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> Fs :=
[

(

x2 + y2
)2

+ 3x2y − y3,
(

x2 + y2
)3

− 4x2y2
]

:

> plots[implicitplot](Fs,x=-2..2,y=-2..2);

> R := PolynomialRing ([x , y ], 101):
> rcs := Triangularzie (Fs,R , normalized = ‘yes‘):
> seq (TriangularizeWithMultiplicity (Fs,T ,R) ,T in rcs):
[[

1,

{

x − 1 = 0

y + 14 = 0

]]

,

[[

1,

{

x + 1 = 0

y + 14 = 0

]]

,

[[

1,

{

x − 47 = 0

y − 14 = 0

]]

,

[[

1,

{

x + 47 = 0

y − 14 = 0

]]

,

[[

14,

{

x = 0

y = 0

]]
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> Fs :=
[

x2 + y + z − 1, x + y2 + z − 1, x + y + z2 − 1
]

:
> R := PolynomialRing ([x , y , z ], 101):
> TriangularizeWithMultiplicity (Fs,R):
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TriangularizeWithMultiplicity

We specify TriangularizeWithMultiplicity:

Input f1, . . . , fn ∈ k[x1, . . . , xn] such that V (f1, . . . , fn) is
zero-dimensional.

Output Finitely many pairs [(T1,m1) , . . . , (Tℓ,mℓ)] where T1, . . . ,Tℓ

are regular chains of k[x1, . . . , xn] such that for all p ∈ V (Ti )

I(p; f1, . . . , fn) = mi and V (f1, . . . , fn) = V (T1)⊎· · ·⊎V (Tℓ).

TriangularizeWithMultiplicity works as follows

1 Apply Triangularize on f1, . . . , fn,

2 Apply IMn(T ; f1, . . . , fn) on each regular chain T .

IMn(T ; f1, . . . , fn) works as follows

1 if n = 2 apply Fulton’s algorithm extended for working at a regular
chains instead of a point (S. Marcus, M., P. Vrbik; CASC 2013),

2 if n > 2 attempt a reduction from dimension n to n − 1. 5 / 39
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Reducing from dim n to dim n − 1: using transversality (1/2)

Definition

The intersection multiplicity of p in V (f1, . . . , fn) is given by
I (p; f1, . . . , fn) := dimk (OAn,p/ 〈f1, . . . , fn〉) .

where OAn,p and dimk(OAn,p/ 〈f1, . . . , fn〉) are respectively the local ring at
the point p and the dimension of the vector space OAn,p/ 〈f1, . . . , fn〉.

The next theorem reduces the n-dimensional case to n − 1, under
assumptions which state that fn does not contribute to I (p; f1, . . . , fn).
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Reducing from dim n to dim n − 1: using transversality (1/2)

Definition

The intersection multiplicity of p in V (f1, . . . , fn) is given by
I (p; f1, . . . , fn) := dimk (OAn,p/ 〈f1, . . . , fn〉) .

where OAn,p and dimk(OAn,p/ 〈f1, . . . , fn〉) are respectively the local ring at
the point p and the dimension of the vector space OAn,p/ 〈f1, . . . , fn〉.

The next theorem reduces the n-dimensional case to n − 1, under
assumptions which state that fn does not contribute to I (p; f1, . . . , fn).

Theorem 1

Assume that hn = V (fn) is non-singular at p. Let vn be its tangent
hyperplane at p. Assume that hn meets each component (through p) of
the curve C = V (f1, . . . , fn−1) transversely (that is, the tangent cone
TCp(C) intersects vn only at the point p). Let h ∈ k[x1, . . . , xn] be the
degree 1 polynomial defining vn. Then, we have

I (p; f1, . . . , fn) = I (p; f1, . . . , fn−1, h).
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Reducing from dim n to dim n − 1: using transversality (2/2)

The theorem again:

Theorem

Assume that hn = V (fn) is non-singular at p. Let vn be its tangent
hyperplane at p. Assume that hn meets each component (through p) of
the curve C = V (f1, . . . , fn−1) transversely (that is, the tangent cone
TCp(C) intersects vn only at the point p). Let h ∈ k[x1, . . . , xn] be the
degree 1 polynomial defining vn. Then, we have

I (p; f1, . . . , fn) = I (p; f1, . . . , fn−1, h).

How to use this theorem in practise?

Assume that the coefficient of xn in h is non-zero, thus h = xn − h′, where
h′ ∈ k[x1, . . . , xn−1]. Hence, we can rewrite the ideal 〈f1, . . . , fn−1, h〉 as
〈g1, . . . , gn−1, h〉 where gi is obtained from fi by substituting xn with h′.
Then, we have

I (p; f1, . . . , fn) = I (p|x1,...,xn−1 ; g1, . . . , gn−1).
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Reducing from dim n to dim n − 1: a simple case (1/3)

Example

Consider the system
f1 = x , f2 = x + y2 − z2, f3 := y − z3

near the origin o := (0, 0, 0) ∈ V (f1, f2, f3)
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Reducing from dim n to dim n − 1: a simple case (2/3)

Example

Recall the system
f1 = x , f2 = x + y2 − z2, f3 := y − z3

near the origin o := (0, 0, 0) ∈ V (f1, f2, f3).

Computing the IM using the definition

Let us compute a basis for OA3,o/ 〈f1, f2, f3〉 as a vector space over k .

Setting x = 0 and y = z3, we must have z2(z4 + 1) = 0 in
OA3,o = k[x , y , z ](z,y ,z).

Since z4 + 1 is a unit in this local ring, we see that

OA3,o/ 〈f1, f2, f3〉 = 〈1, z〉

as a vector space, so I (o; f1, f2, f3) = 2.
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Reducing from dim n to dim n − 1: a simple case (3/3)

Example

Recall the system again
f1 = x , f2 = x + y2 − z2, f3 := y − z3

near the origin o := (0, 0, 0) ∈ V (f1, f2, f3).

Computing the IM using the reduction

We have
C := V (x , x + y2 − z2) = V (x , (y − z)(y + z)) = TCo(C)

and we have
h = y .

Thus C and V (f3) intersect transversally at the origin. Therefore, we have
I3(p; f1, f2, f3) = I2((0, 0); x , x − z2) = 2.

12 / 39



Reducing from dim n to dim n − 1: via cylindrification (1/3)

In practise, this reduction from n to n − 1 variables does not always apply.
For instance, this is the case for Ojika 2:

x2 + y + z − 1 = x + y2 + z − 1 = x + y + z2 − 1 = 0.

Figure: The real points of V (x2 + y + z − 1, x + y2 + z − 1, x + y + z2 − 1).
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Reducing from dim n to dim n − 1: via cylindrification (2/3)

Recall the system

x2 + y + z − 1 = x + y2 + z − 1 = x + y + z2 − 1 = 0.

If one uses the first equation, that is x2 + y + z − 1 = 0, to eliminate z
from the other two, we obtain two bivariate polynomials f , g ∈ k[x , y ].

Figure: The real points of
V (x2 + y + z − 1, x + y2 − x2 − y , x − y + x4 +2 x2y − 2 x2 + y2) near the origin.
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Reducing from dim n to dim n − 1: via cylindrification (3/3)

At any point of p ∈ V (h, f , g) the tangent cone of the curve V (f , g) is
independent of z ; in some sense it is “vertical”. On the other hand, at any
point of p ∈ V (h, f , g) the tangent space of V (h) is not vertical.

Thus, the previous theorem applies without computing any tangent cones.

Figure: The real points of
V (x2 + y + z − 1, x + y2 − x2 − y , x − y + x4 +2 x2y − 2 x2 + y2) near the origin.
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Tangent cones and tangent spaces

Tangent space

Let F ⊂ k[x1, . . . , xn] and p ∈ V (F ). The tangent space of V := V (F ) at p is
the algebraic set given by

Tp(V ) := V ({ dp (f ) : f ∈ I(V )})

where dp (f ) is the linear part of f at p, that is, the affine form
∂f
∂x1

(p)(x1 − p1) + · · ·+ ∂f
∂xn

(p)(xn − pn).

Tangent cone

The tangent cone of V := V (F ) at p is the algebraic set given by

TCp(V ) = V ({hcp (f ; min) : f ∈ I(V ))

where hcp (f ; min) is the homogeneous component of least degree of f in
x − p. If V is a curve, then TCp(V ) consists of finitely many lines, all
intersecting at p.

17 / 39



Tangent cone: a basic example

The tangent cone of V (h) for h = y2 − x2(x + 1) ∈ C[x , y ] is
V ((y − x)(y + x)).
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Tangent cone computation as limits of secants

Previous works

One can compute the ideal 〈hcp (f ; min) : f ∈ I(V )〉 by means of
standard bases (F. Mora 1982) or Grönber bases (T. Mora, G. Pfister & C.
Traverso; 1992).

We are going to take a different route and rely on:

Theorem (Chapter 9 in (D. Cox, J. Little, & D. O’Shea; 1992))

A line L through p lies in the tangent cone TCp(V ) if and only if there
exists a sequence (qk , k ∈ N) of points on V \ {p} converging to p and
such that the secant line Lk containing p and qk becomes L when qk
approaches p.
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Tangent cone computation via tangent spaces

Assume k = C and none of the V (fi ) is singular at p. For each component G
through p of C = V (f1, . . . , fn−1),

There exists a neighborhood B of p such that V (fi ) is not singular at all
q ∈ (B ∩ G) \ {p}, for i = 1, . . . , n − 1.

Let vi (q) be the tangent hyperplane of V (fi ) at q. Regard
v1(q) ∩ · · · ∩ vn−1(q) as a parametric variety with q as parameter.

Then, TCp(G) = v1(q) ∩ · · · ∩ vn−1(q) when q approaches p.

Finally, TCp(C) is the union of all TCp(G). This approach avoids standard
basis computation and extends for working with V (T ) instead of p.

But how to compute the limit of v1(q) ∩ · · · ∩ vn−1(q) when approaches p?
20 / 39
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Limit points of a quasi-component

Input

Let R ⊂ C[X1, . . . ,Xs ] be a regular chain.
Let hR be the product of initials of polynomials of R .
Let W (R) be the quasi-component of R , that is V (R) \ V (hR).

Desired output

The non-trivial limit points of W (R), that is

lim(W (R)) := W (R)
Z
\W (R).
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Puiseux expansions of a regular chain

Notation

Let R := {r1(X1,X2), . . . , rs−1(X1, . . . ,Xs)} ⊂ C[X1 < · · · < Xs ] be a
1-dim regular chain.
Assume R is strongly normalized, that is, init(R) ∈ C[X1].
Let k = C(〈X ∗

1 〉).
Then R generates a zero-dimensional ideal in k[X2, . . . ,Xs ].
Let V ∗(R) be the zero set of R in k

s−1.

Definition

We call Puiseux expansions of R the elements of V ∗(R).

Remarks

The strongly normalized assumption is only for presentation ease.
The 1-dim assumption is, however, harder to relax.
One could think of generalizations of Puiseux expanions using
Jung-Abhyankar theorem. More on this tomorrow and slater.
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An example

A regular chain R

R :=

{

X1X
2
3 + X2

X1X
2
2 + X2 + X1

Puiseux expansions of R
{

X3 = 1 + O(X 2
1 )

X2 = −X1 + O(X 2
1 )

{

X3 = −1 + O(X 2
1 )

X2 = −X1 + O(X 2
1 )

{

X3 = X1
−1 − 1

2X1 + O(X 2
1 )

X2 = −X1
−1 + X1 + O(X 2

1 )

{

X3 = −X1
−1 + 1

2X1 + O(X 2
1 )

X2 = −X1
−1 + X1 + O(X 2

1 )
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Relation between lim0(W (R)) and Puiseux expansions of R

Theorem

For W ⊆ C
s , denote

lim0(W ) := {x = (x1, . . . , xs) ∈ C
s | x ∈ lim(W ) and x1 = 0},

and define
V ∗
≥0(R) := {Φ = (Φ1, . . . ,Φs−1) ∈ V ∗(R) | ord(Φj) ≥ 0, j = 1, . . . , s − 1}.

Then we have

lim0(W (R)) = ∪Φ∈V ∗
≥0(R){(X1 = 0,Φ(X1 = 0))}.

V ∗
≥0(R) :=

{

X3 = 1 + O(X 2
1 )

X2 = −X1 + O(X 2
1 )

∪

{

X3 = −1 + O(X 2
1 )

X2 = −X1 + O(X 2
1 )

Thus the limit ponts are lim0(W (R)) = {(0, 0, 1), (0, 0,−1)}.
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Limit points of a quasi-component
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Tangent cone computation with regular chains (1/2)

Algorithm principle

Recall 〈f1, . . . , fn−1, fn〉 is zero-dimensional.
We want TCp(C) for p ∈ V (f1, . . . , fn−1, fn) and C := V (f1, . . . , fn−1).
Let m(x1, . . . , xn) be a point on the curve C.
Let ~u be a unit vector directing the line (pm).
The set {limm→p,m 6=p ~u} describes TCp(C).

Step 1

Let T be a 0-dim regular chain defining the point p; rename its
variables to y1, . . . , yn.
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Tangent cone computation with regular chains (1/2)

Algorithm principle

Recall 〈f1, . . . , fn−1, fn〉 is zero-dimensional.
We want TCp(C) for p ∈ V (f1, . . . , fn−1, fn) and C := V (f1, . . . , fn−1).
Let m(x1, . . . , xn) be a point on the curve C.
Let ~u be a unit vector directing the line (pm).
The set {limm→p,m 6=p ~u} describes TCp(C).

Step 1

Let T be a 0-dim regular chain defining the point p; rename its
variables to y1, . . . , yn.
Consider the polynomial system (S) defined by T and
f1 = · · · = fn−1 = 0.
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Tangent cone computation with regular chains (1/2)

Algorithm principle

Recall 〈f1, . . . , fn−1, fn〉 is zero-dimensional.
We want TCp(C) for p ∈ V (f1, . . . , fn−1, fn) and C := V (f1, . . . , fn−1).
Let m(x1, . . . , xn) be a point on the curve C.
Let ~u be a unit vector directing the line (pm).
The set {limm→p,m 6=p ~u} describes TCp(C).

Step 1

Let T be a 0-dim regular chain defining the point p; rename its
variables to y1, . . . , yn.
Consider the polynomial system (S) defined by T and
f1 = · · · = fn−1 = 0.
This is a 1-dim system in the variables y1, . . . , yn, x1, . . . , xn.
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Tangent cone computation with regular chains (1/2)

Algorithm principle

Recall 〈f1, . . . , fn−1, fn〉 is zero-dimensional.
We want TCp(C) for p ∈ V (f1, . . . , fn−1, fn) and C := V (f1, . . . , fn−1).
Let m(x1, . . . , xn) be a point on the curve C.
Let ~u be a unit vector directing the line (pm).
The set {limm→p,m 6=p ~u} describes TCp(C).

Step 1

Let T be a 0-dim regular chain defining the point p; rename its
variables to y1, . . . , yn.
Consider the polynomial system (S) defined by T and
f1 = · · · = fn−1 = 0.
This is a 1-dim system in the variables y1, . . . , yn, x1, . . . , xn.
Let R1, . . . ,Re be regular chains decomposing the zero set V of (S).
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Tangent cone computation with regular chains (2/2)

Recall

The set {limm→p,m 6=p ~u} describes TCp(C)
Consider the system (S) defined by T and f1 = · · · = fn−1 = 0.
Let R1, . . . ,Re be regular chains decomposing the zero set V of (S).

Step 2

We divide each component of ~p m by x1 − y1. This works only if
x1 − y1 vanishes finitely many times in V .
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Tangent cone computation with regular chains (2/2)

Recall

The set {limm→p,m 6=p ~u} describes TCp(C)
Consider the system (S) defined by T and f1 = · · · = fn−1 = 0.
Let R1, . . . ,Re be regular chains decomposing the zero set V of (S).

Step 2

We divide each component of ~p m by x1 − y1. This works only if
x1 − y1 vanishes finitely many times in V .
Fix i = 1 · · · e. If x1 − y1 is regular modulo the saturated ideal of Ri ,
then each compliant of ~p m can be divided by x1 − y1.
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Tangent cone computation with regular chains (2/2)

Recall

The set {limm→p,m 6=p ~u} describes TCp(C)
Consider the system (S) defined by T and f1 = · · · = fn−1 = 0.
Let R1, . . . ,Re be regular chains decomposing the zero set V of (S).

Step 2

We divide each component of ~p m by x1 − y1. This works only if
x1 − y1 vanishes finitely many times in V .
Fix i = 1 · · · e. If x1 − y1 is regular modulo the saturated ideal of Ri ,
then each compliant of ~p m can be divided by x1 − y1.
Assume x1 − y1 is regular modulo the saturated ideal of Ri . Define
si =

xi−yi
x1−y1

. We have ~u = (1, s2, . . . , sn).
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Tangent cone computation with regular chains (2/2)

Recall

The set {limm→p,m 6=p ~u} describes TCp(C)
Consider the system (S) defined by T and f1 = · · · = fn−1 = 0.
Let R1, . . . ,Re be regular chains decomposing the zero set V of (S).

Step 2

We divide each component of ~p m by x1 − y1. This works only if
x1 − y1 vanishes finitely many times in V .
Fix i = 1 · · · e. If x1 − y1 is regular modulo the saturated ideal of Ri ,
then each compliant of ~p m can be divided by x1 − y1.
Assume x1 − y1 is regular modulo the saturated ideal of Ri . Define
si =

xi−yi
x1−y1

. We have ~u = (1, s2, . . . , sn).
Let s2, . . . , sn be variables; extend Rj with the polynomials
s2(x1 − y1)− (x2 − y2), . . . , sn(x1 − y1)− (xn − yn) to a chain Sj .
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Tangent cone computation with regular chains (2/2)

Recall

The set {limm→p,m 6=p ~u} describes TCp(C)
Consider the system (S) defined by T and f1 = · · · = fn−1 = 0.
Let R1, . . . ,Re be regular chains decomposing the zero set V of (S).

Step 2

We divide each component of ~p m by x1 − y1. This works only if
x1 − y1 vanishes finitely many times in V .
Fix i = 1 · · · e. If x1 − y1 is regular modulo the saturated ideal of Ri ,
then each compliant of ~p m can be divided by x1 − y1.
Assume x1 − y1 is regular modulo the saturated ideal of Ri . Define
si =

xi−yi
x1−y1

. We have ~u = (1, s2, . . . , sn).
Let s2, . . . , sn be variables; extend Rj with the polynomials
s2(x1 − y1)− (x2 − y2), . . . , sn(x1 − y1)− (xn − yn) to a chain Sj .
Finally {limm→p,m 6=p ~u} is given by the limit points of the Sj ’s, that

is, the sets W (Sj) \W (Sj).
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Example
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Summary

Theorem

Consider a one-dimensional regular chain R1 solving the system
f1(x1, . . . , xn) = · · · = fn−1(x1, . . . , xn) = 0 at a point p(y1, . . . , yn) given
by a zero-dimensional T such that V (T ) ⊆ V (f1, . . . , fn). W.o.l.g. x1 − y1
is regular modulo sat(Ri ). Then, each line of TCp(C) not contained in the
hyperplane x1 = y1 has his slopes s2, . . . , sn obtained by lim(W (S)) where
S is the regular chain (for y1 < · · · < yn < x1 < · · · < xn < s2 < · · · < sn)

S = R1 ∪ {s2(x1 − y1)− (x2 − y2), . . . , sn(x1 − y1)− (xn − yn)}

Remarks

Additional computations are needed to capture the lines contained in
x1 = y1: There are essentially two options:

1 Perform a random linear change of the coordinates so as to assume
that, generically, y1 = x1 contains no lines of TCp(C).

2 Compute in turn the lines not contained in the hyperplane yi = xi for
all i = 0, . . . , n and remove the duplicates; indeed no lines of the
tangent cone can simultaneously satisfy yi = xi for all i = 0, . . . , n.
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Concluding remarks

Theorem (Ssame as before)

Consider a one-dimensional regular chain R1 solving the system
f1(x1, . . . , xn) = · · · = fn−1(x1, . . . , xn) = 0 at a point p(y1, . . . , yn) given
by a zero-dimensional T such that V (T ) ⊆ V (f1, . . . , fn). W.o.l.g. x1 − y1
is regular modulo sat(Ri ). Then, each line of TCp(C) not contained in the
hyperplane x1 = y1 has his slopes s2, . . . , sn obtained by lim(W (S)) where
S is the regular chain (for y1 < · · · < yn < x1 < · · · < xn < s2 < · · · < sn)

S = R1 ∪ {s2(x1 − y1)− (x2 − y2), . . . , sn(x1 − y1)− (xn − yn)}

Remarks

The proposed method reduces tangent cone computation to that of
limits of rational functions.
Thanks to the size estimates on R1 (X. Dahan, A. Kadri & E. Schost;
2012; and run time estimates on Puiseux series calculation (P. G.
Walsh; 2000) the proposed method is singly exponential in the size of
the input system f1, . . . , fn.
Relaxing the one-dimensional constraint is work in progress.
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