Doing Algebraic Geometry with the RegularChains Library

Parisa Alvandi ${ }^{1}$ Changbo Chen ${ }^{2}$ Steffen Marcus ${ }^{3}$ Marc Moreno Maza ${ }^{1}$ Éric Schost ${ }^{1}$ Paul Vrbik ${ }^{1}$
${ }^{1}$ University of Western Ontario
${ }^{2}$ Chinese Academy of Science
${ }^{3}$ The College of New Jersay
ICMS @ Seoul, Korea
5-9 August 2014

Driving application: computing intersection multiplicity

Let $f_{1}, \ldots, f_{n} \in k\left[x_{1}, \ldots, k_{n}\right]$ such that $V\left(f_{1}, \ldots, f_{n}\right) \subset \bar{k}\left[x_{1}, \ldots, k_{n}\right]$ is zero-dimensional. The intersection multiplicity $I\left(p ; f_{1}, \ldots, f_{n}\right)$ at $p \in V\left(f_{1}, \ldots, f_{n}\right)$

- in the projective plane, specifies the weights of the weighted sum in Bézout's Theorem,

Driving application: computing intersection multiplicity

Let $f_{1}, \ldots, f_{n} \in k\left[x_{1}, \ldots, k_{n}\right]$ such that $V\left(f_{1}, \ldots, f_{n}\right) \subset \bar{k}\left[x_{1}, \ldots, k_{n}\right]$ is zero-dimensional. The intersection multiplicity $I\left(p ; f_{1}, \ldots, f_{n}\right)$ at $p \in V\left(f_{1}, \ldots, f_{n}\right)$

- in the projective plane, specifies the weights of the weighted sum in Bézout's Theorem,
- is not natively computable by Maple,

Driving application: computing intersection multiplicity

Let $f_{1}, \ldots, f_{n} \in k\left[x_{1}, \ldots, k_{n}\right]$ such that $V\left(f_{1}, \ldots, f_{n}\right) \subset \bar{k}\left[x_{1}, \ldots, k_{n}\right]$ is zero-dimensional. The intersection multiplicity $I\left(p ; f_{1}, \ldots, f_{n}\right)$ at $p \in V\left(f_{1}, \ldots, f_{n}\right)$

- in the projective plane, specifies the weights of the weighted sum in Bézout's Theorem,
- is not natively computable by Maple,
- while it is computable by Singular and Magma only when all coordinates of p are in k.

Driving application: computing intersection multiplicity

Let $f_{1}, \ldots, f_{n} \in k\left[x_{1}, \ldots, k_{n}\right]$ such that $V\left(f_{1}, \ldots, f_{n}\right) \subset \bar{k}\left[x_{1}, \ldots, k_{n}\right]$ is zero-dimensional. The intersection multiplicity $I\left(p ; f_{1}, \ldots, f_{n}\right)$ at $p \in V\left(f_{1}, \ldots, f_{n}\right)$

- in the projective plane, specifies the weights of the weighted sum in Bézout's Theorem,
- is not natively computable by Maple,
- while it is computable by Singular and Magma only when all coordinates of p are in k.

We are interested in removing this algorithmic limitation.

Driving application: computing intersection multiplicity

Let $f_{1}, \ldots, f_{n} \in k\left[x_{1}, \ldots, k_{n}\right]$ such that $V\left(f_{1}, \ldots, f_{n}\right) \subset \bar{k}\left[x_{1}, \ldots, k_{n}\right]$ is zero-dimensional. The intersection multiplicity $I\left(p ; f_{1}, \ldots, f_{n}\right)$ at $p \in V\left(f_{1}, \ldots, f_{n}\right)$

- in the projective plane, specifies the weights of the weighted sum in Bézout's Theorem,
- is not natively computable by MAPLE,
- while it is computable by Singular and Magma only when all coordinates of p are in k.

We are interested in removing this algorithmic limitation.

- We will combine Fulton's Algorithm approach and the theory of regular chains.

Driving application: computing intersection multiplicity

Let $f_{1}, \ldots, f_{n} \in k\left[x_{1}, \ldots, k_{n}\right]$ such that $V\left(f_{1}, \ldots, f_{n}\right) \subset \bar{k}\left[x_{1}, \ldots, k_{n}\right]$ is zero-dimensional. The intersection multiplicity $I\left(p ; f_{1}, \ldots, f_{n}\right)$ at $p \in V\left(f_{1}, \ldots, f_{n}\right)$

- in the projective plane, specifies the weights of the weighted sum in Bézout's Theorem,
- is not natively computable by Maple,
- while it is computable by Singular and Magma only when all coordinates of p are in k.

We are interested in removing this algorithmic limitation.

- We will combine Fulton's Algorithm approach and the theory of regular chains.
- Our algorithm is complete in the bivariate case.

Driving application: computing intersection multiplicity

Let $f_{1}, \ldots, f_{n} \in k\left[x_{1}, \ldots, k_{n}\right]$ such that $V\left(f_{1}, \ldots, f_{n}\right) \subset \bar{k}\left[x_{1}, \ldots, k_{n}\right]$ is zero-dimensional. The intersection multiplicity $I\left(p ; f_{1}, \ldots, f_{n}\right)$ at $p \in V\left(f_{1}, \ldots, f_{n}\right)$

- in the projective plane, specifies the weights of the weighted sum in Bézout's Theorem,
- is not natively computable by Maple,
- while it is computable by Singular and Magma only when all coordinates of p are in k.

We are interested in removing this algorithmic limitation.

- We will combine Fulton's Algorithm approach and the theory of regular chains.
- Our algorithm is complete in the bivariate case.
- We propose algorithmic criteria for reducing the case of n variables to the bivariate one. Experimental results are also reported.

The case of two plane curves

Given an arbitrary field \mathbf{k} and two bivariate polynomials $f, g \in k[x, y]$, consider the affine algebraic curves $C:=V(f)$ and $D:=V(g)$ in $\mathbb{A}^{2}=\overline{\mathbf{k}}^{2}$, where $\overline{\mathbf{k}}$ is the algebraic closure of k. Let p be a point in the intersection.

Definition

The intersection multiplicity of p in $V(f, g)$ is defined to be

$$
I(p ; f, g)=\operatorname{dim}_{\bar{k}}\left(\mathcal{O}_{\mathbb{A}^{2}, p} /\langle f, g\rangle\right)
$$

where $\mathcal{O}_{\mathbb{A}^{2}, p}$ and $\operatorname{dim}_{\bar{k}}\left(\mathcal{O}_{\mathbb{A}^{2}, p} /\langle f, g\rangle\right)$ are the local ring at p and the dimension of the vector space $\mathcal{O}_{\mathbb{A}^{2}, p} /\langle f, g\rangle$.

The case of two plane curves

Given an arbitrary field \mathbf{k} and two bivariate polynomials $f, g \in k[x, y]$, consider the affine algebraic curves $C:=V(f)$ and $D:=V(g)$ in $\mathbb{A}^{2}=\overline{\mathbf{k}}^{2}$, where $\overline{\mathbf{k}}$ is the algebraic closure of k. Let p be a point in the intersection.

Definition

The intersection multiplicity of p in $V(f, g)$ is defined to be

$$
I(p ; f, g)=\operatorname{dim}_{\bar{k}}\left(\mathcal{O}_{\mathbb{A}^{2}, p} /\langle f, g\rangle\right)
$$

where $\mathcal{O}_{\mathbb{A}^{2}, p}$ and $\operatorname{dim}_{\bar{k}}\left(\mathcal{O}_{\mathbb{A}^{2}, p} /\langle f, g\rangle\right)$ are the local ring at p and the dimension of the vector space $\mathcal{O}_{\mathbb{A}^{2}, p} /\langle f, g\rangle$.

Remark

As pointed out by Fulton in his book Algebraic Curves, the intersection multiplicities of the plane curves C and D satisfy a series of 7 properties which uniquely define $I(p ; f, g)$ at each point $p \in V(f, g)$. Moreover, the proof is constructive, which leads to an algorithm.

Fulton's Properties

The intersection multiplicity of two plane curves at a point satisfies and is uniquely determined by the following.
(2-1) $I(p ; f, g)$ is a non-negative integer for any C, D, and p such that C and D have no common component at p. We set $I(p ; f, g)=\infty$ if C and D have a common component at p.
$(2-2) \quad I(p ; f, g)=0$ if and only if $p \notin C \cap D$.
$(2-3) I(p ; f, g)$ is invariant under affine change of coordinates on \mathbb{A}^{2}.
$(2-4) \quad I(p ; f, g)=I(p ; g, f)$
$I(p ; f, g)$ is greater or equal to the product of the multiplicity of p
$(2-5)$ in f and g, with equality occurring if and only if C and D have no tangent lines in common at p.
(2-6) $I(p ; f, g h)=I(p ; f, g)+I(p ; f, h)$ for all $h \in k[x, y]$.
$(2-7) \quad I(p ; f, g)=I(p ; f, g+h f)$ for all $h \in k[x, y]$.

Fulton's Algorithm

Algorithm 1: $\mathrm{IM}_{2}(p ; f, g)$

Input: $p=(\alpha, \beta) \in \mathbb{A}^{2}(\mathbf{k})$ and $f, g \in \mathbf{k}[y \succ x]$ such that $\operatorname{gcd}(f, g) \in \mathbf{k}$ Output: $I(p ; f, g) \in \mathbb{N}$ satisfying (2-1)-(2-7) if $f(p) \neq 0$ or $g(p) \neq 0$ then return 0 ;
$r, s=\boldsymbol{\operatorname { d e g }}(f(x, \beta)), \boldsymbol{\operatorname { d e g }}(g(x, \beta)) ;$ assume $s \geq r$.
if $r=0$ then
write $f=(y-\beta) \cdot h$ and $g(x, \beta)=(x-\alpha)^{m}\left(a_{0}+a_{1}(x-\alpha)+\cdots\right)$;
return $m+\mathrm{IM}_{2}(p ; h, g)$;
$\mathrm{IM}_{2}(p ;(y-\beta) \cdot h, g)=\mathrm{IM}_{2}(p ;(y-\beta), g)+\mathrm{IM}_{2}(p ; h, g)$
$\mathrm{IM}_{2}(p ;(y-\beta), g)=\mathrm{I}_{2}(p ;(y-\beta), g(x, \beta))=\mathrm{I}_{2}\left(p ;(y-\beta),(x-\alpha)^{m}\right)=m$
if $r>0$ then
$h \leftarrow \operatorname{monic}(g)-(x-\alpha)^{s-r}$ monic (f);
return $\mathrm{IM}_{2}(p ; f, h)$;

Our goal: extending Fulton's Algorithm

Limitations of Fulton's Algorithm

Fulton's Algorithm

- does not generalize to $n>2$, that is, to n polynomials f_{1}, \ldots, f_{n} $\in k\left[x_{1}, \ldots, x_{n}\right]$ since $k\left[x_{1}, \ldots, x_{n-1}\right]$ is no longer a PID.
- is limited to computing the IM at a single point with rational coordinates, that is, with coordinates in the base field k. (Approaches based on standard or Gröbner bases suffer from the same limitation)

Our goal: extending Fulton's Algorithm

Limitations of Fulton's Algorithm

Fulton's Algorithm

- does not generalize to $n>2$, that is, to n polynomials f_{1}, \ldots, f_{n} $\in k\left[x_{1}, \ldots, x_{n}\right]$ since $k\left[x_{1}, \ldots, x_{n-1}\right]$ is no longer a PID.
- is limited to computing the IM at a single point with rational coordinates, that is, with coordinates in the base field k. (Approaches based on standard or Gröbner bases suffer from the same limitation)

Our contributions

- We adapt Fulton's Algorithm such that it can work at any point of $V\left(f_{1}, f_{2}\right)$, rational or not.
- For $n>2$, we propose an algorithmic criterion to reduce the n-variate case to that of $n-1$ variables.

A first algorithmic tool: regular chains $(1 / 2)$

Definition

$T \subset k\left[x_{n}>\cdots>x_{1}\right]$ is a triangular set if $T \cap k=\emptyset$ and $\operatorname{mvar}(p) \neq \operatorname{mvar}(q)$ for all $p, q \in T$ with $p \neq q$.

For all $t \in T$ write $\operatorname{init}(t):=\operatorname{lc}(t, \operatorname{mvar}(t))$ and $h_{T}:=\prod_{t \in T} \operatorname{init}(t)$. The saturated ideal of T is:

$$
\operatorname{sat}(T)=\langle T\rangle: h_{T}^{\infty}
$$

Theorem (J.F. Ritt, 1932)
Let $V \subset \bar{k}^{n}$ be an irreducible variety and $F \subset k\left[x_{1}, \ldots, x_{n}\right]$ s.t. $V=V(F)$. Then, one can compute a (reduced) triangular set $T \subset\langle F\rangle$ s.t.

$$
(\forall g \in\langle\mathbf{F}\rangle) \operatorname{prem}(g, T)=0
$$

Therefore, we have

$$
V=V(\operatorname{sat}(T))
$$

A first algorithmic tool: regular chains (2/2)

Definition (M. Kalkbrner, 1991 - L. Yang, J. Zhang 1991)
T is a regular chain if $T=\emptyset$ or $T:=T^{\prime} \cup\{t\}$ with $\operatorname{mvar}(t)$ maximum s.t.

- T^{\prime} is a regular chain,
- $\operatorname{init}(t)$ is regular modulo sat $\left(T^{\prime}\right)$

Kalkbrener triangular decomposition

For all $F \subset k\left[x_{1}, \ldots, x_{n}\right]$, one can compute a family of regular chains
T_{1}, \ldots, T_{e} of $k\left[x_{1}, \ldots, x_{n}\right]$, called a Kalkbrener triangular decomposition of $V(F)$, such that we have

$$
V(F)=\cup_{i=1}^{e} V\left(\operatorname{sat}\left(T_{i}\right)\right)
$$

A second algorithmic tool: the D5 Principle

Original version (Della Dora, Discrescenzo \& Duval)

 Let $f, g \in k\left[x_{1}\right]$ such that f is squarefree. Without using irreducible factorization, one can compute $f_{1}, \ldots, f_{e} \in k\left[x_{1}\right]$ such that- $f=f_{1} \ldots f_{e}$ holds and,
- for each $i=1 \cdots e$, either $g \equiv 0 \bmod f_{i}$ or g is invertible modulo f_{i}.

Multivariate version

Let $T \subset k\left[x_{1}, \ldots, x_{n}\right]$ be a regular chain such that $\operatorname{sat}(T)$ is zero-dimensional, thus $\operatorname{sat}(T)=\langle T\rangle$ holds. Let $f \in k\left[x_{1}, \ldots, x_{n}\right]$.
The operation Regularize (f, T) computes regular chains $T_{1}, \ldots, T_{e} \subset k\left[x_{1}, \ldots, x_{n}\right]$ such that

- $V(T)=V\left(T_{1}\right) \cup \cdots \cup V\left(T_{e}\right)$ holds and,
- for each $i=1 \cdots e$, either $V\left(T_{i}\right) \subseteq V(f)$ or $V\left(T_{i}\right) \cap V(f)=\emptyset$ holds. Moreover, only polynomial GCDs and resultants need to be computed, that is, irreducible factorization is not required.

Dealing with non-rational points

Working with regular chains

To deal with non-rational points, we extend Fulton's Algorithm to compute $\mathrm{IM}_{2}\left(T ; f_{1}, f_{2}\right)$, where $T \subset k\left[x_{1}, x_{2}\right]$ is a regular chain such that we have $V(T) \subseteq V\left(f_{1}, f_{2}\right)$.

- This makes sense thanks to the theorem below, which is non-trivial since intersection multiplicity is really a local property.
- For an arbitray zero-dimensional regular chain T, we apply the D5 Principle to Fulton's Algorithm in order to reduce to the case of the theorem.

Theorem 1

Recall that $V\left(f_{1}, f_{2}\right)$ is zero-dimensional. Let $T \subset k\left[x_{1}, x_{2}\right]$ be a regular chain such that we have $V(T) \subset V\left(f_{1}, f_{2}\right)$ and the ideal $\langle T\rangle$ is maximal. Then $\mathrm{IM}_{2}\left(p ; f_{1}, f_{2}\right)$ is the same at any point $p \in V(T)$.

TriangularizeWithMultiplicity

We specify TriangularizeWithMultiplicity for the bivariate case. Input $f, g \in \mathbf{k}[x, y]$ such that $V(f, g)$ is zero-dimensional.
Output Finitely many pairs $\left[\left(T_{1}, m_{1}\right), \ldots,\left(T_{\ell}, m_{\ell}\right)\right]$ of the form ($T_{i}::$ RegularChain, $m_{i}::$ nonnegint) such that for all $p \in V\left(T_{i}\right)$

$$
\mathrm{I}(p ; f, g)=m_{i} \text { and } \quad V(f, g)=V\left(T_{1}\right) \uplus \cdots \uplus V\left(T_{\ell}\right) .
$$

Implementating TriangularizeWithMultiplicity is done by

- first calling Triangularize (which encode the points of $V(f, g)$ with regular chains, and
- secondly calling $\mathrm{IM}_{2}(T ; f, g)$ for all $T \in \operatorname{Triangularize~}(f, g)$.

This approach allows optimizations such that using the Jacobian criterion to quickly discover points of IM equal to 1 .
$>F_{s}:=\left[\left(x^{2}+y^{2}\right)^{2}+3 x^{2} y-y^{3},\left(x^{2}+y^{2}\right)^{3}-4 x^{2} y^{2}\right]:$
$>$ plots[implicitplot]($\mathrm{Fs}, \mathrm{x}=-2.2, \mathrm{y}=-2 . .2$);

$>R:=$ PolynomialRing $([x, y], 101)$:
$>r c s:=$ Triangularzie (Fs, R, normalized $=$ 'yes'):
$>\operatorname{seq}$ (TriangularizeWithMultiplicity $(F s, T, R), T$ in $r c s)$:

$$
\begin{gathered}
{\left[\left[1,\left\{\begin{array}{c}
x-1=0 \\
y+14=0
\end{array}\right]\right],\left[\left[1,\left\{\begin{array}{c}
x+1=0 \\
y+14=0
\end{array}\right]\right],\left[\left[1,\left\{\begin{array}{l}
x-47=0 \\
y-14=0
\end{array}\right]\right],\right.\right.\right.} \\
{\left[\left[1,\left\{\begin{array}{l}
x+47=0 \\
y-14=0
\end{array}\right]\right],\left[\left[14,\left\{\begin{array}{l}
x=0 \\
y=0
\end{array}\right]\right]\right.\right.}
\end{gathered}
$$

$>F s:=\left[x^{2}+y+z-1, x+y^{2}+z-1, x+y+z^{2}-1\right]:$
$>R:=$ PolynomialRing $([x, y, z], 101)$:
$>$ TriangularizeWithMultiplicity $(F s, R)$:

$$
\begin{aligned}
& {\left[\left[1,\left\{\begin{array}{c}
x-z=0 \\
y-z=0 \\
z^{2}+2 z-1=0
\end{array}\right]\right],\left[\left[2,\left\{\begin{array}{c}
x=0 \\
y=0 \\
z-1=0
\end{array}\right]\right]\right.\right.} \\
& {\left[\left[2,\left\{\begin{array}{c}
x=0 \\
y-1=0 \\
z=0
\end{array}\right]\right],\left[\left[2,\left\{\begin{array}{c}
x-1=0 \\
y=0 \\
z=0
\end{array}\right]\right]\right.\right.}
\end{aligned}
$$

Experiments

System	Degree	Time(\triangle ize $)$	\#rc's	Time(rc_im)
$\langle 1,3\rangle$	888	9.7	20	19.2
$\langle 1,4\rangle$	1456	226.0	8	9.023
$\langle 1,5\rangle$	1595	169.4	8	25.4
$\langle 3,5\rangle$	1413	22.5	27	28.6
$\langle 4,5\rangle$	1781	218.4	9	13.9
$\langle 5,1\rangle$	1759	113.0	10	15.8
$\langle 6,8\rangle$	1680	99.7	12	37.6
$\langle 6,9\rangle$	2560	299.3	10	22.9
$\langle 6,10\rangle$	1320	131.9	7	8.4
$\langle 6,11\rangle$	1440	59.8	17	27.5
$\langle 7,8\rangle$	1152	32.8	12	16.2
$\langle 7,9\rangle$	756	18.5	16	11.2
$\langle 7,10\rangle$	595	8.1	17	13.0
$\langle 7,11\rangle$	648	9.2	25	11.1
$\langle 8,9\rangle$	1984	374.5	10	11.3
$\langle 8,10\rangle$	1362	232.5	7	9.3
$\langle 8,11\rangle$	1256	49.6	17	45.7
$\langle 9,10\rangle$	2080	504.9	12	34.812
$\langle 9,11\rangle$	1792	115.1	16	17.2
$\langle 10,11\rangle$	1180	40.9	17	21.3

Reducing from $\operatorname{dim} n$ to $\operatorname{dim} n-1$: using transversality (1/2)

Definition

The intersection multiplicity of p in $V\left(f_{1}, \ldots, f_{n}\right)$ is given by

$$
I\left(p ; f_{1}, \ldots, f_{n}\right):=\operatorname{dim}_{\bar{k}}\left(\mathcal{O}_{\mathbb{A}^{n}, p} /\left\langle f_{1}, \ldots, f_{n}\right\rangle\right) .
$$

where $\mathcal{O}_{\mathbb{A}^{n}, p}$ and $\operatorname{dim}_{\bar{k}}\left(\mathcal{O}_{\mathbb{A}^{n}, p} /\left\langle f_{1}, \ldots, f_{n}\right\rangle\right)$ are respectively the local ring at the point p and the dimension of the vector space $\mathcal{O}_{\mathbb{A}^{n}, p} /\left\langle f_{1}, \ldots, f_{n}\right\rangle$.

The next theorem reduces the n-dimensional case to $n-1$, under assumptions which state that f_{n} does not contribute to $I\left(p ; f_{1}, \ldots, f_{n}\right)$.

Reducing from $\operatorname{dim} n$ to $\operatorname{dim} n-1$: using transversality ($1 / 2$)

Definition

The intersection multiplicity of p in $V\left(f_{1}, \ldots, f_{n}\right)$ is given by

$$
I\left(p ; f_{1}, \ldots, f_{n}\right):=\operatorname{dim}_{\bar{k}}\left(\mathcal{O}_{\mathbb{A}^{n}, p} /\left\langle f_{1}, \ldots, f_{n}\right\rangle\right) .
$$

where $\mathcal{O}_{\mathbb{A}^{n}, p}$ and $\operatorname{dim}_{\bar{k}}\left(\mathcal{O}_{\mathbb{A}^{n}, p} /\left\langle f_{1}, \ldots, f_{n}\right\rangle\right)$ are respectively the local ring at the point p and the dimension of the vector space $\mathcal{O}_{\mathbb{A}^{n}, p} /\left\langle f_{1}, \ldots, f_{n}\right\rangle$.

The next theorem reduces the n-dimensional case to $n-1$, under assumptions which state that f_{n} does not contribute to $I\left(p ; f_{1}, \ldots, f_{n}\right)$.

Theorem 2

Assume that $h_{n}=V\left(f_{n}\right)$ is non-singular at p. Let v_{n} be its tangent hyperplane at p. Assume that h_{n} meets each component (through p) of the curve $\mathcal{C}=V\left(f_{1}, \ldots, f_{n-1}\right)$ transversely (that is, the tangent cone $T C_{p}(\mathcal{C})$ intersects v_{n} only at the point p). Let $h \in k\left[x_{1}, \ldots, x_{n}\right]$ be the degree 1 polynomial defining v_{n}. Then, we have

$$
I\left(p ; f_{1}, \ldots, f_{n}\right)=I\left(p ; f_{1}, \ldots, f_{n-1}, h\right)
$$

Reducing from $\operatorname{dim} n$ to $\operatorname{dim} n-1$: using transversality (2/2)

The theorem again:

Theorem

Assume that $h_{n}=V\left(f_{n}\right)$ is non-singular at p. Let v_{n} be its tangent hyperplane at p. Assume that h_{n} meets each component (through p) of the curve $\mathcal{C}=V\left(f_{1}, \ldots, f_{n-1}\right)$ transversely (that is, the tangent cone $T C_{p}(\mathcal{C})$ intersects v_{n} only at the point $\left.p\right)$. Let $h \in k\left[x_{1}, \ldots, x_{n}\right]$ be the degree 1 polynomial defining v_{n}. Then, we have

$$
I\left(p ; f_{1}, \ldots, f_{n}\right)=I\left(p ; f_{1}, \ldots, f_{n-1}, h\right)
$$

How to use this theorem in practise?

Assume that the coefficient of x_{n} in h is non-zero, thus $h=x_{n}-h^{\prime}$, where $h^{\prime} \in k\left[x_{1}, \ldots, x_{n-1}\right]$. Hence, we can rewrite the ideal $\left\langle f_{1}, \ldots, f_{n-1}, h\right\rangle$ as $\left\langle g_{1}, \ldots, g_{n-1}, h\right\rangle$ where g_{i} is obtained from f_{i} by substituting x_{n} with h^{\prime}. Then, we have

$$
I\left(p ; f_{1}, \ldots, f_{n}\right)=I\left(\left.p\right|_{x_{1}, \ldots, x_{n-1}} ; g_{1}, \ldots, g_{n-1}\right)
$$

Reducing from $\operatorname{dim} n$ to $\operatorname{dim} n-1$: a simple case $(1 / 3)$

Example

Consider the system

$$
f_{1}=x, \quad f_{2}=x+y^{2}-z^{2}, \quad f_{3}:=y-z^{3}
$$

near the origin $o:=(0,0,0) \in V\left(f_{1}, f_{2}, f_{3}\right)$

Reducing from $\operatorname{dim} n$ to $\operatorname{dim} n-1$: a simple case $(2 / 3)$

Example

Recall the system

$$
f_{1}=x, \quad f_{2}=x+y^{2}-z^{2}, \quad f_{3}:=y-z^{3}
$$

near the origin $o:=(0,0,0) \in V\left(f_{1}, f_{2}, f_{3}\right)$.

Computing the IM using the definition

Let us compute a basis for $\mathcal{O}_{\mathbb{A}^{3}, o} /\left\langle f_{1}, f_{2}, f_{3}\right\rangle$ as a vector space over \bar{k}. Setting $x=0$ and $y=z^{3}$, we must have $z^{2}\left(z^{4}+1\right)=0$ in $\mathcal{O}_{\mathbb{A}^{3}, o}=\bar{k}[x, y, z]_{(z, y, z)}$.
Since $z^{4}+1$ is a unit in this local ring, we see that

$$
\mathcal{O}_{\mathbb{A}^{3}, o} /\left\langle f_{1}, f_{2}, f_{3}\right\rangle=\langle 1, z\rangle
$$

as a vector space, so $I\left(o ; f_{1}, f_{2}, f_{3}\right)=2$.

Reducing from $\operatorname{dim} n$ to $\operatorname{dim} n-1$: a simple case $(3 / 3)$

Example

Recall the system again

$$
f_{1}=x, \quad f_{2}=x+y^{2}-z^{2}, \quad f_{3}:=y-z^{3}
$$

near the origin $o:=(0,0,0) \in V\left(f_{1}, f_{2}, f_{3}\right)$.

Computing the IM using the reduction
We have

$$
\mathcal{C}:=V\left(x, x+y^{2}-z^{2}\right)=V(x,(y-z)(y+z))=T C_{o}(\mathcal{C})
$$

and we have

$$
h=y .
$$

Thus \mathcal{C} and $V\left(f_{3}\right)$ intersect transversally at the origin. Therefore, we have

$$
I_{3}\left(p ; f_{1}, f_{2}, f_{3}\right)=I_{2}\left((0,0) ; x, x-z^{2}\right)=2 .
$$

Reducing from $\operatorname{dim} n$ to $\operatorname{dim} n-1$: via cylindrification (1/3)

In practise, this reduction from n to $n-1$ variables does not always apply. For instance, this is the case for Ojika 2:

$$
x^{2}+y+z-1=x+y^{2}+z-1=x+y+z^{2}-1=0 .
$$

Figure: The real points of $V\left(x^{2}+y+z-1, x+y^{2}+z-1, x+y+z^{2}-1\right)$.

Reducing from $\operatorname{dim} n$ to $\operatorname{dim} n-1$: via cylindrification (2/3)

Recall the system

$$
x^{2}+y+z-1=x+y^{2}+z-1=x+y+z^{2}-1=0 .
$$

If one uses the first equation, that is $x^{2}+y+z-1=0$, to eliminate z from the other two, we obtain two bivariate polynomials $f, g \in k[x, y]$.

Figure: The real points of
$V\left(x^{2}+y+z-1, x+y^{2}-x^{2}-y, x-y+x^{4}+2 x^{2} y-2 x^{2}+y^{2}\right)$ near the origin.

Reducing from $\operatorname{dim} n$ to $\operatorname{dim} n-1$: via cylindrification (3/3)

At any point of $p \in V(h, f, g)$ the tangent cone of the curve $V(f, g)$ is independent of z; in some sense it is "vertical". On the other hand, at any point of $p \in V(h, f, g)$ the tangent space of $V(h)$ is not vertical.

Thus, the previous theorem applies without computing any tangent cones.

Figure: The real points of
$V\left(x^{2}+y+z-1, x+y^{2}-x^{2}-y, x-y+x^{4}+2 x^{2} y-2 x^{2}+y^{2}\right)$ near the origin.

Tangent cone computation without standard bases

Assume $\bar{k}=\mathbb{C}$ and none of the $V\left(f_{i}\right)$ is singular at p. For each component \mathcal{G} through p of $\mathcal{C}=V\left(f_{1}, \ldots, f_{n-1}\right)$,

- There exists a neighborhood B of p such that $V\left(f_{i}\right)$ is not singular at all $q \in(B \cap \mathcal{G}) \backslash\{p\}$, for $i=1, \ldots, n-1$.
- Let $v_{i}(q)$ be the tangent hyperplane of $V\left(f_{i}\right)$ at q. Regard $v_{1}(q) \cap \cdots \cap v_{n-1}(q)$ as a parametric variety with q as parameter.
- Then, $T C_{p}(\mathcal{G})=v_{1}(q) \cap \cdots \cap v_{n-1}(q)$ when q approaches p.
- Finally, $T C_{p}(\mathcal{C})$ is the union of all $T C_{p}(\mathcal{G})$. This approach avoids standard basis computation and extends for working with $V(T)$ instead of p.

But hhow to compute the limit of $v_{1}(q) \cap \cdots \cap v_{n-1}(q)$ when approaches p ?

Tangent cone computation with regular chains (1/2)

Algorithm principle

- Let $m\left(x_{1}, \ldots, x_{n}\right)$ be a point on the curve $\mathcal{C}=V\left(f_{1}, \ldots, f_{n-1}\right)$,
- Let \vec{u} be a unit vector directing the line ($p m$)
- The set $\left\{\lim _{m \rightarrow p, m \neq p} \vec{u}\right\}$ describes $T C_{p}(\mathcal{C})$

Step 1

- Let T de a 0-dim regular chain defining the point p; rename its variables to y_{1}, \ldots, y_{n}.

Tangent cone computation with regular chains $(1 / 2)$

Algorithm principle

- Let $m\left(x_{1}, \ldots, x_{n}\right)$ be a point on the curve $\mathcal{C}=V\left(f_{1}, \ldots, f_{n-1}\right)$,
- Let \vec{u} be a unit vector directing the line ($p m$)
- The set $\left\{\lim _{m \rightarrow p, m \neq p} \vec{u}\right\}$ describes $T C_{p}(\mathcal{C})$

Step 1

- Let T de a 0-dim regular chain defining the point p; rename its variables to y_{1}, \ldots, y_{n}.
- Consider the polynomial system (S) defined by T and $f_{1}=\cdots=f_{n-1}=0$.

Tangent cone computation with regular chains (1/2)

Algorithm principle

- Let $m\left(x_{1}, \ldots, x_{n}\right)$ be a point on the curve $\mathcal{C}=V\left(f_{1}, \ldots, f_{n-1}\right)$,
- Let \vec{u} be a unit vector directing the line ($p m$)
- The set $\left\{\lim _{m \rightarrow p, m \neq p} \vec{u}\right\}$ describes $T C_{p}(\mathcal{C})$

Step 1

- Let T de a 0-dim regular chain defining the point p; rename its variables to y_{1}, \ldots, y_{n}.
- Consider the polynomial system (S) defined by T and $f_{1}=\cdots=f_{n-1}=0$.
- This is a 1 -dim system in the variables $y_{1}, \ldots, y_{n}, x_{1}, \ldots, x_{n}$.

Tangent cone computation with regular chains (1/2)

Algorithm principle

- Let $m\left(x_{1}, \ldots, x_{n}\right)$ be a point on the curve $\mathcal{C}=V\left(f_{1}, \ldots, f_{n-1}\right)$,
- Let \vec{u} be a unit vector directing the line ($p m$)
- The set $\left\{\lim _{m \rightarrow p, m \neq p} \vec{u}\right\}$ describes $T C_{p}(\mathcal{C})$

Step 1

- Let T de a 0 -dim regular chain defining the point p; rename its variables to y_{1}, \ldots, y_{n}.
- Consider the polynomial system (S) defined by T and $f_{1}=\cdots=f_{n-1}=0$.
- This is a 1-dim system in the variables $y_{1}, \ldots, y_{n}, x_{1}, \ldots, x_{n}$.
- Let R_{1}, \ldots, R_{e} be regular chains decomposing the zero set V of (S).

Tangent cone computation with regular chains $(2 / 2)$

Recall

- The set $\left\{\lim _{m \rightarrow p, m \neq p} \vec{u}\right\}$ describes $T C_{p}(\mathcal{C})$
- Consider the system (S) defined by T and $f_{1}=\cdots=f_{n-1}=0$.
- Let R_{1}, \ldots, R_{e} be regular chains decomposing the zero set V of (S).

Step 2

- We divide each component of $\overrightarrow{p m}$ by $x_{1}-y_{1}$. This works only if $x_{1}-y_{1}$ vanishes finitely many times in V.

Tangent cone computation with regular chains $(2 / 2)$

Recall

- The set $\left\{\lim _{m \rightarrow p, m \neq p} \vec{u}\right\}$ describes $T C_{p}(\mathcal{C})$
- Consider the system (S) defined by T and $f_{1}=\cdots=f_{n-1}=0$.
- Let R_{1}, \ldots, R_{e} be regular chains decomposing the zero set V of (S).

Step 2

- We divide each component of $\overrightarrow{p m}$ by $x_{1}-y_{1}$. This works only if $x_{1}-y_{1}$ vanishes finitely many times in V.
- Fix $i=1 \cdots e$. If $x_{1}-y_{1}$ is regular modulo the saturated ideal of R_{i}, then each compliant of $\overrightarrow{p m}$ can be divided by $x_{1}-y_{1}$.

Tangent cone computation with regular chains $(2 / 2)$

Recall

- The set $\left\{\lim _{m \rightarrow p, m \neq p} \vec{u}\right\}$ describes $T C_{p}(\mathcal{C})$
- Consider the system (S) defined by T and $f_{1}=\cdots=f_{n-1}=0$.
- Let R_{1}, \ldots, R_{e} be regular chains decomposing the zero set V of (S).

Step 2

- We divide each component of $\overrightarrow{p m}$ by $x_{1}-y_{1}$. This works only if $x_{1}-y_{1}$ vanishes finitely many times in V.
- Fix $i=1 \cdots e$. If $x_{1}-y_{1}$ is regular modulo the saturated ideal of R_{i}, then each compliant of $\overrightarrow{p m}$ can be divided by $x_{1}-y_{1}$.
- Assume $x_{1}-y_{1}$ is regular modulo the saturated ideal of R_{i}. Define $s_{i}=\frac{x_{i}-y_{i}}{x_{1}-y_{1}}$. We have $\vec{u}=\left(1, s_{2}, \ldots, s_{n}\right)$.

Tangent cone computation with regular chains $(2 / 2)$

Recall

- The set $\left\{\lim _{m \rightarrow p, m \neq p} \vec{u}\right\}$ describes $T C_{p}(\mathcal{C})$
- Consider the system (S) defined by T and $f_{1}=\cdots=f_{n-1}=0$.
- Let R_{1}, \ldots, R_{e} be regular chains decomposing the zero set V of (S).

Step 2

- We divide each component of $\overrightarrow{p m}$ by $x_{1}-y_{1}$. This works only if $x_{1}-y_{1}$ vanishes finitely many times in V.
- Fix $i=1 \cdots e$. If $x_{1}-y_{1}$ is regular modulo the saturated ideal of R_{i}, then each compliant of $\overrightarrow{p m}$ can be divided by $x_{1}-y_{1}$.
- Assume $x_{1}-y_{1}$ is regular modulo the saturated ideal of R_{i}. Define $s_{i}=\frac{x_{i}-y_{i}}{x_{1}-y_{1}}$. We have $\vec{u}=\left(1, s_{2}, \ldots, s_{n}\right)$.
- Let s_{2}, \ldots, s_{n} be variables; extend R_{j} with the polynomials $s_{2}\left(x_{1}-y_{1}\right)-\left(x_{2}-y_{2}\right), \ldots, s_{n}\left(x_{1}-y_{1}\right)-\left(x_{n}-y_{n}\right)$ to a chain S_{j}.

Tangent cone computation with regular chains $(2 / 2)$

Recall

- The set $\left\{\lim _{m \rightarrow p, m \neq p} \vec{u}\right\}$ describes $T C_{p}(\mathcal{C})$
- Consider the system (S) defined by T and $f_{1}=\cdots=f_{n-1}=0$.
- Let R_{1}, \ldots, R_{e} be regular chains decomposing the zero set V of (S).

Step 2

- We divide each component of $\overrightarrow{p m}$ by $x_{1}-y_{1}$. This works only if $x_{1}-y_{1}$ vanishes finitely many times in V.
- Fix $i=1 \cdots e$. If $x_{1}-y_{1}$ is regular modulo the saturated ideal of R_{i}, then each compliant of $\overrightarrow{p m}$ can be divided by $x_{1}-y_{1}$.
- Assume $x_{1}-y_{1}$ is regular modulo the saturated ideal of R_{i}. Define $s_{i}=\frac{x_{i}-y_{i}}{x_{1}-y_{1}}$. We have $\vec{u}=\left(1, s_{2}, \ldots, s_{n}\right)$.
- Let s_{2}, \ldots, s_{n} be variables; extend R_{j} with the polynomials $s_{2}\left(x_{1}-y_{1}\right)-\left(x_{2}-y_{2}\right), \ldots, s_{n}\left(x_{1}-y_{1}\right)-\left(x_{n}-y_{n}\right)$ to a chain S_{j}.
- Finally $\left\{\lim _{m \rightarrow p, m \neq p} \vec{u}\right\}$ is given by the limit points of the S_{j} 's, that is, the sets $\overline{W\left(S_{j}\right)} \backslash W\left(S_{j}\right)$.

Limit points of a quasi-component

Input

- Let $R \subset \mathbb{C}\left[X_{1}, \ldots, X_{s}\right]$ be a regular chain.
- Let h_{R} be the product of initials of polynomials of R.
- Let $W(R)$ be the quasi-component of R, that is $V(R) \backslash V\left(h_{R}\right)$.

Desired output

The non-trivial limit points of $W(R)$, that is

$$
\lim (W(R)):=\overline{W(R)}^{z} \backslash W(R)
$$

Puiseux expansions of a regular chain

Notation

- Let $R:=\left\{r_{1}\left(X_{1}, X_{2}\right), \ldots, r_{s-1}\left(X_{1}, \ldots, X_{s}\right)\right\} \subset \mathbb{C}\left[X_{1}<\cdots<X_{s}\right]$ be a 1-dim regular chain.
- Assume R is strongly normalized, that is, $\operatorname{init}(R) \in \mathbb{C}\left[X_{1}\right]$.
- Let $\mathbf{k}=\mathbb{C}\left(\left\langle X_{1}^{*}\right\rangle\right)$.
- Then R generates a zero-dimensional ideal in $\mathbf{k}\left[X_{2}, \ldots, X_{s}\right]$.
- Let $V^{*}(R)$ be the zero set of R in \mathbf{k}^{s-1}.

Definition

We call Puiseux expansions of R the elements of $V^{*}(R)$.

Remarks

- The strongly normalized assumption is only for presentation ease.
- Generically, The 1 -dim assumption extends to dimension $d \leq 2$.
- Higher dimension requires the Jung-Abhyankar theorem.

An example

A regular chain R

$$
R:=\left\{\begin{array}{l}
x_{1} x_{3}^{2}+x_{2} \\
x_{1} x_{2}^{2}+x_{2}+x_{1}
\end{array}\right.
$$

Puiseux expansions of R

$$
\begin{gathered}
\left\{\begin{array}{l}
x_{3}=1+O\left(X_{1}^{2}\right) \\
x_{2}=-X_{1}+O\left(X_{1}^{2}\right)
\end{array}\right.
\end{gathered}\left\{\begin{array}{l}
x_{3}=-1+O\left(X_{1}^{2}\right) \\
x_{2}=-X_{1}+O\left(X_{1}^{2}\right)
\end{array}\right\} \begin{aligned}
& x_{3}=x_{1}^{-1}-\frac{1}{2} x_{1}+O\left(X_{1}^{2}\right) \\
& x_{2}=-X_{1}^{-1}+X_{1}+O\left(X_{1}^{2}\right)
\end{aligned}\left\{\begin{array}{l}
x_{3}=-X_{1}^{-1}+\frac{1}{2} x_{1}+O\left(X_{1}^{2}\right) \\
x_{2}=-X_{1}^{-1}+X_{1}+O\left(X_{1}^{2}\right)
\end{array}\right.
$$

Relation between $\lim _{0}(W(R))$ and Puiseux expansions of R

Theorem

For $W \subseteq \mathbb{C}^{s}$, denote

$$
\lim _{0}(W):=\left\{x=\left(x_{1}, \ldots, x_{s}\right) \in \mathbb{C}^{s} \mid x \in \lim (W) \text { and } x_{1}=0\right\},
$$

and define
$V_{\geq 0}^{*}(R):=\left\{\Phi=\left(\Phi^{1}, \ldots, \Phi^{s-1}\right) \in V^{*}(R) \mid \operatorname{ord}\left(\Phi^{j}\right) \geq 0, j=1, \ldots, s-1\right\}$.
Then we have

$$
\lim _{0}(W(R))=\cup_{\Phi \in V_{\geq 0}^{*}(R)}\left\{\left(X_{1}=0, \Phi\left(X_{1}=0\right)\right)\right\} .
$$

$$
V_{\geq 0}^{*}(R):=\left\{\begin{array} { l }
{ x _ { 3 } = 1 + O (x _ { 1 } ^ { 2 }) } \\
{ x _ { 2 } = - x _ { 1 } + O (x _ { 1 } ^ { 2 }) }
\end{array} \cup \left\{\begin{array}{l}
x_{3}=-1+O\left(X_{1}^{2}\right) \\
x_{2}=-x_{1}+O\left(x_{1}^{2}\right)
\end{array}\right.\right.
$$

Thus the limit ponts are $\lim _{0}(W(R))=\{(0,0,1),(0,0,-1)\}$.

Limit points of a quasi-component

$>$ with (A1 gebraicGeometryTools):
$>\mathrm{R}:=\operatorname{PolynomialRing([x,~y,~t]);~\& ~}$
$>F:=\left[t^{*} y^{\wedge} 2+y+1,(t+2) t^{*} x^{\wedge} 2+(y+1) *(x+1)\right] ;$
$>C$:= Chain(F, Empty(R), R);
$>1 m:=$ LimitPoints(C, R, false, true);
> Display (1m, R);
$R:=$ polynomial_ring

$$
F:=\left[t y^{2}+y+1,(t+2) t x^{2}+(y+1)(x+1)\right]
$$

$$
C:=\text { regular_chain }
$$

lm := [regular_chain, regular_chain, regular_chain, regular_chain $]$

$$
\left[\left\{\begin{array}{c}
x+1=0 \\
y+\frac{1}{2}=0 \\
t+2=0
\end{array} \quad,\left\{\begin{array}{c}
x+1=0 \\
y-1=0 \\
t+2=0
\end{array},\left\{\begin{array}{c}
x+\frac{1}{2}=0 \\
y+1=0 \\
t=0
\end{array} \quad,\left\{\begin{array}{c}
x-1=0 \\
y+1=0 \\
t=0
\end{array}\right.\right.\right.\right.\right.
$$

Conclusions

Let $f_{1}, \ldots, f_{n} \in k\left[x_{1}, \ldots, k_{n}\right]$ such that $V\left(f_{1}, \ldots, f_{n}\right)$ is zero-dimensional.

- For $n=2$, in all cases, and for $n>2$, under genericity assumptions, we saw how to compute the intersection multiplicity $I\left(p ; f_{1}, \ldots, f_{n}\right)$ at any $p \in V\left(f_{1}, \ldots, f_{n}\right)$.
- In some cases, the tangent cone of a curve at a point is computed.
- When this happens, computing limit points of constructible sets may be computed as well.
- All these operations rely on regular chain manipulations instead of standard basis computation.
- They are part of the new module AlgebraicGeometryTools of the next release the RegularChains library.
- The latest RegularChains.mla library archive can be downloaded from www.regularchains.org

