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Driving application: computing intersection multiplicity

Let f1, . . . , fn ∈ k[x1, . . . , kn] such that V (f1, . . . , fn) ⊂ k[x1, . . . , kn] is
zero-dimensional. The intersection multiplicity I (p; f1, . . . , fn) at
p ∈ V (f1, . . . , fn)

in the projective plane, specifies the weights of the weighted sum in
Bézout’s Theorem,
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zero-dimensional. The intersection multiplicity I (p; f1, . . . , fn) at
p ∈ V (f1, . . . , fn)

in the projective plane, specifies the weights of the weighted sum in
Bézout’s Theorem,

is not natively computable by Maple,

while it is computable by Singular and Magma only when all
coordinates of p are in k .

We are interested in removing this algorithmic limitation.

We will combine Fulton’s Algorithm approach and the theory of
regular chains.

Our algorithm is complete in the bivariate case.

We propose algorithmic criteria for reducing the case of n variables to
the bivariate one. Experimental results are also reported. 8 / 47



The case of two plane curves

Given an arbitrary field k and two bivariate polynomials f , g ∈ k[x , y ],

consider the affine algebraic curves C := V (f ) and D := V (g) in A
2 = k

2
,

where k is the algebraic closure of k . Let p be a point in the intersection.

Definition

The intersection multiplicity of p in V (f , g) is defined to be

I (p; f , g) = dimk(OA2,p/ 〈f , g〉)

where OA2,p and dimk(OA2,p/ 〈f , g〉) are the local ring at p and the
dimension of the vector space OA2,p/ 〈f , g〉.
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The case of two plane curves

Given an arbitrary field k and two bivariate polynomials f , g ∈ k[x , y ],

consider the affine algebraic curves C := V (f ) and D := V (g) in A
2 = k

2
,

where k is the algebraic closure of k . Let p be a point in the intersection.

Definition

The intersection multiplicity of p in V (f , g) is defined to be

I (p; f , g) = dimk(OA2,p/ 〈f , g〉)

where OA2,p and dimk(OA2,p/ 〈f , g〉) are the local ring at p and the
dimension of the vector space OA2,p/ 〈f , g〉.

Remark

As pointed out by Fulton in his book Algebraic Curves, the intersection
multiplicities of the plane curves C and D satisfy a series of 7 properties
which uniquely define I (p; f , g) at each point p ∈ V (f , g).
Moreover, the proof is constructive, which leads to an algorithm.
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Fulton’s Properties

The intersection multiplicity of two plane curves at a point satisfies and is

uniquely determined by the following.
(2-1) I (p; f , g) is a non-negative integer for any C , D, and p such that C

and D have no common component at p. We set I (p; f , g) =∞ if C
and D have a common component at p.

(2-2) I (p; f , g) = 0 if and only if p /∈ C ∩ D.

(2-3) I (p; f , g) is invariant under affine change of coordinates on A
2.

(2-4) I (p; f , g) = I (p; g , f )

(2-5)
I (p; f , g) is greater or equal to the product of the multiplicity of p
in f and g , with equality occurring if and only if C and D have no
tangent lines in common at p.

(2-6) I (p; f , gh) = I (p; f , g) + I (p; f , h) for all h ∈ k[x , y ].

(2-7) I (p; f , g) = I (p; f , g + hf ) for all h ∈ k[x , y ].
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Fulton’s Algorithm

Algorithm 1: IM2(p; f , g)

Input: p = (α, β) ∈ A
2(k) and f , g ∈ k[y ≻ x ] such that gcd(f , g) ∈ k

Output: I (p; f , g) ∈ N satisfying (2-1)–(2-7)
if f (p) 6= 0 or g(p) 6= 0 then

return 0;

r , s = deg (f (x , β)) ,deg (g(x , β)) ; assume s ≥ r .

if r = 0 then

write f = (y − β) · h and g(x , β) = (x − α)m (a0 + a1(x − α) + · · ·);
return m + IM2(p; h, g);

IM2(p; (y − β) · h, g) = IM2(p; (y − β), g) + IM2(p; h, g)

IM2(p; (y − β), g) = IM2(p; (y − β), g(x , β)) = IM2(p; (y − β), (x − α)m) = m

if r > 0 then

h← monic (g)− (x − α)s−rmonic (f );
return IM2(p; f , h);
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Our goal: extending Fulton’s Algorithm

Limitations of Fulton’s Algorithm

Fulton’s Algorithm
does not generalize to n > 2, that is, to n polynomials f1, . . . , fn
∈ k[x1, . . . , xn] since k[x1, . . . , xn−1] is no longer a PID.
is limited to computing the IM at a single point with rational
coordinates, that is, with coordinates in the base field k . (Approaches
based on standard or Gröbner bases suffer from the same limitation)
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Fulton’s Algorithm
does not generalize to n > 2, that is, to n polynomials f1, . . . , fn
∈ k[x1, . . . , xn] since k[x1, . . . , xn−1] is no longer a PID.
is limited to computing the IM at a single point with rational
coordinates, that is, with coordinates in the base field k . (Approaches
based on standard or Gröbner bases suffer from the same limitation)

Our contributions

We adapt Fulton’s Algorithm such that it can work at any point of
V (f1, f2), rational or not.
For n > 2, we propose an algorithmic criterion to reduce the n-variate
case to that of n − 1 variables.
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A first algorithmic tool: regular chains (1/2)

Definition

T ⊂ k[xn > · · · > x1] is a triangular set if T ∩ k = ∅ and
mvar(p) 6= mvar(q) for all p, q ∈ T with p 6= q.

For all t ∈ T write init(t) := lc(t,mvar(t)) and hT :=
∏

t∈T init(t). The
saturated ideal of T is:

sat(T ) = 〈T 〉 : h∞T .

Theorem (J.F. Ritt, 1932)

Let V ⊂ k
n
be an irreducible variety and F ⊂ k[x1, . . . , xn] s.t. V = V (F ).

Then, one can compute a (reduced) triangular set T ⊂ 〈F 〉 s.t.
(∀ g ∈ 〈F〉) prem(g ,T ) = 0.

Therefore, we have
V = V (sat(T )).
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A first algorithmic tool: regular chains (2/2)

Definition (M. Kalkbrner, 1991 - L. Yang, J. Zhang 1991)

T is a regular chain if T = ∅ or T := T ′ ∪ {t} with mvar(t) maximum s.t.

T ′ is a regular chain,
init(t) is regular modulo sat(T ′)

Kalkbrener triangular decomposition

For all F ⊂ k[x1, . . . , xn], one can compute a family of regular chains
T1, . . . ,Te of k[x1, . . . , xn], called a Kalkbrener triangular decomposition
of V (F ), such that we have

V (F ) = ∪ei=1V (sat(Ti )).
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A second algorithmic tool: the D5 Principle

Original version (Della Dora, Discrescenzo & Duval)

Let f , g ∈ k[x1] such that f is squarefree. Without using irreducible
factorization, one can compute f1, . . . , fe ∈ k[x1] such that

f = f1 . . . fe holds and,
for each i = 1 · · · e, either g ≡ 0 mod fi or g is invertible modulo fi .

Multivariate version

Let T ⊂ k[x1, . . . , xn] be a regular chain such that sat(T ) is
zero-dimensional, thus sat(T ) = 〈T 〉 holds. Let f ∈ k[x1, . . . , xn].

The operation Regularize (f ,T ) computes regular chains
T1, . . . ,Te ⊂ k[x1, . . . , xn] such that

V (T ) = V (T1) ∪ · · · ∪ V (Te) holds and,
for each i = 1 · · · e, either V (Ti ) ⊆ V (f ) or V (Ti ) ∩ V (f ) = ∅ holds.

Moreover, only polynomial GCDs and resultants need to be computed,
that is, irreducible factorization is not required.
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Dealing with non-rational points

Working with regular chains

To deal with non-rational points, we extend Fulton’s Algorithm to
compute IM2(T ; f1, f2), where T ⊂ k[x1, x2] is a regular chain such that
we have V (T ) ⊆ V (f1, f2).

This makes sense thanks to the theorem below, which is non-trivial
since intersection multiplicity is really a local property.
For an arbitray zero-dimensional regular chain T , we apply the D5
Principle to Fulton’s Algorithm in order to reduce to the case of the
theorem.

Theorem 1

Recall that V (f1, f2) is zero-dimensional. Let T ⊂ k[x1, x2] be a regular
chain such that we have V (T ) ⊂ V (f1, f2) and the ideal 〈T 〉 is maximal.
Then IM2(p; f1, f2) is the same at any point p ∈ V (T ).
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TriangularizeWithMultiplicity

We specify TriangularizeWithMultiplicity for the bivariate case.

Input f , g ∈ k[x , y ] such that V (f , g) is zero-dimensional.

Output Finitely many pairs [(T1,m1) , . . . , (Tℓ,mℓ)] of the form
(Ti :: RegularChain,mi :: nonnegint) such that for all
p ∈ V (Ti )

I(p; f , g) = mi and V (f , g) = V (T1) ⊎ · · · ⊎ V (Tℓ).

Implementating TriangularizeWithMultiplicity is done by

first calling Triangularize (which encode the points of V (f , g)
with regular chains, and

secondly calling IM2(T ; f , g) for all T ∈ Triangularize(f , g).

This approach allows optimizations such that using the Jacobian criterion
to quickly discover points of IM equal to 1.
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> Fs :=
[

(

x2 + y2
)2

+ 3x2y − y3,
(

x2 + y2
)3
− 4x2y2

]

:

> plots[implicitplot](Fs,x=-2..2,y=-2..2);

> R := PolynomialRing ([x , y ], 101):
> rcs := Triangularzie (Fs,R , normalized = ‘yes‘):
> seq (TriangularizeWithMultiplicity (Fs,T ,R) ,T in rcs):
[[

1,

{

x − 1 = 0

y + 14 = 0

]]

,

[[

1,

{

x + 1 = 0

y + 14 = 0

]]

,

[[

1,

{

x − 47 = 0

y − 14 = 0

]]

,

[[

1,

{

x + 47 = 0

y − 14 = 0

]]

,

[[

14,

{

x = 0

y = 0

]]
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> Fs :=
[

x2 + y + z − 1, x + y2 + z − 1, x + y + z2 − 1
]

:
> R := PolynomialRing ([x , y , z ], 101):
> TriangularizeWithMultiplicity (Fs,R):












1,











x − z = 0

y − z = 0

z2 + 2z − 1 = 0












,












2,











x = 0

y = 0

z − 1 = 0












,












2,











x = 0

y − 1 = 0

z = 0












,












2,











x − 1 = 0

y = 0

z = 0
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Experiments

System Degree Time(△ize) #rc’s Time(rc im)

〈1, 3〉 888 9.7 20 19.2

〈1, 4〉 1456 226.0 8 9.023

〈1, 5〉 1595 169.4 8 25.4

〈3, 5〉 1413 22.5 27 28.6

〈4, 5〉 1781 218.4 9 13.9

〈5, 1〉 1759 113.0 10 15.8

〈6, 8〉 1680 99.7 12 37.6

〈6, 9〉 2560 299.3 10 22.9

〈6, 10〉 1320 131.9 7 8.4

〈6, 11〉 1440 59.8 17 27.5

〈7, 8〉 1152 32.8 12 16.2

〈7, 9〉 756 18.5 16 11.2

〈7, 10〉 595 8.1 17 13.0

〈7, 11〉 648 9.2 25 11.1

〈8, 9〉 1984 374.5 10 11.3

〈8, 10〉 1362 232.5 7 9.3

〈8, 11〉 1256 49.6 17 45.7

〈9, 10〉 2080 504.9 12 34.812

〈9, 11〉 1792 115.1 16 17.2

〈10, 11〉 1180 40.9 17 21.3
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Reducing from dim n to dim n − 1: using transversality (1/2)

Definition

The intersection multiplicity of p in V (f1, . . . , fn) is given by
I (p; f1, . . . , fn) := dimk (OAn,p/ 〈f1, . . . , fn〉) .

where OAn,p and dimk(OAn,p/ 〈f1, . . . , fn〉) are respectively the local ring at
the point p and the dimension of the vector space OAn,p/ 〈f1, . . . , fn〉.

The next theorem reduces the n-dimensional case to n − 1, under
assumptions which state that fn does not contribute to I (p; f1, . . . , fn).
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I (p; f1, . . . , fn) := dimk (OAn,p/ 〈f1, . . . , fn〉) .

where OAn,p and dimk(OAn,p/ 〈f1, . . . , fn〉) are respectively the local ring at
the point p and the dimension of the vector space OAn,p/ 〈f1, . . . , fn〉.

The next theorem reduces the n-dimensional case to n − 1, under
assumptions which state that fn does not contribute to I (p; f1, . . . , fn).

Theorem 2

Assume that hn = V (fn) is non-singular at p. Let vn be its tangent
hyperplane at p. Assume that hn meets each component (through p) of
the curve C = V (f1, . . . , fn−1) transversely (that is, the tangent cone
TCp(C) intersects vn only at the point p). Let h ∈ k[x1, . . . , xn] be the
degree 1 polynomial defining vn. Then, we have

I (p; f1, . . . , fn) = I (p; f1, . . . , fn−1, h).
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Reducing from dim n to dim n − 1: using transversality (2/2)

The theorem again:

Theorem

Assume that hn = V (fn) is non-singular at p. Let vn be its tangent
hyperplane at p. Assume that hn meets each component (through p) of
the curve C = V (f1, . . . , fn−1) transversely (that is, the tangent cone
TCp(C) intersects vn only at the point p). Let h ∈ k[x1, . . . , xn] be the
degree 1 polynomial defining vn. Then, we have

I (p; f1, . . . , fn) = I (p; f1, . . . , fn−1, h).

How to use this theorem in practise?

Assume that the coefficient of xn in h is non-zero, thus h = xn − h′, where
h′ ∈ k[x1, . . . , xn−1]. Hence, we can rewrite the ideal 〈f1, . . . , fn−1, h〉 as
〈g1, . . . , gn−1, h〉 where gi is obtained from fi by substituting xn with h′.
Then, we have

I (p; f1, . . . , fn) = I (p|x1,...,xn−1 ; g1, . . . , gn−1).
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Reducing from dim n to dim n − 1: a simple case (1/3)

Example

Consider the system
f1 = x , f2 = x + y2 − z2, f3 := y − z3

near the origin o := (0, 0, 0) ∈ V (f1, f2, f3)
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Reducing from dim n to dim n − 1: a simple case (2/3)

Example

Recall the system
f1 = x , f2 = x + y2 − z2, f3 := y − z3

near the origin o := (0, 0, 0) ∈ V (f1, f2, f3).

Computing the IM using the definition

Let us compute a basis for OA3,o/ 〈f1, f2, f3〉 as a vector space over k .

Setting x = 0 and y = z3, we must have z2(z4 + 1) = 0 in
OA3,o = k[x , y , z ](z,y ,z).

Since z4 + 1 is a unit in this local ring, we see that

OA3,o/ 〈f1, f2, f3〉 = 〈1, z〉

as a vector space, so I (o; f1, f2, f3) = 2.
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Reducing from dim n to dim n − 1: a simple case (3/3)

Example

Recall the system again
f1 = x , f2 = x + y2 − z2, f3 := y − z3

near the origin o := (0, 0, 0) ∈ V (f1, f2, f3).

Computing the IM using the reduction

We have
C := V (x , x + y2 − z2) = V (x , (y − z)(y + z)) = TCo(C)

and we have
h = y .

Thus C and V (f3) intersect transversally at the origin. Therefore, we have
I3(p; f1, f2, f3) = I2((0, 0); x , x − z2) = 2.
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Reducing from dim n to dim n − 1: via cylindrification (1/3)

In practise, this reduction from n to n − 1 variables does not always apply.
For instance, this is the case for Ojika 2:

x2 + y + z − 1 = x + y2 + z − 1 = x + y + z2 − 1 = 0.

Figure: The real points of V (x2 + y + z − 1, x + y2 + z − 1, x + y + z2 − 1).
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Reducing from dim n to dim n − 1: via cylindrification (2/3)

Recall the system

x2 + y + z − 1 = x + y2 + z − 1 = x + y + z2 − 1 = 0.

If one uses the first equation, that is x2 + y + z − 1 = 0, to eliminate z
from the other two, we obtain two bivariate polynomials f , g ∈ k[x , y ].

Figure: The real points of
V (x2 + y + z − 1, x + y2− x2− y , x − y + x4 +2 x2y − 2 x2 + y2) near the origin.
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Reducing from dim n to dim n − 1: via cylindrification (3/3)

At any point of p ∈ V (h, f , g) the tangent cone of the curve V (f , g) is
independent of z ; in some sense it is “vertical”. On the other hand, at any
point of p ∈ V (h, f , g) the tangent space of V (h) is not vertical.

Thus, the previous theorem applies without computing any tangent cones.

Figure: The real points of
V (x2 + y + z − 1, x + y2− x2− y , x − y + x4 +2 x2y − 2 x2 + y2) near the origin.
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Tangent cone computation without standard bases

Assume k = C and none of the V (fi ) is singular at p. For each component G
through p of C = V (f1, . . . , fn−1),

There exists a neighborhood B of p such that V (fi ) is not singular at all
q ∈ (B ∩ G) \ {p}, for i = 1, . . . , n − 1.

Let vi (q) be the tangent hyperplane of V (fi ) at q. Regard
v1(q) ∩ · · · ∩ vn−1(q) as a parametric variety with q as parameter.

Then, TCp(G) = v1(q) ∩ · · · ∩ vn−1(q) when q approaches p.

Finally, TCp(C) is the union of all TCp(G). This approach avoids standard
basis computation and extends for working with V (T ) instead of p.

But hhow to compute the limit of v1(q) ∩ · · · ∩ vn−1(q) when approaches p?
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Tangent cone computation with regular chains (1/2)

Algorithm principle

Let m(x1, . . . , xn) be a point on the curve C = V (f1, . . . , fn−1),
Let ~u be a unit vector directing the line (pm)
The set {limm→p,m 6=p ~u} describes TCp(C)

Step 1

Let T de a 0-dim regular chain defining the point p; rename its
variables to y1, . . . , yn.
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Algorithm principle

Let m(x1, . . . , xn) be a point on the curve C = V (f1, . . . , fn−1),
Let ~u be a unit vector directing the line (pm)
The set {limm→p,m 6=p ~u} describes TCp(C)

Step 1

Let T de a 0-dim regular chain defining the point p; rename its
variables to y1, . . . , yn.
Consider the polynomial system (S) defined by T and
f1 = · · · = fn−1 = 0.
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Tangent cone computation with regular chains (1/2)

Algorithm principle

Let m(x1, . . . , xn) be a point on the curve C = V (f1, . . . , fn−1),
Let ~u be a unit vector directing the line (pm)
The set {limm→p,m 6=p ~u} describes TCp(C)

Step 1

Let T de a 0-dim regular chain defining the point p; rename its
variables to y1, . . . , yn.
Consider the polynomial system (S) defined by T and
f1 = · · · = fn−1 = 0.
This is a 1-dim system in the variables y1, . . . , yn, x1, . . . , xn.
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Tangent cone computation with regular chains (1/2)

Algorithm principle

Let m(x1, . . . , xn) be a point on the curve C = V (f1, . . . , fn−1),
Let ~u be a unit vector directing the line (pm)
The set {limm→p,m 6=p ~u} describes TCp(C)

Step 1

Let T de a 0-dim regular chain defining the point p; rename its
variables to y1, . . . , yn.
Consider the polynomial system (S) defined by T and
f1 = · · · = fn−1 = 0.
This is a 1-dim system in the variables y1, . . . , yn, x1, . . . , xn.
Let R1, . . . ,Re be regular chains decomposing the zero set V of (S).
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Tangent cone computation with regular chains (2/2)

Recall

The set {limm→p,m 6=p ~u} describes TCp(C)
Consider the system (S) defined by T and f1 = · · · = fn−1 = 0.
Let R1, . . . ,Re be regular chains decomposing the zero set V of (S).

Step 2

We divide each component of ~p m by x1 − y1. This works only if
x1 − y1 vanishes finitely many times in V .
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Tangent cone computation with regular chains (2/2)

Recall

The set {limm→p,m 6=p ~u} describes TCp(C)
Consider the system (S) defined by T and f1 = · · · = fn−1 = 0.
Let R1, . . . ,Re be regular chains decomposing the zero set V of (S).

Step 2

We divide each component of ~p m by x1 − y1. This works only if
x1 − y1 vanishes finitely many times in V .
Fix i = 1 · · · e. If x1 − y1 is regular modulo the saturated ideal of Ri ,
then each compliant of ~p m can be divided by x1 − y1.
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Tangent cone computation with regular chains (2/2)

Recall

The set {limm→p,m 6=p ~u} describes TCp(C)
Consider the system (S) defined by T and f1 = · · · = fn−1 = 0.
Let R1, . . . ,Re be regular chains decomposing the zero set V of (S).

Step 2

We divide each component of ~p m by x1 − y1. This works only if
x1 − y1 vanishes finitely many times in V .
Fix i = 1 · · · e. If x1 − y1 is regular modulo the saturated ideal of Ri ,
then each compliant of ~p m can be divided by x1 − y1.
Assume x1 − y1 is regular modulo the saturated ideal of Ri . Define
si =

xi−yi
x1−y1

. We have ~u = (1, s2, . . . , sn).
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Tangent cone computation with regular chains (2/2)

Recall

The set {limm→p,m 6=p ~u} describes TCp(C)
Consider the system (S) defined by T and f1 = · · · = fn−1 = 0.
Let R1, . . . ,Re be regular chains decomposing the zero set V of (S).

Step 2

We divide each component of ~p m by x1 − y1. This works only if
x1 − y1 vanishes finitely many times in V .
Fix i = 1 · · · e. If x1 − y1 is regular modulo the saturated ideal of Ri ,
then each compliant of ~p m can be divided by x1 − y1.
Assume x1 − y1 is regular modulo the saturated ideal of Ri . Define
si =

xi−yi
x1−y1

. We have ~u = (1, s2, . . . , sn).
Let s2, . . . , sn be variables; extend Rj with the polynomials
s2(x1 − y1)− (x2 − y2), . . . , sn(x1 − y1)− (xn − yn) to a chain Sj .
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Tangent cone computation with regular chains (2/2)

Recall

The set {limm→p,m 6=p ~u} describes TCp(C)
Consider the system (S) defined by T and f1 = · · · = fn−1 = 0.
Let R1, . . . ,Re be regular chains decomposing the zero set V of (S).

Step 2

We divide each component of ~p m by x1 − y1. This works only if
x1 − y1 vanishes finitely many times in V .
Fix i = 1 · · · e. If x1 − y1 is regular modulo the saturated ideal of Ri ,
then each compliant of ~p m can be divided by x1 − y1.
Assume x1 − y1 is regular modulo the saturated ideal of Ri . Define
si =

xi−yi
x1−y1

. We have ~u = (1, s2, . . . , sn).
Let s2, . . . , sn be variables; extend Rj with the polynomials
s2(x1 − y1)− (x2 − y2), . . . , sn(x1 − y1)− (xn − yn) to a chain Sj .
Finally {limm→p,m 6=p ~u} is given by the limit points of the Sj ’s, that

is, the sets W (Sj) \W (Sj).
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Limit points of a quasi-component

Input

Let R ⊂ C[X1, . . . ,Xs ] be a regular chain.
Let hR be the product of initials of polynomials of R .
Let W (R) be the quasi-component of R , that is V (R) \ V (hR).

Desired output

The non-trivial limit points of W (R), that is

lim(W (R)) := W (R)
Z
\W (R).
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Puiseux expansions of a regular chain

Notation

Let R := {r1(X1,X2), . . . , rs−1(X1, . . . ,Xs)} ⊂ C[X1 < · · · < Xs ] be a
1-dim regular chain.
Assume R is strongly normalized, that is, init(R) ∈ C[X1].
Let k = C(〈X ∗

1 〉).
Then R generates a zero-dimensional ideal in k[X2, . . . ,Xs ].
Let V ∗(R) be the zero set of R in ks−1.

Definition

We call Puiseux expansions of R the elements of V ∗(R).

Remarks

The strongly normalized assumption is only for presentation ease.
Generically, The 1-dim assumption extends to dimension d ≤ 2.
Higher dimension requires the Jung-Abhyankar theorem.
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An example

A regular chain R

R :=

{

X1X
2
3 + X2

X1X
2
2 + X2 + X1

Puiseux expansions of R
{

X3 = 1 + O(X 2
1 )

X2 = −X1 + O(X 2
1 )

{

X3 = −1 + O(X 2
1 )

X2 = −X1 + O(X 2
1 )

{

X3 = X1
−1 − 1

2X1 + O(X 2
1 )

X2 = −X1
−1 + X1 + O(X 2

1 )

{

X3 = −X1
−1 + 1

2X1 + O(X 2
1 )

X2 = −X1
−1 + X1 + O(X 2

1 )
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Relation between lim0(W (R)) and Puiseux expansions of R

Theorem

For W ⊆ C
s , denote

lim0(W ) := {x = (x1, . . . , xs) ∈ C
s | x ∈ lim(W ) and x1 = 0},

and define
V ∗
≥0(R) := {Φ = (Φ1, . . . ,Φs−1) ∈ V ∗(R) | ord(Φj) ≥ 0, j = 1, . . . , s − 1}.

Then we have

lim0(W (R)) = ∪Φ∈V ∗
≥0(R){(X1 = 0,Φ(X1 = 0))}.

V ∗
≥0(R) :=

{

X3 = 1 + O(X 2
1 )

X2 = −X1 + O(X 2
1 )
∪

{

X3 = −1 + O(X 2
1 )

X2 = −X1 + O(X 2
1 )

Thus the limit ponts are lim0(W (R)) = {(0, 0, 1), (0, 0,−1)}.
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Limit points of a quasi-component

46 / 47



Conclusions

Let f1, . . . , fn ∈ k[x1, . . . , kn] such that V (f1, . . . , fn) is zero-dimensional.

For n = 2, in all cases, and for n > 2, under genericity assumptions,
we saw how to compute the intersection multiplicity I (p; f1, . . . , fn) at
any p ∈ V (f1, . . . , fn).

In some cases, the tangent cone of a curve at a point is computed.

When this happens, computing limit points of constructible sets may
be computed as well.

All these operations rely on regular chain manipulations instead of
standard basis computation.

They are part of the new module AlgebraicGeometryTools of the
next release the RegularChains library.

The latest RegularChains.mla library archive can be downloaded
from www.regularchains.org
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