
July 2015

A Many-Core Machine Model for
Designing Algorithms with Minimum

Parallelism Overheads

Sardar Anisul HAQUE a, Marc MORENO MAZA a,b and Ning XIE a

a Department of Computer Science, University of Western Ontario, Canada
b ChongQing Institute for Green and Intelligent Technology, Chinese Academy of

Sciences

Abstract. We present a model of multithreaded computation with an emphasis on
estimating parallelism overheads of programs written for modern many-core archi-
tectures. We establish a Graham-Brent theorem so as to estimate execution time of
programs running on a given number of streaming multiprocessors. We evaluate the
benefits of our model with fundamental algorithms from scientific computing. For
two case studies, our model is used to minimize parallelism overheads by determin-
ing an appropriate value range for a given program parameter. For the others, our
model is used to compare different algorithms solving the same problem. In each
case, the studied algorithms were implemented and the results of their experimental
comparison are coherent with the theoretical analysis based on our model.

Keywords. Model of computation, parallelism overhead, many-core architectures

1. Introduction

Designing efficient algorithms targeting hardware accelerators (multi-core processors,
graphics processing units (GPUs), field-programmable gate arrays) creates major chal-
lenges for computer scientists. A first difficulty is to define models of computation re-
taining the computer hardware characteristics that have a dominant impact on program
performance. That is, in addition to specify the appropriate complexity measures, those
models must consider the relevant parameters characterizing the abstract machine exe-
cuting the algorithms to be analyzed. A second difficulty is, for a given model of com-
putation, to combine its complexity measures so as to determine the “best” algorithm
among different possible solutions to a given algorithmic problem.

In the fork-join concurrency model [1], two complexity measures, the work T1 and
the span T∞, and one machine parameter, the number P of processors, are combined into
a running time estimate, namely the Graham-Brent theorem [1,2], which states that the
running time TP on P processors satisfies TP ≤ T1/P+T∞. A refinement of this theorem
supports the implementation (on multi-core architectures) of the parallel performance
analyzer Cilkview [3]. In this context, the running time TP is bounded in expectation by
T1/P+2δ T̂∞, where δ is a constant (called the span coefficient) and T̂∞ is the burdened
span, which captures parallelism overheads due to scheduling and synchronization.

July 2015

The well-known PRAM (parallel random-access machine) model [4,5] has also been
enhanced [6] so as to integrate communication delay into the computation time. How-
ever, a PRAM abstract machine consists of an unbounded collection of RAM proces-
sors, whereas a many-core GPU holds a collection of streaming multiprocessors (SMs).
Hence, applying the PRAM model to GPU programs fails to capture all the features (and
thus the impact) of data transfer between the SMs and the global memory of the device.

Ma, Agrawal and Chamberlain [7] introduce the TMM (Threaded Many-core Mem-
ory) model which retains many important characteristics of GPU-type architectures as
machine parameters, like memory access width and hardware limit on the number of
threads per core. In TMM analysis, the running time of an algorithm is estimated by
choosing the maximum quantity among work, span and the amount of memory accesses.
Such running time estimates depend on the machine parameters. Hong and Kim [8]
present an analytical model to predict the execution time of an actual GPU program. No
abstract machine is defined in this case. Instead, a few metrics are used to estimate the
CPI (cycles per instruction) of the considered program.

Many works, such as [9,10], targeting code optimization and performance prediction
of GPU programs are related to our work. However, these papers do not define an abstract
model in support of the analysis of algorithms.

In this paper, we propose a many-core machine (MCM) model with two objectives:
(1) tuning program parameters to minimize parallelism overheads of algorithms target-
ing GPU-like architectures, and (2) comparing different algorithms independently of the
targeted hardware device. In the design of this model, we insist on the following features:

1. Two-level DAG programs. Defined in Section 2, they capture the two levels of
parallelism (fork-join and single instruction, multiple data) of heterogeneous pro-
grams (like a CilkPlus program using #pragma simd [11] or a CUDA program
with the so-called dynamic parallelism [12]).

2. Parallelism overhead. We introduce this complexity measure in Section 2.3 with
the objective of capturing communication and synchronization costs.

3. A Graham-Brent theorem. We combine three complexity measures (work, span
and parallelism overhead) and one machine parameter (data transfer throughput)
in order to estimate the running time of an MCM program on P streaming multi-
processors, see Theorem 1. However, as we shall see through a case study series,
this machine parameter has no influence on the comparison of algorithms.

Our model extends both the fork-join concurrency and PRAM models, with an emphasis
on parallelism overheads resulting from communication and synchronization.

We sketch below how, in practice, we use this model to tune a program parameter so
as to minimize parallelism overheads of programs targeting many-core GPUs. Consider
an MCM program P , that is, an algorithm expressed in the MCM model. Assume that
a program parameter s (like the number of threads running on an SM) can be arbitrarily
chosen within some range S while preserving the specifications of P . Let s0 be a par-
ticular value of s which corresponds to an instance P0 of P , which, in practice, is seen
as an initial version of the algorithm to be optimized.

We consider the ratios of the work, span, and parallelism overhead given by
WP0/WP , SP0/SP and OP0/OP . Assume that, when s varies within S , the work ra-
tio and span ratio stay within O(s) (in fact, Θ(1) is often the case), but the ratio of the par-
allelism overhead reduces by a factor in Θ(s). Thereby, we determine a value smin ∈S
maximizing the parallelism overhead ratio. Next, we use our version of Graham-Brent

July 2015

theorem (more precisely, Corollary 1) to check whether the upper bound for the running
time of P(smin) is less than that of P(so). If this holds, we view P(smin) as a solution
of our problem of algorithm optimization (in terms of parallelism overheads).

To evaluate the benefits of our model, we applied it successfully to five fundamental
algorithms 1 in scientific computing, see Sections 3 to 5. These five algorithms are the
Euclidean algorithm, Cooley & Tukey and Stockham fast Fourier transform algorithms,
the plain and FFT-based univariate polynomial multiplication algorithms. Other applica-
tions of our model appear in the PhD thesis [13] of the first Author as well as in [14].

Following the strategy described above for algorithm optimization, our model is
used to tune a program parameter in the case of the Euclidean algorithm and the plain
multiplication algorithm. Next, our model is used to compare the two fast Fourier trans-
form algorithms and then the two univariate polynomial multiplication algorithms. In
each case, work, span and parallelism overhead are evaluated so as to obtain running
time estimates via our Graham-Brent theorem and then select a proper algorithm.

2. A many-core machine model

The model of parallel computations presented in this paper aims at capturing commu-
nication and synchronization overheads of programs written for modern many-core ar-
chitectures. One of our objectives is to optimize algorithms by techniques like reducing
redundant memory accesses. The reason for this optimization is that, on actual GPUs,
global memory latency is approximately 400 to 800 clock cycles. This memory latency,
when not properly taken into account, may have a dramatically negative impact on pro-
gram performance. Another objective of our model is to compare different algorithms
targeting implementation on GPUs without taking hardware parameters into account.

As specified in Sections 2.1 and 2.2, our many-core machine (MCM) model retains
many of the characteristics of modern GPU architectures and programming models, like
CUDA or OpenCL. However, in order to support algorithm analysis with an emphasis
on parallelism overheads, as defined in Section 2.3 and 2.4, the MCM abstract machines
admit a few simplifications and limitations with respect to actual many-core devices.

2.1. Characteristics of the abstract many-core machines

Architecture. An MCM abstract machine possesses an unbounded number of streaming
multiprocessors (SMs) which are all identical. Each SM has a finite number of processing
cores and a fixed-size private memory. An MCM machine has a two-level memory hier-
archy, comprising an unbounded global memory with high latency and low throughput
and fixed size private memories with low latency and high throughput.

Programs. An MCM program is a directed acyclic graph (DAG) whose vertices are ker-
nels (defined hereafter) and edges indicate serial dependencies, similarly to the instruc-
tion stream DAGs of the fork-join concurrency model. A kernel is an SIMD (single in-
struction, multiple data) program capable of branches and decomposed into a number of
thread-blocks. Each thread-block is executed by a single SM and each SM executes a
single thread-block at a time. Similarly to a CUDA program, an MCM program specifies

1Our algorithms are implemented in CUDA and publicly available with benchmarking scripts from http:

//www.cumodp.org/.

http://www.cumodp.org/
http://www.cumodp.org/

July 2015

Figure 1. Overview of a many-core machine program

for each kernel the number of thread-blocks and the number of threads per thread-block.
Figure 1 depicts the different types of components of an MCM program.

Scheduling and synchronization. At run time, an MCM machine schedules thread-blocks
(from the same or different kernels) onto SMs, based on the dependencies specified
by the edges of the DAG and the hardware resources required by each thread-block.
Threads within a thread-block can cooperate with each other via the private memory of
the SM running the thread-block. Meanwhile, thread-blocks interact with each other via
the global memory. In addition, threads within a thread-block are executed physically
in parallel by an SM. Moreover, the programmer cannot make any assumptions on the
order in which thread-blocks of a given kernel are mapped to the SMs. Hence, an MCM
program runs correctly on any fixed number of SMs.

Memory access policy. All threads of a given thread-block can access simultaneously any
memory cell of the private memory or the global memory: read/write conflicts are han-
dled by the CREW (concurrent read, exclusive write) policy. However, read/write re-
quests to the global memory by two different thread-blocks cannot be executed simul-
taneously. In case of simultaneous requests, one thread-block is chosen randomly and
served first, then the other is served.

Toward analyzing program performance, we define two machine parameters:

U : Time (expressed in clock cycles) to transfer one machine word between the
global memory and the private memory of any SM; hence we have U > 0.

Z: Size (expressed in machine words) of the private memory of any SM, which sets
up an upper bound on several program parameters.

The private memory size Z sets several characteristics and limitations of an SM and,
thus, of a thread-block. Indeed, each of the following quantities is at most equal to Z: the
number of threads of a thread-block and the number of words in a data transfer between
the global memory. The quantity 1/U is a throughput measure and has the following
property. If α and β are the maximum numbers of words respectively read and written
to the global memory by one thread of a thread-block B, and ` is the number of threads
per thread-block, then the total time TD spent in data transfer between the global memory
and the private memory of an SM executing B satisfies:

TD ≤ (α +β)U, if coalesced accesses occur, or `(α +β)U, otherwise. (1)

July 2015

On actual GPU devices, some hardware characteristics may reduce data transfer time,
for instance, fast context switching between warps executed by a SM. Other hardware
characteristics, like partition camping, may increase data transfer time. As an abstract
machine, the MCM aims at capturing either the best or the worst scenario for data transfer
time of a thread-block, which lead us to Relation (1).

Relation (1) calls for another comment. One could expect the introduction of a
third machine parameter, say V , which would be the time to execute one local oper-
ation (arithmetic operation, read/write in the private memory), such that, if σ is the
maximum number of local operations performed by one thread of a thread-block B,
then the total time TA spent in local operations by an SM executing B would satisfy
TA ≤ σV. Therefore, for the total running time T of the thread-block B, we would have
T = TA +TD ≤ σ V + ε (α +β)U , where ε is either 1 or `. Instead of introducing this
third machine parameter V , we let V = 1. Thus, U can be understood as the ratio of the
time to transfer a machine word to the time to execute a local operation.

2.2. Many-core machine programs

Recall that each MCM program P is a DAG (K ,E), called the kernel DAG of P ,
where each node K ∈K represents a kernel, and each edge E ∈ E records the fact that a
kernel call must precede another kernel call. In other words, a kernel call can be executed
once all its predecessors in the DAG (K ,E) have completed their execution.

Synchronization costs. Recall that each kernel decomposes into thread-blocks and that all
threads within a given kernel execute the same serial program, but with possibly dif-
ferent input data. In addition, all threads within a thread-block are executed physically
in parallel by an SM. It follows that MCM kernel code needs no synchronization state-
ment, like CUDA’s syncthreads(). Consequently, the only form of synchronization
taking place among the threads executing a given thread-block is that implied by code
divergence [15]. This latter phenomenon can be seen as parallelism overhead. Further,
an MCM machine handles code divergence by eliminating the corresponding conditional
branches via code replication [16], and the corresponding cost will be captured by the
complexity measures (work, span and parallelism overhead) of the MCM model.

Scheduling costs. Since an MCM abstract machine has infinitely many SMs and since
the kernel DAG defining an MCM program P is assumed to be known when P starts
to execute, scheduling P’s kernels onto the SMs can be done in time O(Γ) where Γ is
the total length of P’s kernel code. Thus, we neglect those costs in comparison to the
costs of data transfer between SMs’ private memories and the global memory. Extending
MCM machines to program DAGs unfolding dynamically at run time is work in progress.

Thread-block DAG. Since each kernel of the program P decomposes into finitely many
thread-blocks, we map P to a second graph, called the thread-block DAG of P , whose
vertex set B(P) consists of all thread-blocks of the kernels of P and such that (B1,B2)
is an edge if B1 is a thread-block of a kernel preceding the kernel of the thread-block B2
in P . This second graph defines two important quantities:

N(P): number of vertices in the thread-block DAG of P ,
L(P): critical path length (where length of a path is the number of edges in that path)

in the thread-block DAG of P .

July 2015

2.3. Complexity measures for the many-core machine model

Consider an MCM program P given by its kernel DAG (K ,E). Let K ∈K be any
kernel of P and B be any thread-block of K. We define the work of B, denoted by W(B),
as the total number of local operations performed by all threads of B. We define the span
of B, denoted by S(B), as the maximum number of local operations performed by a thread
of B. As before, let α and β be the maximum numbers of words read and written (from
the global memory) by a thread of B, and ` be the number of threads per thread-block.
Then, we define the overhead of B, denoted by O(B), as

(α +β)U, if memory accesses can be coalesced or `(α +β)U,otherwise. (2)

Next, the work (resp. overhead) W(K) (resp. O(K)) of the kernel K is the sum of the
works (resp. overheads) of its thread-blocks, while the span S(K) of the kernel K is the
maximum of the spans of its thread-blocks. We consider now the entire program P . The
work W(P) of P is defined as the total work of all its kernels. Regarding the graph
(K ,E) as a weighted-vertex graph, where the weight of a vertex K ∈ K is its span
S(K), we define the weight S(γ) of any path γ from the first executing kernel to a terminal
kernel (that is, a kernel with no successors in P) as S(γ) = ∑K∈γ S(K). Then, we define
the span S(P) of P as the longest path, counting the weight (span) of each vertex
(kernel), in the kernel DAG. Finally, we define the overhead O(P) of the program P
as the total overhead of all its kernels. Observe that, according to Mirsky’s theorem [17],
the number π of parallel steps in P (which form a partition of K into anti-chains in
the DAG (K ,E) regarded as a partially ordered set) is greater or equal to the maximum
length of a path in (K ,E) from the first executing kernel to a terminal kernel.

2.4. A Graham-Brent theorem with parallelism overhead

Theorem 1 The running time TP of the program P executed on P SMs satisfies the
inequality: TP ≤ (N(P)/P+L(P))C(P), where C(P) = maxB∈B(P) (S(B)+O(B)).

The proof is similar to that of the original result [1,2]. while the proof of the following
corollary follows from Theorem 1 and from the fact that costs of scheduling thread-
blocks onto SMs are neglected.

Corollary 1 Let K be the maximum number of thread-blocks along an anti-chain of the
thread-block DAG of P . Then the running time TP of the program P satisfies:

TP ≤ (N(P)/K+L(P))C(P). (3)

As we shall see in Sections 3 through 5, Corollary 1 allows us to estimate the running
time of an MCM program as a function of the number ` of threads per thread-block,
the single machine parameter U and the thread-block DAG of P . Thus, the dependence
on the machine parameter Z (the size of a private memory) is only through inequalities
specifying upper bounds for `. In addition, in each of the case studies, there is no need to
make any assumptions (like inequality constraints) on the machine parameter U .

July 2015

3. The Euclidean algorithm

Our first application of the MCM model deals with a multithreaded algorithm for com-
puting the greatest common divisor (GCD) of two univariate polynomials over a the fi-
nite field Z/pZ, where p is a prime number. Our approach is based on the Euclidean
algorithm, that the reader can review in Chapter 4 in [18]. Given a positive integer s,
we proceed by repeatedly calling a subroutine which takes as input a pair (a,b) of poly-
nomials in Z/pZ[X], with deg(a) ≥ deg(b) > 0, and returns another pair (a′, b′) of
polynomials in Z/pZ[X], such that gcd(a, b) = gcd(a′, b′), and either b′ = 0 (in which
case we have gcd(a, b) = a′), or we have deg(a′)+ deg(b′) ≤ deg(a)+ deg(b)− s. De-
tails, including pseudo-code, can be found in the long version of this paper available at
http://cumodp.org/hmx2015-draft.pdf.

We will take advantage of our MCM model to tune the program parameter s in
order to obtain an optimized multithreaded version of the Euclidean algorithm. Let n and
m be positive integers such that the degree of the input polynomials a and b (in dense
representation) satisfies deg(a) = n−1 and deg(b) = m−1, assuming n≥ m.

The work, span and parallelism overhead are given 2 by Ws = 3m2 + 6nm+ 3s+
3(5ms+4ns+14m+4n+3s2+6s)

8` , Ss = 3n+3m and Os =
4mU (2n+m+s)

s` , respectively.
To determine a value range for s that minimizes the parallelism overhead of our

multithreaded algorithm, we choose s = 1 as the starting point; let W1, S1 and O1 the
work, span, and parallelism overhead at s = 1. The work ratio W1/Ws is asymptotically
equivalent to (16`+8)n+(8`+19)m

(16`+4s+4)n+(8`+5s+14)m when m (and thus n) escapes to infinity. The span

ratio S1/Ss is 1, and the parallelism overhead ratio O1/Os is (2n+m+1)s
2n+m+s . We observe that

when s∈Θ(`), the work is increased by a constant factor only meanwhile the parallelism
overhead will reduce by a factor in Θ(s).

Hence, choosing s∈Θ(`) seems a good choice. To verify this, we apply Corollary 1.
One can easily check that the quantities characterizing the thread-block DAG of the com-
putation are Ns =

2nm+m2+ms
2s` , Ls =

n+m
s and Cs = 3s+8U . Then, applying Corollary 1,

we estimate the running time on Θ(m
`) SMs as Ts =

4n+3m+s
2s (3s+ 8U). Denoting by

T1 the estimated running time when s = 1, the running time ratio R = T1/Ts on Θ(m
`)

SMs is given by R = (4n+3m+1)(3+8U)s
(4n+3m+s)(3s+8U) . When n and m escape to infinity, the latter ratio

asymptotically becomes (3+8U)s
3s+8U , which is greater than 1 if and only if s > 1. Thus, the

algorithm with s = Θ(`) performs better than that with s = 1, Figure 2 shows the ex-
perimental results with s = ` = 256 and s = 1 on a NVIDIA Kepler architecture, which
confirms our theoretical analysis.

4. Fast Fourier Transform

Let p be a prime number greater than 2 and let f be a vector over the prime field Fp :=
Z/pZ. Let n be the smallest power of 2 such that the length of f is less than n, that is,
n = min{2e | deg(f)< 2e and e ∈N}. We assume that n divides p−1 which guarantees
that the field Fp admits an n-th primitive root of unity. Hence, let ω ∈ Fp such that

2See the detailed analysis in the form of executable MAPLE worksheets of three applications: http://www.
csd.uwo.ca/~nxie6/projects/mcm/.

http://cumodp.org/hmx2015-draft.pdf
http://www.csd.uwo.ca/~nxie6/projects/mcm/
http://www.csd.uwo.ca/~nxie6/projects/mcm/

July 2015

Figure 2. Running time on GeForce GTX 670 of our multithreaded Euclidean algorithm for univariate poly-
nomials of sizes n and m over Z/pZ where p is a 30-bit prime; the program parameter s takes 1 and 256.

ωn = 1 holds while for all 0 ≤ i < n, we have ω i 6= 1. The n-point Discrete Fourier
Transform (DFT, for short) at ω is the linear map from the Fp-vector space Fp

n to itself,
defined by x 7−→ DFTn x with the n-th DFT matrix given by DFTn = [ω i j]0≤i, j<n. A
fast Fourier transform (FFT, for short) is an algorithm to compute the DFT. Two of the
most commonly used FFTs’ are that of Cooley & Tukey [19] and that of Stockham [20].
Details, including a review of those algorithms, can be found in the long version of this
paper available at http://cumodp.org/hmx2015-draft.pdf. Each of these algorithms is
based on a factorization of the matrix DFTn, which translates into log2(n) calls to a kernel
performing successively three matrix-vector multiplications. In the case of Stockham’s
factorization, each of the corresponding matrices has a structure permitting coalesced
read/write memory accesses. Unfortunately, this is not always true for the factorization
of Cooley & Tukey. As we shall see, the MCM model can quantify this negative feature
of this latter algorithm, thus yielding an analytical explanation to a fact which, up to our
knowledge, had never measured in such precise way in the literature.

Estimates for the work, span, and parallelism overhead of each algorithm appear in
http://cumodp.org/hmx2015-draft.pdf. In what follows, Wct , Sct and Oct refer to the
work, span, and parallelism overhead of the algorithm of Cooley & Tukey. Similarly,
Wsh, Ssh and Osh stand for the work, span, and parallelism overhead of Stockham’s.

The work ratio Wct/Wsh is asymptotically equivalent to 4n(47 log2(n)`+34 log2(n)` log2(`))

172n log2(n)`+n+48`2 ,
when n escapes to infinity. Since ` ∈ O(Z), the quantity ` is bounded over on a given
machine. Thus, the work ratio is asymptotically in Θ(log2(`)) when n escapes to infin-
ity, while the span ratio Sct/Ssh is asymptotically equivalent to 34 log2(n) log2(`)+47 log2(n)

43 log2(n)+16 log2(`)
,

which is also in Θ(log2(`)). Next, we compute the parallelism overhead ratio, Oct/Osh,
as 8n(4 log2(n)+` log2(`)−log2(`)−15)

20n log2(n)+5n−4` . In other words, both the work and span of the algorithm
of Cooley & Tukey are increased by Θ(log2(`)) factor w.r.t their counterparts in Stock-
ham algorithm. Applying Corollary 1, we obtain the running time ratio R = Tct/Tsh on
Θ(n

`) SMs as R ∼ log2(n)(2U `+34 log2(`)+2U)
5 log2(n)(U+2 log2(`))

, when n escapes to infinity. This latter ratio
is greater than 1 if and only if ` > 1.

Hence, Stockham algorithm outperforms Cooley & Tukey algorithm on an MCM
machine. Table 1 shows the experimental results comparing both algorithms with `= 128
on a NVIDIA Kepler architecture, which confirms our theoretical analysis.

n 214 215 216 217 218 219 220

Cooley & Tukey (secs) 0.583 0.826 1.19 2.07 4.66 9.11 16.8
Stockham (secs) 0.666 0.762 0.929 1.24 1.86 3.04 5.38

Table 1. Running time of Cooley-Tukey and Stockham FFT algorithm with input size n on GeForce GTX 670.

http://cumodp.org/hmx2015-draft.pdf
http://cumodp.org/hmx2015-draft.pdf

July 2015

5. Polynomial multiplication

Multithreaded algorithms for polynomial multiplication will be our third application of
the MCM model in this paper. As in Section 3, we denote by a and b two univariate
polynomials with coefficients in the prime field Fp and we write their degrees deg(a) =
n− 1 and deg(b) = m− 1, for two positive integers n ≥ m. We compute the product
f = a×b in two ways: plain multiplication and FFT-based multiplication.

Our multithreaded algorithm for plain multiplication was introduced in [21] and is
reviewed with details in http://cumodp.org/hmx2015-draft.pdf. This algorithm de-
pends on a program parameter s > 0 which is the number of coefficients that each thread
writes back to the global memory at the end of each phase (multiplication or addition).
We denote by ` the number of threads per thread-block.

We see s = 1 as our initial algorithm; we denote its work, span and parallelism
overhead as W1, S1 and O1 respectively. The work ratio W1/Ws =

n
n+s−1 , is asymp-

totically constant as n escapes to infinity. The span ratio S1/Ss =
log2(m)+1

s(log2 (m/s)+2s−1)
shows that Ss grows asymptotically with s. The parallelism overhead ratio is O1/Os =

ns2 (7m−3)
(n+s−1)(5ms+2m−3s2)

. We observe that, as n and m escape to infinity, this latter ra-
tio is asymptotically in Θ(s). Applying Corollary 1, the estimated running time on
Θ((n+s−1)m

`s2) SMs is Ts =
(2m−s

m + log2(
m
s)+1

)
(2U s+2s2 +2U− s). One checks that

the running time estimate ratio is asymptotically equivalent to 2U log2(m)
s(s+U) log2 (m/s) . This latter

is smaller than 1 for s > 1. Hence, increasing s makes the algorithm performance worse.
In practice, as shown on Figure 3, setting s = 4 (where ` = 256) performs best, while a
larger s increases the running time, which is coherent with our theoretical analysis.

Figure 3. Running time of plain polynomial mul-
tiplication algorithm with dense polynomials of
sizes n,m and parameter s on GeForce GTX 670.

Figure 4. Running time of plain and FFT-based
multiplication algorithms with input size n on
GeForce GTX 670.

We consider now an alternative polynomial multiplication, based on FFT, see for
instance [22]. Let ` be the number of threads per thread-block. Based on the analy-
sis of Stockham FFT algorithm, we obtain the work, span, and parallelism overhead
of the overall FFT-based polynomial multiplication as W f f t = 129n log2(n)− 94n,
S f f t = 129 log2(n)− 94 and O f f t =

nU (15 log2(n)−4)
` . Applying Corollary 1, the running

time estimate on Θ(n
`) SMs is Tf f t = (15 log2(n)− 13

2)(4U +25).
Back to plain multiplication, using s = 4 obtained from experimental results and

setting m = n, we observe that the estimated running time ratio Ts/Tf f t is essentially
constant on Θ(n2

`) SMs3 when n escapes to infinity, although the plain multiplication
performs more work and parallelism overhead.

3This is the amount of SMs required in the above estimates for the plain multiplication.

http://cumodp.org/hmx2015-draft.pdf

July 2015

However, the estimated running time of the plain multiplication on Θ(n
`) SMs be-

comes T ′plain =
(
(n+3)(n−2)

8n + log2(n)−1
)
(10U + 28), that is, in a context of limited

resource (namely SMs) w.r.t. the previous estimate. Since the running time estimate for
FFT-based multiplication is also based on Θ(n

`) SMs, we observe that, when n escapes to
infinity, the ratio T ′plain/Tf f t on Θ(n

`) SMs is asymptotically equivalent to 5U (n+8 log2(n))
240U log2(n)

,

thus in Θ(n). Therefore, FFT-based multiplication outperforms plain multiplication for n
large enough, when resources are limited. Figure 4 shows coherent experimental results
with ` = 256. In conclusion, the MCM model can take available resources into account
when comparing two algorithms.

References

[1] R. D. Blumofe and C. E. Leiserson. Space-efficient scheduling of multithreaded computations. SIAM J.
Comput., 27(1):202–229, 1998.

[2] R. L. Graham. Bounds on multiprocessing timing anomalies. SIAM J. on Applied Mathematics,
17(2):416–429, 1969.

[3] Y. He, C. E. Leiserson, and W. M. Leiserson. The Cilkview scalability analyzer. In Proc. of SPAA, pages
145–156. ACM, 2010.

[4] L. J. Stockmeyer and U. Vishkin. Simulation of parallel random access machines by circuits. SIAM J.
Comput., 13(2):409–422, 1984.

[5] P. B. Gibbons. A more practical PRAM model. In Proc. of SPAA, pages 158–168. ACM, 1989.
[6] A. Aggarwal, A. K. Chandra, and M. Snir. Communication complexity of PRAMs. Theoretical Com-

puter Science, 71(1):3–28, 1990.
[7] L. Ma, K. Agrawal, and R. D. Chamberlain. A memory access model for highly-threaded many-core

architectures. Future Generation Computer Systems, 30:202–215, 2014.
[8] S. Hong and H. Kim. An analytical model for a GPU architecture with memory-level and thread-level

parallelism awareness. SIGARCH Comput. Archit. News, 37(3):152–163, June 2009.
[9] L. Ma and R. D Chamberlain. A performance model for memory bandwidth constrained applications

on graphics engines. In Proc. of ASAP, pages 24–31. IEEE, 2012.
[10] W. Liu, W. Muller-Wittig, and B. Schmidt. Performance predictions for general-purpose computation

on GPUs. In Proc. of ICPP, page 50. IEEE, 2007.
[11] A. D. Robison. Composable parallel patterns with Intel Cilk Plus. Computing in Science & Engineering,

15(2):0066–71, 2013.
[12] NVIDIA. NVIDIA next generation CUDA compute architecture: Kepler GK110, 2012.
[13] S. A. Haque. Hardware Acceleration Technologies in Computer Algebra: Challenges and Impact. PhD

thesis, University of Western Ontario, 2013.
[14] S. A. Haque, F. Mansouri, and M. Moreno Maza. On the parallelization of subproduct tree techniques

targeting many-core architectures. In Proc. of CASC 2014, LNCS 8660, pages 171–185. Springer, 2014.
[15] T. D. Han and T. S. Abdelrahman. Reducing branch divergence in GPU programs. In Proc. of GPGPU-4,

pages 3:1–3:8. ACM, 2011.
[16] J. Shin. Introducing control flow into vectorized code. In Proc. of PACT, pages 280–291. IEEE, 2007.
[17] L. Mirsky. A dual of Dilworth’s decomposition theorem. The American Math. Monthly, 78(8):876–877,

1971.
[18] D. E. Knuth. The Art of Computer Programming, Vol. II: Seminumerical Algorithms. Addison-Wesley,

1969.
[19] J. Cooley and J. Tukey. An algorithm for the machine calculation of complex Fourier series. Math.

Comp., 19:297–301, 1965.
[20] T. G. Jr. Stockham. High-speed convolution and correlation. In Proc. of AFIPS, pages 229–233. ACM,

1966.
[21] S. A. Haque and M. Moreno Maza. Plain polynomial arithmetic on GPU. In J. of Physics: Conf. Series,

volume 385, page 12014. IOP Publishing, 2012.
[22] M. Moreno Maza and W. Pan. Fast polynomial arithmetic on a GPU. J. of Physics: Conference Series,

256, 2010.

