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> Fs:= [(x2 +y2)2 +3x%y — 3, (x? —|—y2)3 — 4x2y2}:
> plots[implicitplot](Fs,x=-2..2,y=-2..2);
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> R := PolynomialRing ([x, y], 101):
> rcs := Triangularzie (Fs, R, normalized = 'yes"):
> seq (TriangularizeWithMultiplicity (Fs, T, R), T in rcs):
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>Fsi=[xX+y+z-1x+y’+z-1x+y+2z2-1]:

> R := PolynomialRing ([x, y, z],101):
> TriangularizeWithMultiplicity (Fs, R):

x—z=0 x=0
17 y_Z:0 ’ 27 )/:0
z2242z—-1=0 z—1=0

X = x—1=

27 y = =0 ’ 27 =
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TriangularizeWithMultiplicity

We specify TriangularizeWithMultiplicity:

Input f1,...,f, € k[x1,...,x,] such that V(fi,...,f,)is
zero-dimensional.

Output Finitely many pairs [(T1,m1),...,( Ty, mg)] where T1,..., Ty
are regular chains of k[xi, ..., xs] such that for all p € V(T;)

I(p;fi,...,fn) = mj and V(f,...,fr) = V(T1)w- - -&V(Ty).
TriangularizeWithMultiplicity works as follows
© Apply Triangularize on fi,...,f,,
Q Apply IMy(T; f1,...,f;) on each regular chain T.
IM,(T; f,...,f,) works as follows

© if n =2 apply Fulton’s algorithm extended for working at a regular
chains instead of a point (S. Marcus, M., P. Vrbik; CASC 2013),

Q if n > 2 attempt a reduction from dimension nto n — 1. 5/39
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Reducing from dim n to dim n — 1: using transversality (1/2)

Definition
The intersection multiplicity of p in V(f,..., ;) is given by
1(p; iy - oo fn) i= dimp (Opn p/ (A, oo ).
where Opn p and dim(Ogn p/ (f1, ..., f,)) are respectively the local ring at
the point p and the dimension of the vector space Opn p/ (f1,..., fn).

The next theorem reduces the n-dimensional case to n — 1, under
assumptions which state that f, does not contribute to /(p; fi, ..., ).



Reducing from dim n to dim n — 1: using transversality (1/2)

Definition
The intersection multiplicity of p in V(f,..., ;) is given by
I(p; f1,...,fn) i=dimz (Oanp/ (f1, ..., fa)).
where Opn p and dim(Ogn p/ (f1, ..., f,)) are respectively the local ring at
the point p and the dimension of the vector space Opn p/ (f1,..., fn).

The next theorem reduces the n-dimensional case to n — 1, under
assumptions which state that f, does not contribute to /(p; fi, ..., ).

Theorem 1

Assume that h, = V/(f,) is non-singular at p. Let v, be its tangent
hyperplane at p. Assume that h, meets each component (through p) of
the curve C = V(f1,...,fo—1) transversely (that is, the tangent cone
TC,(C) intersects v, only at the point p). Let h € k[x1, ..., x| be the
degree 1 polynomial defining v,,. Then, we have

I(p; fi,....fn)=1(p;f,...,fo—1,h).




Reducing from dim n to dim n — 1: using transversality (2/2)

The theorem again:

Theorem

Assume that h, = V/(f,) is non-singular at p. Let v, be its tangent
hyperplane at p. Assume that h, meets each component (through p) of
the curve C = V/(f1,...,fo_1) transversely (that is, the tangent cone
TC,(C) intersects vy, only at the point p). Let h € k[x1,...,xa] be the
degree 1 polynomial defining v,. Then, we have

1P iy s £) = 1(pi fiy s a1, ).

How to use this theorem in practise?

Assume that the coefficient of x, in h is non-zero, thus h = x, — h’, where
h € k[x1,...,xn—1]. Hence, we can rewrite the ideal (f1,...,f,_1, h) as
(g1,.--,8n—1, ) where g; is obtained from f; by substituting x, with A
Then, we have

X111 81y - -+ agn—1)-

geees
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Reducing from dim n to dim n — 1: a simple case (1/3)

Example
Consider the system

fi=x, h=x+y>—2%° fR=y—z
near the origin o := (0,0,0) € V(f, 2, 3)

3

10/
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Reducing from dim n to dim n — 1: a simple case (2/3)

Example
Recall the system

fi=x, h=x+y>’—2? fRi=y—z
near the origin o := (0,0,0) € V(f1, 2, f3).

3

Computing the IM using the definition

Let us compute a basis for O3,/ (fi, f2, f3) as a vector space over k.

3, we must have z?(z* +1) =0 in

Setting x =0and y = z
Opso = kIx,¥,2](zy.2).

Since z* + 1 is a unit in this local ring, we see that

OA3,0/ <f17 o8 f3> = <17Z>

as a vector space, so /(o; fi, fp, f3) = 2.

11/39



Reducing from dim n to dim n — 1: a simple case (3/3)

Example
Recall the system again

fi=x, h=x+y>—2> Ri=y—z
near the origin o := (0,0,0) € V(f1, f», f3).

3

Computing the IM using the reduction

We have
Ci=V(x,x+y*—2%) = V(x,(y — 2)(y + 2)) = TG(C)
and we have
h=y.
Thus C and V/(f3) intersect transversally at the origin. Therefore, we have
h(p; fi, 2, ) = h((0,0); x, x — z?) = 2.




Reducing from dim n to dim n — 1: via cylindrification (1/3)

In practise, this reduction from n to n — 1 variables does not always apply.
For instance, this is the case for Ojika 2:

XP+y+z—l=x+y’+z—-1=x+y+2>2-1=0.

\/
A

Figure: The real pointsof V(x> +y+z—1x+y?+z—1,x+y+2z%>—1).
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Reducing from dim n to dim n — 1: via cylindrification (2/3)

Recall the system
XPty+z—l=x+y’+z—1=x+y+2>2-1=0.

If one uses the first equation, that is x> +y +z — 1 = 0, to eliminate z
from the other two, we obtain two bivariate polynomials f, g € k[x, y].

Figure: The real points of
V(X2 +y+z—1,x+y?—x>—y,x—y+x*+2x%y —2x%+ y?) near the origin.

14 /39



Reducing from dim n to dim n — 1: via cylindrification (3/3)
At any point of p € V/(h,f, g) the tangent cone of the curve V/(f,g) is
independent of z; in some sense it is “vertical”. On the other hand, at any

point of p € V/(h,f,g) the tangent space of V/(h) is not vertical.

Thus, the previous theorem applies without computing any tangent cones.

Figure: The real points of
Vix2+y+z—1,x+y?>—x%>—y,x—y+x*+2x%y — 2x% + y?) near the origin.

15/39
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Tangent cones and tangent spaces

Tangent space

Let F C k[x1,...,xq] and p € V(F). The tangent space of V := V(F) at p is
the algebraic set given by

To(V) = V({ dp (F) - F € 1(V)})
where d, (f) is the linear part of f at p, that is, the affine form
SE(p)0a — p1) + - - + BE(P)(%n — Pn).
Tangent cone
The tangent cone of V := V/(F) at p is the algebraic set given by
TCo(V) = V({HCp (f; min) : f € I(V))

where HC,, (f; min) is the homogeneous component of least degree of f in
x —p. If Vis a curve, then TC,(V) consists of finitely many lines, all
intersecting at p.

17 /39



Tangent cone: a basic example

The tangent cone of V/(h) for h = y? — x?(x + 1) € C[x, y] is
V((y = x)(y + x)).

18/39



Tangent cone computation as limits of secants

Previous works

One can compute the ideal (HC, (f; min) : f € I(V)) by means of
standard bases (F. Mora 1982) or Gronber bases (T. Mora, G. Pfister & C.
Traverso; 1992).

We are going to take a different route and rely on:

Theorem (Chapter 9 in (D. Cox, J. Little, & D. O'Shea; 1992))

A line L through p lies in the tangent cone TC,(V') if and only if there
exists a sequence (qx, k € N) of points on V \ {p} converging to p and
such that the secant line L, containing p and q, becomes L when qy
approaches p.

19/39



Tangent cone computation via tangent spaces

/

Assume k = C and none of the V(f;) is singular at p. For each component G
through p of C = V/(f1,...,fh—1),

@ There exists a neighborhood B of p such that V() is not singular at all
ge (BNG)\{p}, fori=1,...,n—1.

@ Let v;(q) be the tangent hyperplane of V(f;) at q. Regard
vi(g)N---Nvy_1(q) as a parametric variety with g as parameter.

@ Then, TCp(G) = vi(q) N--- N vy—1(q) when g approaches p.

@ Finally, TC,(C) is the union of all TC,(G). This approach avoids standard
basis computation and extends for working with V(T) instead of p.

But how to compute the limit of vi(g) N --- N v,_1(q) when approaches p?

20/39
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Limit points of a quasi-component

Input

o Let R C C[Xy,...,Xs] be a regular chain.
@ Let hgr be the product of initials of polynomials of R.
@ Let W(R) be the quasi-component of R, that is V(R) \ V(hg).

Desired output
The non-trivial limit points of W/(R), that is

lim(W(R)) = W(R)" \ W(R).



Puiseux expansions of a regular chain

Notation
o Let R:= {rl(Xl,Xz), ceey rs,l(Xl, c.. ,Xs)} C C[Xl Koo K Xs] be a
1-dim regular chain.
@ Assume R is strongly normalized, that is, init(R) € C[X1].
o Let k = C((X])).
@ Then R generates a zero-dimensional ideal in k[ X, ..., X;].
@ Let V*(R) be the zero set of R in k®71.

Definition

We call Puiseux expansions of R the elements of V*(R).

Remarks
@ The strongly normalized assumption is only for presentation ease.
@ The 1-dim assumption is, however, harder to relax.
@ One could think of generalizations of Puiseux expanions using
Jung-Abhyankar theorem. More on this tomorrow and slater.




An example

{

1+ O(X?)
—X1 + O(X?)

A regular chain R

X1 X2 + Xz

Puiseux expansions of R

{

X3
X2

X3
X2

{
{

X7t = 32X+ O(XD)
~Xi 1+ X1+ O(XD)

X3
X2

X1 X2 + Xo + X1

= —1+0(X7)
—X1 + O(X?)

= —Xi '+ 13X+ O(X3)
= X'+ X1+ O(X})

o

24 /39



Relation between limg(W(R)) and Puiseux expansions of R

Theorem

For W C C¢®, denote

limo(W) := {x = (x1,...,%5) € C° | x € lim(W) and x; = 0},
and define

V;O(R) ={¢= (¢1, .. .,Cbs‘l) € V*(R) | ord(d)f) >0,j=1,...,s—1}.
Then we have

limo(W(R)) = U(beVgO(R){(Xl =0, (D(Xl = 0))}

. Xz = 1+ 0(X?) Xz = —1+0(X?)
VZo(R) = U o
Xo = =Xi1+ O(Xl) Xo = =X1+ O(Xl)
Thus the limit ponts are limg(W/(R)) = {(0,0,1), (0,0, —1)}.

25 /39
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Limit points of a quasi-component

with(AlgebraicGeometryTools):

R := PolynomialRing([x, y, t]); »

F := [t¥*yA2 + vy + 1, (t + 2)%t*xA2 + {y +1D* (x + D]1;
C := Chain(F, Empty(R), R);

Tm := LimitPoints{(C, R, false, true);

Display(Im, R);

R = polynomial_ring
Fi=lty +v+1, (t+2) txX + (v+1) (x+1)]
C:= regular_chain
Im = [regular_chain, regular_chain, regular_chain, regular_chain|
x+1=0 1

x+1=0 x+?=0 x—1=0
1
y+2—0 i y—1=0 y41=0 y+1=0
(4220 +2=0 f=0 t=0

26 /39
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Tangent cone computation with regular chains (1/2)

Algorithm principle

(]

Recall (fi,..., f,_1,f,) is zero-dimensional.

We want TC,(C) for p € V(fi,...,fo—1,f) and C == V(fi,..., f—1).
Let m(x1,...,xn) be a point on the curve C.

Let & be a unit vector directing the line (pm).

The set {limp_p m-p 0} describes TC,(C).

e 6 ¢ ¢

Step 1

@ Let T be a 0-dim regular chain defining the point p; rename its
variables to yi, ..., ys.




Tangent cone computation with regular chains (1/2)

Algorithm principle

(]

Recall (fi,..., f,_1,f,) is zero-dimensional.

We want TC,(C) for p € V(fi,...,fo—1,f) and C == V(fi,..., f—1).
Let m(x1,...,xn) be a point on the curve C.

Let & be a unit vector directing the line (pm).

The set {limp_p m-p 0} describes TC,(C).

e 6 ¢ ¢

Step 1
@ Let T be a 0-dim regular chain defining the point p; rename its
variables to yi, ..., ys.

@ Consider the polynomial system (S) defined by T and
fim- =1 =0.

29 /39



Tangent cone computation with regular chains (1/2)

Algorithm principle

(]

Recall (fi,..., f,_1,f,) is zero-dimensional.

We want TC,(C) for p € V(fi,...,fo—1,f) and C == V(fi,..., f—1).
Let m(x1,...,xn) be a point on the curve C.

Let & be a unit vector directing the line (pm).

The set {limp_p m-p 0} describes TC,(C).

e 6 ¢ ¢

Step 1
@ Let T be a 0-dim regular chain defining the point p; rename its
variables to yi, ..., ys.

@ Consider the polynomial system (S) defined by T and
fi=-=f1=0.
@ This is a 1-dim system in the variables y1,...,yn, X1, ..., Xp.

39



Tangent cone computation with regular chains (1/2)

Algorithm principle

@ Recall (f1,...,fh—1,f,) is zero-dimensional.
o We want TC,(C) for pe V(fi,...,fo—1,f;) and C := V(f, ..., fr_1).
@ Let m(xy,...,x,) be a point on the curve C.

@ Let & be a unit vector directing the line (pm).
@ The set {limy_p mzp U} describes TC,(C).

Step 1
@ Let T be a 0-dim regular chain defining the point p; rename its
variables to yi, ..., ys.

@ Consider the polynomial system (S) defined by T and
= e )
@ This is a 1-dim system in the variables y1,...,yn, X1, ..., Xp.
@ Let Ry, ..., Re be regular chains decomposing the zero set V of (S).

o



Tangent cone computation with regular chains (2/2)

Recall

@ The set {limpy_,p mzp U} describes TC,(C)

o Consider the system (S) defined by T and 4 =---=f,_1 = 0.

@ Let Ry,..., Re be regular chains decomposing the zero set V of (S).
Step 2

@ We divide each component of pm by x; — y1. This works only if
x1 — y1 vanishes finitely many times in V.

o




Tangent cone computation with regular chains (2/2)

Recall

@ The set {limpy_,p mzp U} describes TC,(C)

o Consider the system (S) defined by T and  =--- = f,_1 = 0.

@ Let Ry,..., Re be regular chains decomposing the zero set V of (S).
Step 2

@ We divide each component of pm by x; — y1. This works only if
x1 — y1 vanishes finitely many times in V.

@ Fixi=1---e. If xx — y1 is regular modulo the saturated ideal of R;,

then each compliant of p can be divided by x3 — y3.
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Tangent cone computation with regular chains (2/2)

Recall

@ The set {limpy_,p mzp U} describes TC,(C)

o Consider the system (S) defined by T and  =--- = f,_1 = 0.

@ Let Ry,..., Re be regular chains decomposing the zero set V of (S).
Step 2

@ We divide each component of pm by x; — y1. This works only if
x1 — y1 vanishes finitely many times in V.

@ Fixi=1---e. If xx — y1 is regular modulo the saturated ideal of R;,

then each compliant of p can be divided by x3 — y3.
@ Assume x; — y1 is regular modulo the saturated ideal of R;. Define

o Xi—Yi - _
Si = fmn We have i'= (1,s,...,5,).
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Tangent cone computation with regular chains (2/2)

Recall

@ The set {limpy_,p mzp U} describes TC,(C)

o Consider the system (S) defined by T and  =--- = f,_1 = 0.

@ Let Ry,..., Re be regular chains decomposing the zero set V of (S).
Step 2

@ We divide each component of pm by x; — y1. This works only if
x1 — y1 vanishes finitely many times in V.

@ Fixi=1---e. If xx — y1 is regular modulo the saturated ideal of R;,

then each compliant of p can be divided by x3 — y3.
@ Assume x; — y1 is regular modulo the saturated ideal of R;. Define
=Y We have 0 = (1,s2,...,5,).
o Let s,...,s, be variables; extend R; with the polynomials

52(X1 = y1) = (X2 = y2), noog Sn(Xl = y1) = (X,, = y,,) to a chain Sj.




Recall

@ The set {limpy_,p mzp U} describes TC,(C)

o Consider the system (S) defined by T and  =--- = f,_1 = 0.

@ Let Ry,..., Re be regular chains decomposing the zero set V of (S).
Step 2

@ We divide each component of pm by x; — y1. This works only if

)

Tangent cone computation with regular chains (2/2)

x1 — y1 vanishes finitely many times in V.

Fix i=1---e. If xy — y1 is regular modulo the saturated ideal of R;,
then each compliant of p can be divided by x3 — y3.

Assume x; — y1 is regular modulo the saturated ideal of R;. Define
si = % We have i'= (1,s,...,5,).

Let s,...,s, be variables; extend R; with the polynomials

52(X1 = y1) = (X2 = y2), noog Sn(Xl = y1) = (X,, = y,,) to a chain Sj.
Finally {limpm_p mzp U} is given by the limit points of the S;'s, that
is, the sets W(S;) \ W(S)).
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Example

> R = PolynomialRing([x, y, z] %) :
Fi= [xA2 + yA2 4+ zA2 -1, xA2 - yA2 - z¥ (z-1) ];
rc := Chain([z-1, y, x], Empty(R), R);
F:= [x2+y2+zzf I,XnyZfz(zf 1)]
¥c = regular_chain

> with (AlgebraicGeometryTools);
[ Cylindrify, ntersectionMultiplicity, IsTransverse, LimitPoints, RootOf ToRegularChain, Tang

TangentPlane, TriangularizeWithMultiplicity |

> cases = TangentCone(rc, F, R);

cases:= {H_Z* 1,3 X _yz], regular_chain]}
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Summary

Theorem

Consider a one-dimensional regular chain Ry solving the system

A(x1, ..., xn) =+ =fo_1(x1,...,%,) = 0 at a point p(yi,...,yn) given

by a zero-dimensional T such that V(T) C V(f,...,f,). W.o.lg. x1 —»n1

is regular modulo sat(R;). Then, each line of TC,(C) not contained in the

hyperplane x; = y; has his slopes sy, .. .,s, obtained by lim(W(S)) where

S is the regular chain (fory; < -+ <yp <x1 <+ <xp < S <---<5p)
S=RiU{sa(x1—y1) = (x2—=y2),...,50(x1 = y1) = (xn — ¥n)}

Remarks

Additional computations are needed to capture the lines contained in
x1 = y1: There are essentially two options:
© Perform a random linear change of the coordinates so as to assume
that, generically, y1 = x; contains no lines of TC,(C).
@ Compute in turn the lines not contained in the hyperplane y; = x; for
all i=0, ...,n and remove the duplicates; indeed no lines of the
tangent cone can simultaneously satisfy y; = x; for all i =0, ..., n.



Concluding remarks

Theorem (Ssame as before)

Consider a one-dimensional regular chain Ry solving the system

A(x1, ..., %xn) =+ =fa_1(x1,...,%,) = 0 at a point p(yi,...,yn) given

by a zero-dimensional T such that V(T) C V(f,...,f,). W.o.lg. x1 —»n1

is regular modulo sat(R;). Then, each line of TC,(C) not contained in the

hyperplane x; = y; has his slopes sy, .. .,s, obtained by lim(W(S)) where

S is the regular chain (fory; < -+ - <y, <x1 <+ <xp < S <---<5p)
S=RiU{sa(xx—y1) = (x2—=y2),...,s0(x1 — y1) — (xn — ¥n)}

Remarks

@ The proposed method reduces tangent cone computation to that of
limits of rational functions.

@ Thanks to the size estimates on Ry (X. Dahan, A. Kadri & E. Schost;
2012; and run time estimates on Puiseux series calculation (P. G.
Wialsh; 2000) the proposed method is singly exponential in the size of
the input system fi, ..., f,.

@ Relaxing the one-dimensional constraint is work in progress.
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