)

Around the Parallel Julia Code for Fibonacci

Fibonacci (3/4)

julia> @everywhere function fib_parallel(n)

if (n < 40) then

return fib(n)

else

x = @spawn fib_parallel(n-1)

y = fib_parallel(n-2)

return fetch(x) + y

end

end

julia>

@time [fib_parallel(i) for i=1:45];

elapsed time: 12.315891358 seconds (62472 bytes allocated)

Around the Parallel Julia Code for Fibonacci

Fibonacci (4/4)

julia> @time @parallel [fib(45) for i=1:4]

elapsed time: 11.186433545 seconds (74564 bytes allocated)

4-element DArray{Int64,1,Array{Int64,1}}:

1134903170

1134903170

1134903170

1134903170

julia> @time [fib(45) for i=1:4]

elapsed time: 42.185831168 seconds (80 bytes allocated)

4-element Array{Int64,1}:

1134903170

1134903170

1134903170

1134903170

Parallel Maps and Reductions

Plan

1 Tasks: Concurrent Function Calls

2 Julia’s Prnciples for Parallel Computing

3 Tips on Moving Code and Data

4 Around the Parallel Julia Code for Fibonacci

5 Parallel Maps and Reductions

6 Distributed Computing with Arrays: First Examples

7 Distributed Arrays

8 Map Reduce

9 Shared Arrays

10 Matrix Multiplication Using Shared Arrays

11 Synchronization

Parallel Maps and Reductions

A first example of parallel reduction

julia> @everywhere function count_heads(n)

c::Int = 0

for i=1:n

c += randbool()

end

c

end

julia> a = @spawn count_heads(100000000)

RemoteRef(7,1,31)

julia> b = @spawn count_heads(100000000)

RemoteRef(2,1,32)

julia> fetch(a)+fetch(b)

99993168

This simple example demonstrates a powerful and often-used parallel
programming pattern: reductuon.
Many iterations run independently over several processors, and then their
results are combined using some function.

Parallel Maps and Reductions

Parallel reduction using @parallel (1/4)

Usage of parallel for loops

In the previous example, we use two explicit @spawn statements, which limits
the parallelism to two processors.
To run on any number of processors, we can use a parallel for loop, which can
be written in Julia like this:

nheads = @parallel (+) for i=1:200000000

randbool()

end

Comments

This construct implements the pattern of
• assigning iterations to multiple processors, and
• combining them with a specified reduction (in this case (+)).

Notice that the reduction operator can be omitted if it is not needed
However, the semantics of such a parallel for-loop can be dramatically different
from its serial elision. As we shall see on the example of the next slide.

Parallel Maps and Reductions

Parallel reduction using @parallel (2/4)

julia> a = zeros(4)

4-element Array{Float64,1}:

0.0

0.0

0.0

0.0

julia> @parallel for i=1:4

a[i] = i

end

julia> a

4-element Array{Float64,1}:

0.0

0.0

0.0

0.0

julia> for i=1:4

a[i] = i

end

julia> a

4-element Array{Float64,1}:

1.0

2.0

3.0

4.0

Parallel Maps and Reductions

Parallel reduction using @parallel (3/4)

Evaluation of a @parallel for-loop

Iterations run on different processors and do not happen in a specified order,
Conseqnently, variables or arrays will not be globally visible.
Any variables used inside the parallel loop will be copied and broadcast to
each processor.
Processors produce results which are made visible to the lauching processor
via the reduction.
This explains why the following code will not work as intended:

julia> @parallel for i=1:4

a[i] = i

end

Comments on the example

Each processor will have a separate copy if it.
Parallel for loops like these must be avoided

Parallel Maps and Reductions

Parallel reduction using @parallel (4/4)

Use of “outside” variables in @parallel for-loops

Using outside variables in parallel loops is perfectly reasonable if the variables
are read-only. See the example on the next slide.
In some cases no reduction operator is needed, and we merely wish to apply a
function to all elements in some collection.
This is another useful operation called parallel map, implemented in Julia as
the pmap function.
For example, we could compute the rank of several large random matrices in
parallel as follows:

julia> M = [rand(1000,1000) for i=1:4];

julia> pmap(rank, M)

4-element Array{Any,1}:

1000

1000

1000

1000

Parallel Maps and Reductions

Use of “outside” variables in @parallel for-loops

julia> tic()

0x0000730b8e54d53a

julia> R = [@spawnat i rank(M[i]) for i=1:4]

4-element Array{Any,1}:

RemoteRef(1,1,57)

RemoteRef(2,1,58)

RemoteRef(3,1,59)

RemoteRef(4,1,60)

julia> toc()

elapsed time: 5.252494335 seconds

5.252494335

julia> tic()

0x0000731c4a2ef8cc

julia> S = 0

0

julia> for i=1:4

S = S + fetch(R[i])

end

julia> toc()

elapsed time: 8.340909436 seconds

8.340909436

julia> S

4000

@time @parallel (+) for i=1:4

rank(M[i])

end

elapsed time: 1.23295268 seconds (234965420 bytes allocated)

4000

Distributed Computing with Arrays: First Examples

Plan

1 Tasks: Concurrent Function Calls

2 Julia’s Prnciples for Parallel Computing

3 Tips on Moving Code and Data

4 Around the Parallel Julia Code for Fibonacci

5 Parallel Maps and Reductions

6 Distributed Computing with Arrays: First Examples

7 Distributed Arrays

8 Map Reduce

9 Shared Arrays

10 Matrix Multiplication Using Shared Arrays

11 Synchronization

Distributed Computing with Arrays: First Examples

Computing the maximum value of an array in parallel

julia> @everywhere function maxnum_serial(a,s,e)

if s==e

a[s]

else

mid = ifloor((s+e)/2)

low = maxnum_serial(a,s,mid)

high = maxnum_serial(a,mid+1,e)

low >high? low:high

end

end

julia> @everywhere function maxnum_parallel(a,s,e)

if (e-s)<=10000000

maxnum_serial(a,s,e)

else

mid = ifloor((s+e)/2)

low_remote = @spawn maxnum_parallel(a,s,mid)

high = maxnum_parallel(a,mid+1,e)

low = fetch(low_remote)

low > high? low:high

end

end

julia> a=rand(20000000);

julia> @time maxnum_serial(a,1,20000000)

elapsed time: 0.458792535 seconds (61556 bytes allocated)

0.999999919794377

julia> @time maxnum_parallel(a,1,20000000) ## two recursive calls

elapsed time: 0.654630977 seconds (268541944 bytes allocated)

0.999999919794377

As we can see, the parallel version runs slower than its serial counterpart. Indeed,
the amount of work (number of comparisons) is in the same order of magnitude of
data transfer (number of integers to move from one processor than another). But
the latter costs much more clock-cycles.

Distributed Computing with Arrays: First Examples

Computing the minimum and maximum values of an array in parallel

julia> @everywhere function minimum_maximum_serial(a,s,e)

if s==e

[a[s], a[s]]

else

mid = ifloor((s+e)/2)

X = minimum_maximum_serial(a,s,mid)

Y = minimum_maximum_serial(a,mid+1,e)

[min(X[1],Y[1]), max(X[2],Y[2])]

end

end

julia> @everywhere function minimum_maximum_parallel(a,s,e)

if (e-s)<=10000000

minimum_maximum_serial(a,s,e)

else

mid = ifloor((s+e)/2)

R = @spawn minimum_maximum_parallel(a,s,mid)

Y = minimum_maximum_parallel(a,mid+1,e)

X = fetch(R)

[min(X[1],Y[1]), max(X[2],Y[2])]

end

end

julia> a=rand(20000000);

julia> @time minimum_maximum_serial(a,1,20000000)

elapsed time: 7.89881551 seconds (3840094852 bytes allocated)

julia> @time minimum_maximum_parallel(a,1,20000000)

elapsed time: 4.32320816 seconds (2188546996 bytes allocated)

Distributed Computing with Arrays: First Examples

In-place serial merge sort

julia> function mergesort(data, istart, iend)

if(istart < iend)

mid = (istart + iend) >>>1

mergesort(data, istart, mid)

mergesort(data, mid+1, iend)

merge(data, istart, mid, iend)

end

end

methods for generic function mergesort

mergesort(data,istart,iend) at none:2

julia> function merge(data, istart, mid, iend)

n = iend - istart + 1

temp = zeros(n)

s = istart

m = mid+1

for tem = 1:n

if s <= mid && (m > iend || data[s] <= data[m])

temp[tem] = data[s]

s=s+1

else

temp[tem] = data[m]

m=m+1

end

end

data[istart:iend] = temp[1:n]

end

methods for generic function merge

merge(data,istart,mid,iend) at none:2

julia> n = 1000000

julia> A = [rem(rand(Int32),10) for i =1:n];

julia> @time mergesort(A, 1, n);

elapsed time: 0.6119898 seconds (447195104 bytes allocated)

Distributed Computing with Arrays: First Examples

Out-of-place serial merge sort

julia> function mergesort(data, istart, iend)

if(istart < iend)

mid = ifloor((istart + iend)/2)

a = mergesort(data, istart, mid)

b = mergesort(data,mid+1, iend)

c = merge(a, b, istart, mid, iend)

else

[data[istart]]

end

end

methods for generic function mergesort

julia> @everywhere function merge(a, b, istart, mid, iend)

n = iend - istart + 1

nb = iend - mid

na = mid - istart + 1

c = zeros(n)

s = 1

m = 1

for tem = 1:n

if s <= na && (m > nb || a[s] <= b[m])

c[tem] = a[s]

s=s+1

else

c[tem] = b[m]

m=m+1

end

end

c

end

methods for generic function merge

julia> n = 1000000;

julia> A = [rem(rand(Int32),10) for i =1:n];

julia> @time mergesort(A, 1, n);

elapsed time: 0.60765198 seconds (348516200 bytes allocated)

Distributed Computing with Arrays: First Examples

Out-of-place parallel merge sort

@everywhere function mergesort_serial(data, istart, iend)

if(istart < iend)

mid = ifloor((istart + iend)/2)

a = mergesort_serial(data, istart, mid)

b = mergesort_serial(data,mid+1, iend)

c = merge(a, b, istart, mid, iend)

else

[data[istart]]

end

end

@everywhere function mergesort_parallel(data, istart, iend)

if(iend - istart <= 2500000)

then

mergesort_serial(data, istart, iend)

else

mid = ifloor((istart + iend)/2)

a = @spawn mergesort_parallel(data, istart, mid)

b = mergesort_parallel(data,mid+1, iend)

c = merge(fetch(a), b, istart, mid, iend)

end

end

julia> n = 10000000;

julia> A = [rem(rand(Int32),10) for i =1:n];

julia> @time mergesort_serial(A, 1, n);

elapsed time: 9.25899279 seconds (3533393840 bytes allocated, 21.86% gc time)

julia> @time mergesort_parallel(A, 1, n);

elapsed time: 6.142867529 seconds (1292099096 bytes allocated, 9.75% gc time)

Distributed Arrays

Plan

1 Tasks: Concurrent Function Calls

2 Julia’s Prnciples for Parallel Computing

3 Tips on Moving Code and Data

4 Around the Parallel Julia Code for Fibonacci

5 Parallel Maps and Reductions

6 Distributed Computing with Arrays: First Examples

7 Distributed Arrays

8 Map Reduce

9 Shared Arrays

10 Matrix Multiplication Using Shared Arrays

11 Synchronization

Distributed Arrays

Distributed Arrays (1/7)

Idea

Large computations are often organized around large arrays of data.
In these cases, a particularly natural way to obtain parallelism is to
distribute arrays among several processes.
This combines the memory resources of multiple machines, allowing use
of arrays too large to fit on one machine.
Each process operates on the part of the array it owns, providing a ready
answer to the question of how a program should be divided among
machines.

The DArray type

Julia distributed arrays are implemented by the DArray type.
A DArray has an element type and dimensions just like an Array.
A DArray can also use arbitrary array-like types to represent the local
chunks that store actual data.
The data in a DArray is distributed by dividing the index space into some
number of blocks in each dimension.

Distributed Arrays

Distributed Arrays (2/7)

Constructing distributed arrays

Common kinds of arrays can be constructed with functions beginning with d:

dzeros(100,100,10)

dones(100,100,10)

drand(100,100,10)

drandn(100,100,10)

dfill(x, 100,100,10)

In the last case, each element will be initialized to the specified value x. These
functions automatically pick a distribution for you.

Constructing distributed arrays with more control

For more control, you can specify which processors to use, and how the data
should be distributed:

dzeros((100,100), workers()[1:4], [1,4])

The second argument specifies that the array should be created on the first
four workers. When dividing data among a large number of processes, one
often sees diminishing returns in performance. Placing DArrays on a subset of
processes allows multiple DArray computations to happen at once, with a
higher ratio of work to communication on each process.
The third argument specifies a distribution; the nth element of this array
specifies how many pieces dimension n should be divided into. In this example
the first dimension will not be divided, and the second dimension will be
divided into 4 pieces. Therefore each local chunk will be of size (100,25).
Note that the product of the distribution array must equal the number of
processors.

Distributed Arrays

Distributed Arrays (3/7)

Constructing distributed arrays with even more control

The primitive DArray constructor has the following somewhat elaborate signature:

DArray(init, dims[, procs, dist])

init is a function that accepts a tuple of index ranges. This function should
allocate a local chunk of the distributed array and initialize it for the specified
indices.
dims is the overall size of the distributed array.
procs optionally specifies a vector of processor IDs to use.
dist is an integer vector specifying how many chunks the distributed array
should be divided into in each dimension.
The last two arguments are optional, and defaults will be used if they are
omitted.

Example

As an example, here is how to turn the local array constructor fill into a distributed
array constructor:

dfill(v, args...) = DArray(I->fill(v, map(length,I)), args...)

In this case the init function only needs to call fill with the dimensions of the local
piece it is creating.

Distributed Arrays

Distributed Arrays (4/7)

julia> @everywhere function par(I)

create our local patch

I is a tuple of intervals, each interval is

regarded as a 1D array with integer entries

size(I[1], 1) gives the number of entries in I[1]

size(I[2], 1) gives the number of entries in I[2]

d=(size(I[1], 1), size(I[2], 1))

m = fill(myid(), d)

return m

end

julia>

julia> @everywhere h=8

julia> @everywhere w=8

julia> m = DArray(par, (h, w), [2:5])

8x8 DArray{Int64,2,Array{Int64,2}}:

2 2 2 2 4 4 4 4

2 2 2 2 4 4 4 4

2 2 2 2 4 4 4 4

2 2 2 2 4 4 4 4

3 3 3 3 5 5 5 5

3 3 3 3 5 5 5 5

3 3 3 3 5 5 5 5

3 3 3 3 5 5 5 5

Distributed Arrays

Distributed Arrays (5/7)

julia> m.chunks

2x2 Array{RemoteRef,2}:

RemoteRef(2,1,28) RemoteRef(4,1,30)

RemoteRef(3,1,29) RemoteRef(5,1,31)

julia> m.indexes

2x2 Array{(Range1{Int64},Range1{Int64}),2}:

(1:4,1:4) (1:4,5:8)

(5:8,1:4) (5:8,5:8)

julia> @spawn rank(m)

RemoteRef(3,1,289)

julia> @spawn rank(m)

RemoteRef(4,1,290)

julia> @spawn rank(m)

RemoteRef(5,1,291)

julia> exception on 3: exception on 4: exception on ERROR: 5: ERROR: ERROR: no method svdvals(DArray{Int64,2,Array{Int64,2}},)

in rank at linalg/generic.jl:87

in anonymous at multi.jl:1239

in anonymous at multi.jl:804

in run_work_thunk at multi.jl:563

in anonymous at task.jl:76

Distributed Arrays

Distributed Arrays (6/7)

@spawnat 2 println(localpart(m)) ### VERSION 2.0

RemoteRef(2,1,292)

julia> mm = @spawnat 2 rank(localpart(m))

RemoteRef(2,1,293)

julia> fetch(mm)

From worker 2: 2 2 2 2

From worker 2: 2 2 2 2

From worker 2: 2 2 2 2

From worker 2: 2 2 2 2

From worker 2:

1

julia> ?DArray

Loading help data...

Base.DArray(init, dims[, procs, dist])

Construct a distributed array. "init" is a function that accepts

a tuple of index ranges. This function should allocate a local

chunk of the distributed array and initialize it for the specified

indices. "dims" is the overall size of the distributed array.

"procs" optionally specifies a vector of processor IDs to use.

"dist" is an integer vector specifying how many chunks the

distributed array should be divided into in each dimension.

For example, the "dfill" function that creates a distributed

array and fills it with a value "v" is implemented as:

"dfill(v, args...) = DArray(I->fill(v, map(length,I)), args...)"

Distributed Arrays

Distributed Arrays (7/7)

Operations on distributed arrays

distribute(a::Array) converts a local array to a distributed array.

localpart(a::DArray) obtains the locally-stored portion of a
DArray.

myindexes(a::DArray) gives a tuple of the index ranges owned by
the local process.

convert(Array, a::DArray) brings all the data to the local
processor.

Indexing a DArray (square brackets) with ranges of indexes always
creates a SubArray, not copying any data.

Map Reduce

Plan

1 Tasks: Concurrent Function Calls

2 Julia’s Prnciples for Parallel Computing

3 Tips on Moving Code and Data

4 Around the Parallel Julia Code for Fibonacci

5 Parallel Maps and Reductions

6 Distributed Computing with Arrays: First Examples

7 Distributed Arrays

8 Map Reduce

9 Shared Arrays

10 Matrix Multiplication Using Shared Arrays

11 Synchronization

Map Reduce

Distributed arrays and parallel reduction (1/4)

[moreno@compute-0-3 ~]$ julia -p 5

_

_ _ _(_)_ | A fresh approach to technical computing

(_) | (_) (_) | Documentation: http://docs.julialang.org

_ _ _| |_ __ _ | Type "help()" to list help topics

| | | | | | |/ _‘ | |

| | |_| | | | (_| | | Version 0.2.0-prerelease+3622

_/ |__’_|_|_|__’_| | Commit c9bb96c 2013-09-04 15:34:41 UTC

|__/ | x86_64-redhat-linux

julia> da = @parallel [2i for i = 1:10]

10-element DArray{Int64,1,Array{Int64,1}}:

2

4

6

8

10

12

14

16

18

20

Map Reduce

Distributed arrays and parallel reduction (2/4)

julia> procs(da)

4-element Array{Int64,1}:

2

3

4

5

julia> da.chunks

4-element Array{RemoteRef,1}:

RemoteRef(2,1,1)

RemoteRef(3,1,2)

RemoteRef(4,1,3)

RemoteRef(5,1,4)

julia>

julia> da.indexes

4-element Array{(Range1{Int64},),1}:

(1:3,)

(4:5,)

(6:8,)

(9:10,)

julia> da[3]

6

julia> da[3:5]

3-element SubArray{Int64,1,DArray{Int64,1,Array{Int64,1}},(Range1{Int64},)}:

6

8

10

Map Reduce

Distributed arrays and parallel reduction (3/4)

julia> fetch(@spawnat 2 da[3])

6

julia>

julia> { (@spawnat p sum(localpart(da))) for p=procs(da) }

4-element Array{Any,1}:

RemoteRef(2,1,71)

RemoteRef(3,1,72)

RemoteRef(4,1,73)

RemoteRef(5,1,74)

julia>

julia> map(fetch, { (@spawnat p sum(localpart(da))) for p=procs(da) })

4-element Array{Any,1}:

12

18

42

38

julia>

julia> sum(da)

110

Map Reduce

Distributed arrays and parallel reduction (4/4)

julia> reduce(+, map(fetch,

{ (@spawnat p sum(localpart(da))) for p=procs(da) }))

110

julia>

julia> preduce(f,d) = reduce(f,

map(fetch,

{ (@spawnat p f(localpart(d))) for p=procs(d) }))

methods for generic function preduce

preduce(f,d) at none:1

julia> function Base.minimum(x::Int64, y::Int64)

min(x,y)

end

minimum (generic function with 10 methods)

julia> preduce(minimum, da)

2

Shared Arrays

Plan

1 Tasks: Concurrent Function Calls

2 Julia’s Prnciples for Parallel Computing

3 Tips on Moving Code and Data

4 Around the Parallel Julia Code for Fibonacci

5 Parallel Maps and Reductions

6 Distributed Computing with Arrays: First Examples

7 Distributed Arrays

8 Map Reduce

9 Shared Arrays

10 Matrix Multiplication Using Shared Arrays

11 Synchronization

Shared Arrays

Shared arrays (1/6)

Shared arrays vs distributed arrays

Shared Arrays use system shared memory to map the same array
across many processes.

While there are some similarities to a DArray, the behavior of a
SharedArray is quite different.

In a DArray, each process has local access to just a chunk of the
data, and no two processes share the same chunk;

in contrast, in a SharedArray each participating process has access
to the entire array.

A SharedArray is a good choice when you want to have a large
amount of data jointly accessible to two or more processes on the
same machine.

Shared Arrays

Shared arrays (2/6)

Shared arrays vs regular arrays

SharedArray indexing (assignment and accessing values) works just
as with regular arrays, and is efficient because the underlying memory
is available to the local process.

Therefore, most algorithms work naturally on SharedArrays, albeit in
single-process mode. In cases where an algorithm insists on

an Array input, the underlying array can be retrieved from a
SharedArray by calling sdata(S).

Shared Arrays

Shared arrays (3/6)

The constructor for a shared array is of the form:

SharedArray(T::Type, dims::NTuple; init=false, pids=Int[])

which creates a shared array of a type T and

size dims across the processes specified by pids.

Unlike distributed arrays, a shared array is accessible only from those
participating workers specified by the pids named argument (and the
creating process too, if it is on the same host).

If an init function, of signature initfn(S::SharedArray), is
specified, then it is called on all the participating workers.

You can arrange it so that each worker runs the init function on a
distinct portion of the array, thereby parallelizing initialization.

Shared Arrays

Shared arrays (4/6)

Heres a brief example (with Julia started with -p 4)

julia> S = SharedArray(Int, (3,4), init = S -> S[localindexes(S)] = myid())

3x4 SharedArray{Int64,2}:

1 2 4 5

1 3 4 5

2 3 5 5

julia> S[3,2] = 7

7

julia> S

3x4 SharedArray{Int64,2}:

1 2 4 5

1 3 4 5

2 7 5 5

localindexes provides disjoint one-dimensional ranges of indexes, and is
sometimes convenient for splitting up tasks among processes. You can, of course,
divide the work any way you wish:

S=SharedArray(Int,(4,4),init = S -> S[myid():nworkers()+1:length(S)] = myid())

Shared Arrays

Shared arrays (5/6)

Continuing the example (with Julia started with -p 3):

julia> S

4x4 SharedArray{Int64,2}:

1 1 1 1

2 2 2 2

3 3 3 3

4 4 4 4

julia> for i=1:3, j=1:4 S[i,j] = myid() end

julia> S

4x4 SharedArray{Int64,2}:

1 1 1 1

1 1 1 1

1 1 1 1

4 4 4 4

julia> @spawn {for i=1:3, j=1:4 S[i,j] = myid() end}

RemoteRef(3,1,33)

julia> S

4x4 SharedArray{Int64,2}:

3 3 3 3

3 3 3 3

3 3 3 3

4 4 4 4

Shared Arrays

Shared arrays (6/6)

Since all processes have access to the underlying data, you do have to be
careful not to set up conflicts. For example:

@sync begin

for p in workers()

@spawn {for i=1:4, j=1:4 S[i,j] = myid() end}

end

end

would result in undefined behavior: because each process fills the entire array
with its own pid, whichever process is the last to execute (for any particular
element of S) will have its pid retained. One could even get a more random
behavior as follows:

@sync begin

for p in workers()

@async begin

remotecall_wait(p, fill!, S, p)

end

end

end

Matrix Multiplication Using Shared Arrays

Plan

1 Tasks: Concurrent Function Calls

2 Julia’s Prnciples for Parallel Computing

3 Tips on Moving Code and Data

4 Around the Parallel Julia Code for Fibonacci

5 Parallel Maps and Reductions

6 Distributed Computing with Arrays: First Examples

7 Distributed Arrays

8 Map Reduce

9 Shared Arrays

10 Matrix Multiplication Using Shared Arrays

11 Synchronization

Matrix Multiplication Using Shared Arrays

Blockwise matrix multiplication (1/3)

Assume that we want to multiply two square matrices A and B of order n,
yielding a square matrix C of order n.
Assume also that n is a power of 2.
Then, each of A,B,C can be divided into 4 blocks (themselves matrices) of
order n/2 as depicted below.

C C A A B BC11 C12

C C
= ·

A11 A12

A A

B11 B12

B BC21 C22 A21 A22 B21 B22

A11B11 A11B12 A12B21 A12B22= +
A11B11 A11B12

A21B11 A21B12

A12B21 A12B22

A22B21 A22B2221 11 21 12 22 21 22 22

This leads to a recursive process for multiplying matrices. with 8 recursive
calls, namely for A11B11, A11B12, . . . , A22B22.
In practice, the recursive calls should be performed until a base case (typically
n = 32 or n = 64 or n = 128, depending on the machine, the type of the
input coefficients and the initial value of n).
The code on the next slide implements these ideas.

Matrix Multiplication Using Shared Arrays

Blockwise matrix multiplication (2/3)

function dacmm(i0, i1, j0, j1, k0, k1, A, B, C, n, basecase)

A, B, C are matrices

We compute C = A * B

if n > basecase

n = n/2

dacmm(i0, i1, j0, j1, k0, k1, A, B, C, n, basecase)

dacmm(i0, i1, j0, j1+n, k0, k1+n, A, B, C, n, basecase)

dacmm(i0+n, i1, j0, j1, k0+n, k1, A, B, C, n, basecase)

dacmm(i0+n, i1, j0, j1+n, k0+n, k1+n, A, B, C, n, basecase)

dacmm(i0, i1+n, j0+n, j1, k0, k1, A, B, C, n, basecase)

dacmm(i0, i1+n, j0+n, j1+n, k0, k1+n, A, B, C, n, basecase)

dacmm(i0+n, i1+n, j0+n, j1, k0+n, k1, A, B, C, n, basecase)

dacmm(i0+n, i1+n, j0+n, j1+n, k0+n, k1+n, A, B, C, n, basecase)

else

for i= 1:n, j=1:n, k=1:n

C[i+k0,k1+j] = C[i+k0,k1+j] + A[i+i0,i1+k] * B[k+j0,j1+j]

end

end

end

Matrix Multiplication Using Shared Arrays

Blockwise matrix multiplication (3/3)

julia> n=4

4

julia> basecase = 2

2

julia> A = [rem(rand(Int32),5) for i =1:n, j = 1:n]

4x4 Array{Int64,2}:

-4 -2 0 -3

-1 4 -1 0

1 0 0 -4

2 -3 4 2

julia> B = [rem(rand(Int32),5) for i =1:n, j = 1:n]

4x4 Array{Int64,2}:

3 4 -4 2

-4 -4 3 1

-4 -4 0 -2

0 3 -2 -3

julia> C = zeros(Int32,n,n);

julia> dacmm(0, 0, 0, 0, 0, 0, A, B, C, n, basecase)

julia> C

4x4 Array{Int32,2}:

-4 -17 16 -1

-15 -16 16 4

3 -8 4 14

2 10 -21 -13

Matrix Multiplication Using Shared Arrays

Parallel blockwise matrix multiplication (1/2)

@everywhere function dacmm_parallel(i0, i1, j0, j1, k0, k1, A, B, C, s, X)

if s > X

s = s/2

lrf = [@spawn dacmm_parallel(i0, i1, j0, j1, k0, k1, A, B, C, s,X),

@spawn dacmm_parallel(i0, i1, j0, j1+s, k0, k1+s, A, B, C, s,X),

@spawn dacmm_parallel(i0+s, i1, j0, j1, k0+s, k1, A, B, C, s,X),

@spawn dacmm_parallel(i0+s, i1, j0, j1+s, k0+s, k1+s, A, B, C, s,X)]

pmap(fetch, lrf)

lrf = [@spawn dacmm_parallel(i0, i1+s, j0+s, j1, k0, k1, A, B, C, s,X),

@spawn dacmm_parallel(i0, i1+s, j0+s, j1+s, k0, k1+s, A, B, C, s,X),

@spawn dacmm_parallel(i0+s, i1+s, j0+s, j1, k0+s, k1, A, B, C, s,X),

@spawn dacmm_parallel(i0+s, i1+s, j0+s, j1+s, k0+s, k1+s, A, B, C, s,X)]

pmap(fetch, lrf)

else

for i= 0:(s-1), j=0:(s-1), k=0:(s-1)

C[i+k0,k1+j] += A[i+i0,i1+k] * B[k+j0,j1+j]

end

end

end

Matrix Multiplication Using Shared Arrays

Parallel blockwise matrix multiplication (2/2)

s = 8

A = convert(SharedArray, rand(s,s))

B = convert(SharedArray, rand(s,s))

C = convert(SharedArray, zeros(s,s))

dacmm_parallel(1,1,1,1,1,1,A,B,C,s,8)

dacmm_parallel(1,1,1,1,1,1,A,B,C,s,2)

s = 1024

A = convert(SharedArray, rand(s,s))

B = convert(SharedArray, rand(s,s))

C = convert(SharedArray, zeros(s,s));

@time dacmm_parallel(1,1,1,1,1,1,A,B,C,s,64)

4.486267909 seconds

C = convert(SharedArray, zeros(s,s));

@time dacmm_parallel(1,1,1,1,1,1,A,B,C,s,1024)

45.38339897 seconds

Synchronization

Plan

1 Tasks: Concurrent Function Calls

2 Julia’s Prnciples for Parallel Computing

3 Tips on Moving Code and Data

4 Around the Parallel Julia Code for Fibonacci

5 Parallel Maps and Reductions

6 Distributed Computing with Arrays: First Examples

7 Distributed Arrays

8 Map Reduce

9 Shared Arrays

10 Matrix Multiplication Using Shared Arrays

11 Synchronization

Synchronization

How does Julia’s schedule computations?

Julia’s scheduling strategy is based on tasks

Julias parallel programming platform uses Tasks (aka Coroutines) to switch
among multiple computations.
Whenever code performs a communication operation like fetch or wait, the
current task is suspended and a scheduler picks another task to run.
A task is restarted when the event it is waiting for completes.

Dynamic scheduling

For many problems, it is not necessary to think about tasks directly.
However, they can be used to wait for multiple events at the same time, which
provides for dynamic scheduling.
In dynamic scheduling, a program decides what to compute or where to
compute it based on when other jobs finish.
This is needed for unpredictable or unbalanced workloads, where we want to
assign more work to processes only when they finish their current tasks.
As an example, consider computing the ranks of matrices of different sizes

M = {rand(800,800), rand(600,600), rand(800,800), rand(600,600)}

pmap(rank, M)

Synchronization

Implementation of pmap

Main idea

Processor 1 dispatches the arguments of function f to the workkers via
remotecall fetch.

Details

Each worker is associated with a local task feeding work to it.
This mapping is done in the for loop where each iteration is run
asynchronously.
Indeed, each of these iterations submits remote calls via remotecall fetch

and waits; note the use of the while true loop.
Once a remote call is submitted, the corresponding task is inerrupted and
another iteration can run; note that all these tasks are local to Processor 1,
hence, only one runs at a time.
Each worker knows which item to pick from the list lst thanks to the fuction
nextidx().
May be another task has changed the variable i when a call to nextidx()

returns: but this does not matter thanks to the use of the local variable idx.

Synchronization

Implementation of pmap

function pmap(f, lst)

np = nprocs() # determine the number of processes available

n = length(lst)

results = cell(n)

i = 1

function to produce the next work item from the queue.

in this case it’s just an index.

nextidx() = (idx=i; i+=1; idx)

@sync begin

for p=1:np

if p != myid() || np == 1

@async begin

while true

idx = nextidx()

if idx > n

break

end

results[idx] = remotecall_fetch(p, f, lst[idx])

end

end

end

end

end

results

end

Synchronization

@spawnlocal, @sync and @everywhere

@spawnlocal (recently renamed @async)

@spawnlocal is similar to @spawn, but only runs tasks on the local processor.
In the pmap example above, we use it to create a feeder task for each
processor.
Each task picks the next index that needs to be computed, then waits for its
processor to finish, then repeats until we run out of indexes.

@sync

A @sync block is used to wait for all the local tasks to complete, at which
point the whole operation is done.
Notice that all the feeder tasks are able to share the state i via next idx()

since they all run on the same processor.
However, no locking is required, since the threads are scheduled cooperatively
and not preemptively.
This means context switches only occur at well-defined points (during the
fetch operation).

@everywhere

It is often useful to execute a statement on all processors, particularly for
setup tasks such as loading source files and defining common variables. This
can be done with the @everywhere macro.

	Tasks: Concurrent Function Calls
	Julia's Prnciples for Parallel Computing
	Tips on Moving Code and Data
	Around the Parallel Julia Code for Fibonacci
	Parallel Maps and Reductions
	Distributed Computing with Arrays: First Examples
	Distributed Arrays
	Map Reduce
	Shared Arrays
	Matrix Multiplication Using Shared Arrays
	Synchronization

