Doing Algebraic Geometry with the RegularChains Library

Parisa Alvandi¹ Changbo Chen² Steffen Marcus³ Marc Moreno Maza¹ Éric Schost¹ Paul Vrbik¹

> ¹University of Western Ontario ²Chinese Academy of Science ³The College of New Jersay

ICMS @ Seoul, Korea 5-9 August 2014

Let $f_1, \ldots, f_n \in k[x_1, \ldots, k_n]$ such that $V(f_1, \ldots, f_n) \subset \overline{k}[x_1, \ldots, k_n]$ is zero-dimensional. The intersection multiplicity $I(p; f_1, \ldots, f_n)$ at $p \in V(f_1, \ldots, f_n)$

• in the projective plane, specifies the *weights* of the weighted sum in Bézout's Theorem,

Let $f_1, \ldots, f_n \in k[x_1, \ldots, k_n]$ such that $V(f_1, \ldots, f_n) \subset \overline{k}[x_1, \ldots, k_n]$ is zero-dimensional. The intersection multiplicity $I(p; f_1, \ldots, f_n)$ at $p \in V(f_1, \ldots, f_n)$

- in the projective plane, specifies the *weights* of the weighted sum in Bézout's Theorem,
- \bullet is not natively computable by $\mathrm{MAPLE},$

Let $f_1, \ldots, f_n \in k[x_1, \ldots, k_n]$ such that $V(f_1, \ldots, f_n) \subset \overline{k}[x_1, \ldots, k_n]$ is zero-dimensional. The intersection multiplicity $I(p; f_1, \ldots, f_n)$ at $p \in V(f_1, \ldots, f_n)$

- in the projective plane, specifies the *weights* of the weighted sum in Bézout's Theorem,
- is not natively computable by MAPLE,
- while it is computable by SINGULAR and MAGMA only when all coordinates of *p* are in *k*.

Let $f_1, \ldots, f_n \in k[x_1, \ldots, k_n]$ such that $V(f_1, \ldots, f_n) \subset \overline{k}[x_1, \ldots, k_n]$ is zero-dimensional. The intersection multiplicity $I(p; f_1, \ldots, f_n)$ at $p \in V(f_1, \ldots, f_n)$

- in the projective plane, specifies the *weights* of the weighted sum in Bézout's Theorem,
- \bullet is not natively computable by $\mathrm{MAPLE},$
- while it is computable by SINGULAR and MAGMA only when all coordinates of *p* are in *k*.

We are interested in removing this algorithmic limitation.

Let $f_1, \ldots, f_n \in k[x_1, \ldots, k_n]$ such that $V(f_1, \ldots, f_n) \subset \overline{k}[x_1, \ldots, k_n]$ is zero-dimensional. The intersection multiplicity $I(p; f_1, \ldots, f_n)$ at $p \in V(f_1, \ldots, f_n)$

- in the projective plane, specifies the *weights* of the weighted sum in Bézout's Theorem,
- \bullet is not natively computable by $\mathrm{MAPLE},$
- while it is computable by SINGULAR and MAGMA only when all coordinates of *p* are in *k*.

We are interested in removing this algorithmic limitation.

• We will combine Fulton's Algorithm approach and the theory of regular chains.

Let $f_1, \ldots, f_n \in k[x_1, \ldots, k_n]$ such that $V(f_1, \ldots, f_n) \subset \overline{k}[x_1, \ldots, k_n]$ is zero-dimensional. The intersection multiplicity $I(p; f_1, \ldots, f_n)$ at $p \in V(f_1, \ldots, f_n)$

- in the projective plane, specifies the *weights* of the weighted sum in Bézout's Theorem,
- \bullet is not natively computable by $\mathrm{MAPLE},$
- while it is computable by SINGULAR and MAGMA only when all coordinates of *p* are in *k*.

We are interested in removing this algorithmic limitation.

- We will combine Fulton's Algorithm approach and the theory of regular chains.
- Our algorithm is complete in the bivariate case.

Let $f_1, \ldots, f_n \in k[x_1, \ldots, k_n]$ such that $V(f_1, \ldots, f_n) \subset \overline{k}[x_1, \ldots, k_n]$ is zero-dimensional. The intersection multiplicity $I(p; f_1, \ldots, f_n)$ at $p \in V(f_1, \ldots, f_n)$

- in the projective plane, specifies the *weights* of the weighted sum in Bézout's Theorem,
- is not natively computable by MAPLE,
- while it is computable by SINGULAR and MAGMA only when all coordinates of *p* are in *k*.

We are interested in removing this algorithmic limitation.

- We will combine Fulton's Algorithm approach and the theory of regular chains.
- Our algorithm is complete in the bivariate case.
- We propose algorithmic criteria for reducing the case of *n* variables to the bivariate one. Experimental results are also reported.

The case of two plane curves

Given an arbitrary field **k** and two bivariate polynomials $f, g \in k[x, y]$, consider the affine algebraic curves C := V(f) and D := V(g) in $\mathbb{A}^2 = \overline{\mathbf{k}}^2$, where $\overline{\mathbf{k}}$ is the algebraic closure of k. Let p be a point in the intersection.

Definition

The intersection multiplicity of p in V(f,g) is defined to be

$$I(p; f, g) = \dim_{\overline{k}}(\mathcal{O}_{\mathbb{A}^2, p} / \langle f, g \rangle)$$

where $\mathcal{O}_{\mathbb{A}^2,p}$ and $\dim_{\overline{k}}(\mathcal{O}_{\mathbb{A}^2,p}/\langle f,g\rangle)$ are the local ring at p and the dimension of the vector space $\mathcal{O}_{\mathbb{A}^2,p}/\langle f,g\rangle$.

The case of two plane curves

Given an arbitrary field **k** and two bivariate polynomials $f, g \in k[x, y]$, consider the affine algebraic curves C := V(f) and D := V(g) in $\mathbb{A}^2 = \overline{\mathbf{k}}^2$, where $\overline{\mathbf{k}}$ is the algebraic closure of k. Let p be a point in the intersection.

Definition

The intersection multiplicity of p in V(f,g) is defined to be

$$I(p; f, g) = \dim_{\overline{k}}(\mathcal{O}_{\mathbb{A}^2, p} / \langle f, g \rangle)$$

where $\mathcal{O}_{\mathbb{A}^2,p}$ and $\dim_{\overline{k}}(\mathcal{O}_{\mathbb{A}^2,p}/\langle f,g\rangle)$ are the local ring at p and the dimension of the vector space $\mathcal{O}_{\mathbb{A}^2,p}/\langle f,g\rangle$.

Remark

As pointed out by Fulton in his book Algebraic Curves, the intersection multiplicities of the plane curves C and D satisfy a series of 7 properties which uniquely define I(p; f, g) at each point $p \in V(f, g)$. Moreover, the proof is constructive, which leads to an algorithm.

Fulton's Properties

The intersection multiplicity of two plane curves at a point satisfies and is uniquely determined by the following.

(2-1) I(p; f, g) is a non-negative integer for any C, D, and p such that C and D have no common component at p. We set $I(p; f, g) = \infty$ if C and D have a common component at p.

(2-2)
$$I(p; f, g) = 0$$
 if and only if $p \notin C \cap D$.

(2-3) I(p; f, g) is invariant under affine change of coordinates on \mathbb{A}^2 .

(2-4)
$$I(p; f, g) = I(p; g, f)$$

(2-5) I(p; f, g) is greater or equal to the product of the multiplicity of pin f and g, with equality occurring if and only if C and D have no tangent lines in common at p.

(2-6)
$$I(p; f, gh) = I(p; f, g) + I(p; f, h)$$
 for all $h \in k[x, y]$.

(2-7)
$$I(p; f, g) = I(p; f, g + hf)$$
 for all $h \in k[x, y]$.

Fulton's Algorithm

Algorithm 1: $IM_2(p; f, g)$ **Input**: $p = (\alpha, \beta) \in \mathbb{A}^2(\mathbf{k})$ and $f, g \in \mathbf{k}[y \succ x]$ such that $\mathbf{gcd}(f, g) \in \mathbf{k}$ **Output**: $I(p; f, g) \in \mathbb{N}$ satisfying (2-1)–(2-7) if $f(p) \neq 0$ or $g(p) \neq 0$ then return 0: $r, s = \operatorname{deg}(f(x, \beta)), \operatorname{deg}(g(x, \beta));$ assume $s \ge r$. if r = 0 then write $f = (y - \beta) \cdot h$ and $g(x, \beta) = (x - \alpha)^m (a_0 + a_1(x - \alpha) + \cdots);$ return $m + IM_2(p; h, g)$; $IM_2(p; (y - \beta) \cdot h, g) = IM_2(p; (y - \beta), g) + IM_2(p; h, g)$ $IM_2(p; (y - \beta), g) = IM_2(p; (y - \beta), g(x, \beta)) = IM_2(p; (y - \beta), (x - \alpha)^m) = m$ if r > 0 then

$$h \leftarrow \operatorname{monic}(g) - (x - \alpha)^{s-r} \operatorname{monic}(f);$$

return $\operatorname{IM}_2(p; f, h);$

Our goal: extending Fulton's Algorithm

Limitations of Fulton's Algorithm

Fulton's Algorithm

- does not generalize to n > 2, that is, to n polynomials $f_1, \ldots, f_n \in k[x_1, \ldots, x_n]$ since $k[x_1, \ldots, x_{n-1}]$ is no longer a PID.
- is limited to computing the IM at a single point with rational coordinates, that is, with coordinates in the base field k. (Approaches based on standard or Gröbner bases suffer from the same limitation)

Our goal: extending Fulton's Algorithm

Limitations of Fulton's Algorithm

Fulton's Algorithm

- does not generalize to n > 2, that is, to n polynomials $f_1, \ldots, f_n \in k[x_1, \ldots, x_n]$ since $k[x_1, \ldots, x_{n-1}]$ is no longer a PID.
- is limited to computing the IM at a single point with rational coordinates, that is, with coordinates in the base field k. (Approaches based on standard or Gröbner bases suffer from the same limitation)

Our contributions

- We adapt Fulton's Algorithm such that it can work at any point of V(f₁, f₂), rational or not.
- For n > 2, we propose an algorithmic criterion to reduce the n-variate case to that of n − 1 variables.

A first algorithmic tool: regular chains (1/2)

Definition

$$T \subset k[x_n > \cdots > x_1]$$
 is a triangular set if $T \cap k = \emptyset$ and $mvar(p) \neq mvar(q)$ for all $p, q \in T$ with $p \neq q$.

For all $t \in T$ write init(t) := lc(t, mvar(t)) and $h_T := \prod_{t \in T} init(t)$. The saturated ideal of T is:

 $\operatorname{sat}(T) = \langle T \rangle : h_T^{\infty}.$

Theorem (J.F. Ritt, 1932)

Let $V \subset \overline{k}^n$ be an irreducible variety and $F \subset k[x_1, ..., x_n]$ s.t. V = V(F). Then, one can compute a (reduced) triangular set $T \subset \langle F \rangle$ s.t. $(\forall g \in \langle F \rangle) \quad \text{prem}(g, T) = 0.$

Therefore, we have

 $V = V(\operatorname{sat}(T)).$

A first algorithmic tool: regular chains (2/2)

Definition (M. Kalkbrner, 1991 - L. Yang, J. Zhang 1991) T is a regular chain if $T = \emptyset$ or $T := T' \cup \{t\}$ with mvar(t) maximum s.t.

- T' is a regular chain,
- init(t) is regular modulo sat(T')

Kalkbrener triangular decomposition

For all $F \subset k[x_1, \ldots, x_n]$, one can compute a family of regular chains T_1, \ldots, T_e of $k[x_1, \ldots, x_n]$, called a Kalkbrener triangular decomposition of V(F), such that we have

 $V(F) = \bigcup_{i=1}^{e} V(\operatorname{sat}(T_i)).$

A second algorithmic tool: the D5 Principle

Original version (Della Dora, Discrescenzo & Duval)

Let $f, g \in k[x_1]$ such that f is squarefree. Without using irreducible factorization, one can compute $f_1, \ldots, f_e \in k[x_1]$ such that

- $f = f_1 \dots f_e$ holds and,
- for each $i = 1 \cdots e$, either $g \equiv 0 \mod f_i$ or g is invertible modulo f_i .

Multivariate version

Let $T \subset k[x_1, \ldots, x_n]$ be a regular chain such that sat(T) is zero-dimensional, thus $sat(T) = \langle T \rangle$ holds. Let $f \in k[x_1, \ldots, x_n]$.

The operation Regularize (f, T) computes regular chains

 $T_1, \ldots, T_e \subset k[x_1, \ldots, x_n]$ such that

• $V(T) = V(T_1) \cup \cdots \cup V(T_e)$ holds and,

• for each $i = 1 \cdots e$, either $V(T_i) \subseteq V(f)$ or $V(T_i) \cap V(f) = \emptyset$ holds.

Moreover, only polynomial GCDs and resultants need to be computed, that is, irreducible factorization is not required.

Dealing with non-rational points

Working with regular chains

To deal with non-rational points, we extend Fulton's Algorithm to compute $IM_2(T; f_1, f_2)$, where $T \subset k[x_1, x_2]$ is a regular chain such that we have $V(T) \subseteq V(f_1, f_2)$.

- This makes sense thanks to the theorem below, which is non-trivial since intersection multiplicity is really a local property.
- For an arbitray zero-dimensional regular chain *T*, we apply the D5 Principle to Fulton's Algorithm in order to reduce to the case of the theorem.

Theorem 1

Recall that $V(f_1, f_2)$ is zero-dimensional. Let $T \subset k[x_1, x_2]$ be a regular chain such that we have $V(T) \subset V(f_1, f_2)$ and the ideal $\langle T \rangle$ is maximal. Then $IM_2(p; f_1, f_2)$ is the same at any point $p \in V(T)$.

TriangularizeWithMultiplicity

We specify TriangularizeWithMultiplicity for the bivariate case.

Input $f,g \in \mathbf{k}[x,y]$ such that V(f,g) is zero-dimensional.

Output Finitely many pairs $[(T_1, m_1), \dots, (T_{\ell}, m_{\ell})]$ of the form $(T_i :: \text{RegularChain}, m_i :: \text{nonnegint})$ such that for all $p \in V(T_i)$

$$I(p; f, g) = m_i$$
 and $V(f, g) = V(T_1) \uplus \cdots \uplus V(T_\ell)$.

Implementating TriangularizeWithMultiplicity is done by

- first calling Triangularize (which encode the points of V(f,g) with regular chains, and
- secondly calling $IM_2(T; f, g)$ for all $T \in Triangularize(f, g)$.

This approach allows optimizations such that using the Jacobian criterion to quickly discover points of IM equal to 1.

>
$$Fs := [(x^2 + y^2)^2 + 3x^2y - y^3, (x^2 + y^2)^3 - 4x^2y^2]:$$

> plots[implicitplot](Fs,x=-2..2,y=-2..2);

> R := PolynomialRing([x, y], 101):> rcs := Triangularzie(Fs, R, normalized = 'yes'):> seq (TriangularizeWithMultiplicity(Fs, T, R), T in rcs): $\begin{bmatrix} 1, \begin{cases} x-1=0\\ y+14=0 \end{bmatrix}, \begin{bmatrix} 1, \begin{cases} x+1=0\\ y+14=0 \end{bmatrix} \end{bmatrix}, \begin{bmatrix} 1, \begin{cases} x-47=0\\ y-14=0 \end{bmatrix} \end{bmatrix}, \begin{bmatrix} 1, \begin{cases} x+47=0\\ y-14=0 \end{bmatrix} \end{bmatrix}, \begin{bmatrix} 14, \begin{cases} x=0\\ y=0 \end{bmatrix} \end{bmatrix}$

>
$$Fs := [x^2 + y + z - 1, x + y^2 + z - 1, x + y + z^2 - 1]$$
:
> $R := PolynomialRing([x, y, z], 101)$:
> TriangularizeWithMultiplicity(Fs, R):

$$\begin{bmatrix} \begin{bmatrix} x - z = 0 \\ y - z = 0 \\ z^2 + 2z - 1 = 0 \end{bmatrix}, \begin{bmatrix} \begin{bmatrix} 2, \begin{cases} x = 0 \\ y = 0 \\ z - 1 = 0 \end{bmatrix} \end{bmatrix}, \begin{bmatrix} 2, \begin{cases} x = 0 \\ y - 1 = 0 \\ z = 0 \end{bmatrix} \end{bmatrix}, \begin{bmatrix} 2, \begin{cases} x - 1 = 0 \\ y = 0 \\ z = 0 \end{bmatrix} \end{bmatrix}$$

Experiments

System	Degree	Time(∆ize)	#rc's	Time(rc₋im)
$\langle 1,3 \rangle$	888	9.7	20	19.2
$\langle 1,4 angle$	1456	226.0	8	9.023
$\langle 1,5 angle$	1595	169.4	8	25.4
$\langle 3,5 \rangle$	1413	22.5	27	28.6
$\langle 4,5 angle$	1781	218.4	9	13.9
$\langle 5,1 angle$	1759	113.0	10	15.8
$\langle 6,8 \rangle$	1680	99.7	12	37.6
$\langle 6,9 \rangle$	2560	299.3	10	22.9
$\langle 6, 10 angle$	1320	131.9	7	8.4
$\langle 6, 11 angle$	1440	59.8	17	27.5
$\langle 7,8 \rangle$	1152	32.8	12	16.2
$\langle 7,9 \rangle$	756	18.5	16	11.2
$\langle 7, 10 \rangle$	595	8.1	17	13.0
$\langle 7, 11 \rangle$	648	9.2	25	11.1
$\langle 8,9 \rangle$	1984	374.5	10	11.3
$\langle 8, 10 \rangle$	1362	232.5	7	9.3
$\langle 8, 11 \rangle$	1256	49.6	17	45.7
$\langle 9, 10 angle$	2080	504.9	12	34.812
$\langle 9, 11 angle$	1792	115.1	16	17.2
$\langle 10,11\rangle$	1180	40.9	17	21.3

Reducing from dim n to dim n-1: using transversality (1/2)

Definition

The intersection multiplicity of p in $V(f_1, \ldots, f_n)$ is given by $I(p; f_1, \ldots, f_n) := \dim_{\overline{k}} (\mathcal{O}_{\mathbb{A}^n, p} / \langle f_1, \ldots, f_n \rangle)$. where $\mathcal{O}_{\mathbb{A}^n, p}$ and $\dim_{\overline{k}} (\mathcal{O}_{\mathbb{A}^n, p} / \langle f_1, \ldots, f_n \rangle)$ are respectively the local ring at the point p and the dimension of the vector space $\mathcal{O}_{\mathbb{A}^n, p} / \langle f_1, \ldots, f_n \rangle$.

The next theorem reduces the *n*-dimensional case to n-1, under assumptions which state that f_n does not contribute to $I(p; f_1, \ldots, f_n)$.

Reducing from dim n to dim n-1: using transversality (1/2)

Definition

The intersection multiplicity of p in $V(f_1, \ldots, f_n)$ is given by $I(p; f_1, \ldots, f_n) := \dim_{\overline{k}} (\mathcal{O}_{\mathbb{A}^n, p} / \langle f_1, \ldots, f_n \rangle)$. where $\mathcal{O}_{\mathbb{A}^n, p}$ and $\dim_{\overline{k}} (\mathcal{O}_{\mathbb{A}^n, p} / \langle f_1, \ldots, f_n \rangle)$ are respectively the local ring at the point p and the dimension of the vector space $\mathcal{O}_{\mathbb{A}^n, p} / \langle f_1, \ldots, f_n \rangle$.

The next theorem reduces the *n*-dimensional case to n-1, under assumptions which state that f_n does not contribute to $I(p; f_1, \ldots, f_n)$.

Theorem 2

Assume that $h_n = V(f_n)$ is non-singular at p. Let v_n be its tangent hyperplane at p. Assume that h_n meets each component (through p) of the curve $\mathcal{C} = V(f_1, \ldots, f_{n-1})$ transversely (that is, the tangent cone $TC_p(\mathcal{C})$ intersects v_n only at the point p). Let $h \in k[x_1, \ldots, x_n]$ be the degree 1 polynomial defining v_n . Then, we have

$$I(p; f_1, \ldots, f_n) = I(p; f_1, \ldots, f_{n-1}, h).$$

Reducing from dim n to dim n-1: using transversality (2/2)

The theorem again:

Theorem

Assume that $h_n = V(f_n)$ is non-singular at p. Let v_n be its tangent hyperplane at p. Assume that h_n meets each component (through p) of the curve $C = V(f_1, \ldots, f_{n-1})$ transversely (that is, the tangent cone $TC_p(C)$ intersects v_n only at the point p). Let $h \in k[x_1, \ldots, x_n]$ be the degree 1 polynomial defining v_n . Then, we have $l(p; f_1, \ldots, f_n) = l(p; f_1, \ldots, f_{n-1}, h)$.

How to use this theorem in practise?

Assume that the coefficient of x_n in h is non-zero, thus $h = x_n - h'$, where $h' \in k[x_1, \ldots, x_{n-1}]$. Hence, we can rewrite the ideal $\langle f_1, \ldots, f_{n-1}, h \rangle$ as $\langle g_1, \ldots, g_{n-1}, h \rangle$ where g_i is obtained from f_i by substituting x_n with h'. Then, we have

 $I(p; f_1, \ldots, f_n) = I(p|_{x_1, \ldots, x_{n-1}}; g_1, \ldots, g_{n-1}).$

Reducing from dim n to dim n - 1: a simple case (1/3)

Example

Consider the system

$$f_1 = x, f_2 = x + y^2 - z^2, f_3 := y - z^3$$

near the origin $o := (0,0,0) \in V(f_1,f_2,f_3)$

Reducing from dim n to dim n - 1: a simple case (2/3)

Example

Recall the system

$$f_1 = x$$
, $f_2 = x + y^2 - z^2$, $f_3 := y - z^3$

near the origin $o := (0, 0, 0) \in V(f_1, f_2, f_3)$.

Computing the IM using the definition

Let us compute a basis for $\mathcal{O}_{\mathbb{A}^3,o}/\langle f_1, f_2, f_3 \rangle$ as a vector space over \overline{k} . Setting x = 0 and $y = z^3$, we must have $z^2(z^4 + 1) = 0$ in $\mathcal{O}_{\mathbb{A}^3,o} = \overline{k}[x,y,z]_{(z,y,z)}$. Since $z^4 + 1$ is a unit in this local ring, we see that

$$\mathcal{O}_{\mathbb{A}^{3},o}/\left\langle \mathit{f}_{1},\mathit{f}_{2},\mathit{f}_{3}
ight
angle =\left\langle 1,z
ight
angle$$

as a vector space, so $I(o; f_1, f_2, f_3) = 2$.

Reducing from dim n to dim n - 1: a simple case (3/3)

3

Example

Recall the system again

$$f_1 = x, f_2 = x + y^2 - z^2, f_3 := y - z$$

near the origin $o := (0, 0, 0) \in V(f_1, f_2, f_3).$

Computing the IM using the reduction

We have

$$\mathcal{C} := V(x, x+y^2-z^2) = V(x, (y-z)(y+z)) = TC_o(\mathcal{C})$$

and we have

h = y.

Thus C and $V(f_3)$ intersect transversally at the origin. Therefore, we have $I_3(p; f_1, f_2, f_3) = I_2((0, 0); x, x - z^2) = 2.$

Reducing from dim *n* to dim n - 1: via cylindrification (1/3)

In practise, this reduction from n to n-1 variables does not always apply. For instance, this is the case for *Ojika 2*:

$$x^{2} + y + z - 1 = x + y^{2} + z - 1 = x + y + z^{2} - 1 = 0.$$

Figure: The real points of $V(x^2 + y + z - 1, x + y^2 + z - 1, x + y + z^2 - 1)$.

Reducing from dim *n* to dim n - 1: via cylindrification (2/3)

Recall the system

$$x^{2} + y + z - 1 = x + y^{2} + z - 1 = x + y + z^{2} - 1 = 0.$$

If one uses the first equation, that is $x^2 + y + z - 1 = 0$, to eliminate z from the other two, we obtain two bivariate polynomials $f, g \in k[x, y]$.

Figure: The real points of $V(x^2 + y + z - 1, x + y^2 - x^2 - y, x - y + x^4 + 2x^2y - 2x^2 + y^2)$ near the origin.

Reducing from dim *n* to dim n - 1: via cylindrification (3/3)

At any point of $p \in V(h, f, g)$ the tangent cone of the curve V(f, g) is independent of z; in some sense it is "vertical". On the other hand, at any point of $p \in V(h, f, g)$ the tangent space of V(h) is not vertical.

Thus, the previous theorem applies without computing any tangent cones.

Figure: The real points of $V(x^2 + y + z - 1, x + y^2 - x^2 - y, x - y + x^4 + 2x^2y - 2x^2 + y^2)$ near the origin.

Tangent cone computation without standard bases

Assume $\overline{k} = \mathbb{C}$ and none of the $V(f_i)$ is singular at p. For each component \mathcal{G} through p of $\mathcal{C} = V(f_1, \ldots, f_{n-1})$,

- There exists a neighborhood B of p such that $V(f_i)$ is not singular at all $q \in (B \cap G) \setminus \{p\}$, for i = 1, ..., n 1.
- Let $v_i(q)$ be the tangent hyperplane of $V(f_i)$ at q. Regard $v_1(q) \cap \cdots \cap v_{n-1}(q)$ as a parametric variety with q as parameter.
- Then, $TC_p(\mathcal{G}) = v_1(q) \cap \cdots \cap v_{n-1}(q)$ when q approaches p.
- Finally, $TC_p(\mathcal{C})$ is the union of all $TC_p(\mathcal{G})$. This approach avoids standard basis computation and extends for working with V(T) instead of p.

But hhow to compute the limit of $v_1(q) \cap \cdots \cap v_{n-1}(q)$ when approaches p?

Algorithm principle

- Let $m(x_1, \ldots, x_n)$ be a point on the curve $\mathcal{C} = V(f_1, \ldots, f_{n-1})$,
- Let \vec{u} be a unit vector directing the line (pm)
- The set $\{\lim_{m\to p, m\neq p} \vec{u}\}$ describes $TC_p(\mathcal{C})$

Step 1

• Let *T* de a 0-dim regular chain defining the point *p*; rename its variables to *y*₁,..., *y*_n.

Algorithm principle

- Let $m(x_1, \ldots, x_n)$ be a point on the curve $\mathcal{C} = V(f_1, \ldots, f_{n-1})$,
- Let \vec{u} be a unit vector directing the line (pm)
- The set $\{\lim_{m\to p, m\neq p} \vec{u}\}$ describes $TC_p(\mathcal{C})$

- Let *T* de a 0-dim regular chain defining the point *p*; rename its variables to *y*₁,..., *y*_n.
- Consider the polynomial system (S) defined by T and $f_1 = \cdots = f_{n-1} = 0$.

Algorithm principle

- Let $m(x_1, \ldots, x_n)$ be a point on the curve $\mathcal{C} = V(f_1, \ldots, f_{n-1})$,
- Let \vec{u} be a unit vector directing the line (pm)
- The set $\{\lim_{m\to p, m\neq p} \vec{u}\}$ describes $TC_p(\mathcal{C})$

- Let *T* de a 0-dim regular chain defining the point *p*; rename its variables to *y*₁,..., *y*_n.
- Consider the polynomial system (S) defined by T and $f_1 = \cdots = f_{n-1} = 0$.
- This is a 1-dim system in the variables $y_1, \ldots, y_n, x_1, \ldots, x_n$.

Algorithm principle

- Let $m(x_1, \ldots, x_n)$ be a point on the curve $\mathcal{C} = V(f_1, \ldots, f_{n-1})$,
- Let \vec{u} be a unit vector directing the line (pm)
- The set $\{\lim_{m\to p, m\neq p} \vec{u}\}$ describes $TC_p(\mathcal{C})$

- Let *T* de a 0-dim regular chain defining the point *p*; rename its variables to *y*₁,..., *y*_n.
- Consider the polynomial system (S) defined by T and $f_1 = \cdots = f_{n-1} = 0$.
- This is a 1-dim system in the variables $y_1, \ldots, y_n, x_1, \ldots, x_n$.
- Let R_1, \ldots, R_e be regular chains decomposing the zero set V of (S).

Recall

- The set $\{\lim_{m \to \rho, m \neq \rho} \vec{u}\}$ describes $TC_{\rho}(\mathcal{C})$
- Consider the system (S) defined by T and $f_1 = \cdots = f_{n-1} = 0$.
- Let R_1, \ldots, R_e be regular chains decomposing the zero set V of (S).

Step 2

• We divide each component of $p \vec{m}$ by $x_1 - y_1$. This works only if $x_1 - y_1$ vanishes finitely many times in V.

Recall

- The set $\{\lim_{m \to \rho, m \neq \rho} \vec{u}\}$ describes $TC_{\rho}(\mathcal{C})$
- Consider the system (S) defined by T and $f_1 = \cdots = f_{n-1} = 0$.
- Let R_1, \ldots, R_e be regular chains decomposing the zero set V of (S).

- We divide each component of $p \vec{m}$ by $x_1 y_1$. This works only if $x_1 y_1$ vanishes finitely many times in V.
- Fix $i = 1 \cdots e$. If $x_1 y_1$ is regular modulo the saturated ideal of R_i , then each compliant of \vec{pm} can be divided by $x_1 y_1$.

Recall

- The set $\{\lim_{m \to \rho, m \neq \rho} \vec{u}\}$ describes $TC_{\rho}(\mathcal{C})$
- Consider the system (S) defined by T and $f_1 = \cdots = f_{n-1} = 0$.
- Let R_1, \ldots, R_e be regular chains decomposing the zero set V of (S).

- We divide each component of $p \vec{m}$ by $x_1 y_1$. This works only if $x_1 y_1$ vanishes finitely many times in V.
- Fix $i = 1 \cdots e$. If $x_1 y_1$ is regular modulo the saturated ideal of R_i , then each compliant of \vec{pm} can be divided by $x_1 y_1$.
- Assume $x_1 y_1$ is regular modulo the saturated ideal of R_i . Define $s_i = \frac{x_i y_i}{x_1 y_1}$. We have $\vec{u} = (1, s_2, \dots, s_n)$.

Recall

- The set $\{\lim_{m \to \rho, m \neq \rho} \vec{u}\}$ describes $TC_{\rho}(\mathcal{C})$
- Consider the system (S) defined by T and $f_1 = \cdots = f_{n-1} = 0$.
- Let R_1, \ldots, R_e be regular chains decomposing the zero set V of (S).

- We divide each component of $p \vec{m}$ by $x_1 y_1$. This works only if $x_1 y_1$ vanishes finitely many times in V.
- Fix $i = 1 \cdots e$. If $x_1 y_1$ is regular modulo the saturated ideal of R_i , then each compliant of \vec{pm} can be divided by $x_1 y_1$.
- Assume $x_1 y_1$ is regular modulo the saturated ideal of R_i . Define $s_i = \frac{x_i y_i}{x_1 y_1}$. We have $\vec{u} = (1, s_2, \dots, s_n)$.
- Let s_2, \ldots, s_n be variables; extend R_j with the polynomials $s_2(x_1 y_1) (x_2 y_2), \ldots, s_n(x_1 y_1) (x_n y_n)$ to a chain S_j .

Recall

- The set $\{\lim_{m \to \rho, m \neq \rho} \vec{u}\}$ describes $TC_{\rho}(\mathcal{C})$
- Consider the system (S) defined by T and $f_1 = \cdots = f_{n-1} = 0$.
- Let R_1, \ldots, R_e be regular chains decomposing the zero set V of (S).

- We divide each component of $p \vec{m}$ by $x_1 y_1$. This works only if $x_1 y_1$ vanishes finitely many times in V.
- Fix $i = 1 \cdots e$. If $x_1 y_1$ is regular modulo the saturated ideal of R_i , then each compliant of \vec{pm} can be divided by $x_1 y_1$.
- Assume $x_1 y_1$ is regular modulo the saturated ideal of R_i . Define $s_i = \frac{x_i y_i}{x_1 y_1}$. We have $\vec{u} = (1, s_2, \dots, s_n)$.
- Let s_2, \ldots, s_n be variables; extend R_j with the polynomials $s_2(x_1 y_1) (x_2 y_2), \ldots, s_n(x_1 y_1) (x_n y_n)$ to a chain S_j .
- Finally $\{\lim_{m\to p, m\neq p} \vec{u}\}$ is given by the limit points of the S_j 's, that is, the sets $\overline{W(S_j)} \setminus W(S_j)$.

Limit points of a quasi-component

Input

- Let $R \subset \mathbb{C}[X_1, \ldots, X_s]$ be a regular chain.
- Let h_R be the product of initials of polynomials of R.
- Let W(R) be the quasi-component of R, that is $V(R) \setminus V(h_R)$.

Desired output

The non-trivial limit points of W(R), that is

$$\lim(W(R)) := \overline{W(R)}^Z \setminus W(R).$$

Puiseux expansions of a regular chain

Notation

- Let $R := \{r_1(X_1, X_2), \dots, r_{s-1}(X_1, \dots, X_s)\} \subset \mathbb{C}[X_1 < \dots < X_s]$ be a 1-dim regular chain.
- Assume R is strongly normalized, that is, $init(R) \in \mathbb{C}[X_1]$.
- Let $\mathbf{k} = \mathbb{C}(\langle X_1^* \rangle).$
- Then R generates a zero-dimensional ideal in k[X₂,...,X_s].
- Let $V^*(R)$ be the zero set of R in \mathbf{k}^{s-1} .

Definition

We call *Puiseux expansions* of *R* the elements of $V^*(R)$.

Remarks

- The strongly normalized assumption is only for presentation ease.
- Generically, The 1-dim assumption extends to dimension $d \leq 2$.
- Higher dimension requires the Jung-Abhyankar theorem.

An example

A regular chain R

$$R := \begin{cases} X_1 X_3^2 + X_2 \\ X_1 X_2^2 + X_2 + X_1 \end{cases}$$

Puiseux expansions of R

$$\begin{cases} X_3 = 1 + O(X_1^2) \\ X_2 = -X_1 + O(X_1^2) \end{cases} \begin{cases} X_3 = -1 + O(X_1^2) \\ X_2 = -X_1 + O(X_1^2) \end{cases} \begin{cases} X_3 = -X_1 + O(X_1^2) \\ X_2 = -X_1^{-1} + X_1 + O(X_1^2) \end{cases} \begin{cases} X_3 = -X_1^{-1} + \frac{1}{2}X_1 + O(X_1^2) \\ X_2 = -X_1^{-1} + X_1 + O(X_1^2) \end{cases} \begin{cases} X_2 = -X_1^{-1} + X_1 + O(X_1^2) \end{cases}$$

Relation between $\lim_{0}(W(R))$ and Puiseux expansions of R

Theorem

For
$$W \subseteq \mathbb{C}^s$$
, denote
 $\lim_{0}(W) := \{x = (x_1, \dots, x_s) \in \mathbb{C}^s \mid x \in \lim(W) \text{ and } x_1 = 0\},\$
and define
 $V^*_{\geq 0}(R) := \{\Phi = (\Phi^1, \dots, \Phi^{s-1}) \in V^*(R) \mid \operatorname{ord}(\Phi^j) \geq 0, j = 1, \dots, s-1\}.\$
Then we have

$$\lim_{0}(W(R)) = \cup_{\Phi \in V^*_{\geq 0}(R)} \{ (X_1 = 0, \Phi(X_1 = 0)) \}.$$

$$V_{\geq 0}^{*}(R) := \begin{cases} X_{3} = 1 + O(X_{1}^{2}) \\ X_{2} = -X_{1} + O(X_{1}^{2}) \\ \end{bmatrix} \cup \begin{cases} X_{3} = -1 + O(X_{1}^{2}) \\ X_{2} = -X_{1} + O(X_{1}^{2}) \\ \end{bmatrix} \\ X_{2} = -X_{1} + O(X_{1}^{2}) \\ \end{bmatrix}$$

Thus the limit ponts are $\lim_{0 \to \infty} (W(R)) = \{(0, 0, 1), (0, 0, -1)\}.$

Limit points of a quasi-component

> with(AlgebraicGeometryTools):
> R := PolynomialRing([x, y, t]);
> F := [t*y^2 + y + 1, (t + 2)*t*x^2 + (y +1)* (x + 1)];
> C := Chain(F, Empty(R), R);
> lm := LimitPoints(C, R, false, true);
> Display(lm, R);
$$R := polynomial_ring$$
$$F := [ty^2 + y + 1, (t+2) tx^2 + (y+1) (x+1)]$$
$$C := regular_chain$$
$$lm := [regular_chain, regular_chain, regular_chain, regular_chain]$$
$$lm := [regular_chain, regular_chain]$$
$$lm := [regular_chain]$$

Conclusions

Let $f_1, \ldots, f_n \in k[x_1, \ldots, k_n]$ such that $V(f_1, \ldots, f_n)$ is zero-dimensional.

- For n = 2, in all cases, and for n > 2, under genericity assumptions, we saw how to compute the intersection multiplicity I(p; f₁,..., f_n) at any p ∈ V(f₁,..., f_n).
- In some cases, the tangent cone of a curve at a point is computed.
- When this happens, computing limit points of constructible sets may be computed as well.
- All these operations rely on regular chain manipulations instead of standard basis computation.
- They are part of the new module AlgebraicGeometryTools of the next release the RegularChains library.
- The latest RegularChains.mla library archive can be downloaded from www.regularchains.org