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Abstract

In this paper, we propose an incremental algorithm for computing cylindrical al-
gebraic decompositions. The algorithm consists of two parts: computing a complex
cylindrical tree and refining this complex tree into a cylindrical tree in real space. The
incrementality comes from the first part of the algorithm, where a complex cylindrical
tree is constructed by refining a previous complex cylindrical tree with a polynomial
constraint. We have implemented our algorithm in Maple. The experimentation shows
that the proposed algorithm outperforms existing ones for many examples taken from
the literature.

1 Introduction

Cylindrical algebraic decomposition (CAD) is a fundamental tool in real algebraic geom-
etry. It was invented by G.E. Collins in 1973 [15] for solving real quantifier elimination
(QE) problems. In the last forty years, following Collins’ original projection-lifting scheme,
many enhancements have been performed in order to ameliorate the efficiency of CAD
construction, including adjacency and clustering techniques [1], improved projection meth-
ods [26, 23, 9, 4], partially built CADs [17, 27, 33], improved stack construction [18], effi-
cient projection orders [20], making use of equational constraints [16, 29, 7, 30], and so on.
Moreover, CADs can be computed by several software packages, such as Qepcad [24, 5],
Mathematica [33, 34], Redlog [21] and SyNRAC [25].

In [14], together with B. Xia and L. Yang, we presented a different way for computing
CADs based on triangular decomposition of polynomial systems. In that paper, we intro-
duced the concept of cylindrical decomposition of the complex space (CCD), from which a
CAD can be easily derived. The concept of CCD is reviewed in Section 2. In the rest of
the present paper, we use TCAD to denote CAD based on triangular decompositions while
PCAD refers to CAD based on Collins’ projection-lifting scheme.

The CCD part of TCAD can be seen as an enhanced projection phase of PCAD.
However, w.r.t. PCAD (especially when the projection operator is using Collins’ [15] or
Hong’s [23]), the “case discussion” scheme of TCAD avoids unnecessary computations that
projection operator performs on unrelated branches. In addition, one observes that the
reason why McCallum’s [28] (including Brown’s [4]) projection operators may fail for some
examples is due to the fact that they are missing a “case discussion” scheme. McCallum’s
operator relies on the assumption that generically all coefficients of a polynomial1 will not
vanish simultaneously above a positive-dimensional component. If this assumption fails,
then this operator is replaced by Collins-Hong projection-operator [23]. The fact that all
coefficients of polynomial could vanish simultaneously above some component is never a
problem in TCAD. For this reason, we view it as an improvement of previous works.

1More precisely, a multivariate polynomial regarded as a univariate one with respect to its main variable.
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Trying to use sophisticated algebraic elimination techniques to improve CAD construc-
tions is not a new idea. In papers [8, 39], the authors investigated how to use Gröbner
bases to preprocess the input system in order to make the subsequent CAD computations
more efficient. The main difference between these two works and the work of [14] is that
the former approach is about preprocessing input for CAD while the latter one presents a
different way of constructing CADs.

In [14], the focus was on how to apply triangular decomposition techniques to compute
CADs. To this end, lots of existing high-level routines were used to facilitate explaining
ideas. These high-level routines involve many black-boxes, which hide many unnecessary
or redundant computations. As a result, the computation time of TCAD is much higher
than that of PCAD, although TCAD computes usually less cells [10].

In the present paper, we abandon those black-boxes and compute TCAD from scratch.
It turns out that the key solution for avoiding redundant computations is to compute CCD
in an incremental manner. The same motivation and a similar strategy appeared in [32, 12]
in the context of triangular decomposition of algebraic sets. The core operation of such an
incremental algorithm is an Intersect operation, which refines an existing cylindrical tree
w.r.t. a polynomial. We dedicate Section 4 to presenting a complete incremental algorithm
for computing TCAD by means of this Intersect operation.

In [35], the author presented an algorithm for computing with semi-algebraic sets rep-
resented by cylindrical algebraic formulas. That algorithm also allows computing CAD in
an incremental manner. The underlying technique is based on the projection-lifting scheme
where one first computes projection factor sets by a global projection operator. In contrast,
the incremental algorithm presented here, is conducted by refining different branches of an
existing tree via GCD computations.

This Intersect operation can systematically take advantage of equational constraints.
The problem of making use of equational constraints in CAD has been studied by many
researchers [16, 29, 7, 30]. In Section 6, we provide a detailed discussion on how we solve
this problem.

When applied to a polynomial system having finitely many complex solutions, our incre-
mental CCD algorithm specializes into computing a triangular decomposition, say D, such
that the zero sets of the output regular chains are disjoint. Moreover, such a decomposi-
tion has no critical pairs in the sense of the equiprojectable decomposition algorithm of [19].
This implies that only the “Merge” part of the “Split & Merge” algorithm of [19] is required
for turning D into an equiprojectable decomposition (which is a canonical representation of
the input variety, once the variable order is fixed). Consequently, one could hope extending
the notion of equiprojectable decomposition (and related algorithms) to positive dimension
by means of our incremental CCD algorithm. This perspective can be seen as an indirect
application of CAD to triangular decomposition.

As we shall review in Section 2, a CCD is encoded by a tree data-structure. Then each
path of this tree is a simple system in the sense of [36, 37]. So the work presented here can
also be used to compute a Thomas decomposition of a polynomial system [37, 2]. Moreover,
the decomposition we compute is not only disjoint, but also cylindrically arranged.

The complexity of our algorithm cannot be better than doubly exponential in the num-
ber of variables [6]. So the motivation of our work is to suggest possible ways to improve
the practical applicability of CAD. The benchmark in Section 7 shows that TCAD outper-
forms Qepcad [24, 5] and Mathematica [33] for many well-known examples. The algorithm
presented in this paper can support QE. We have realized a preliminary implementation of
an algorithm for doing QE via TCAD. We will report on this work in a future paper.
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2 Complex cylindrical tree

Throughout this paper, we consider a field k of characteristic zero and denote by K the
algebraic closure of k. Let k[x] be the polynomial ring over the field k with ordered variables
x = x1 < · · · < xn. Let p ∈ k[x] be a non-constant polynomial and x ∈ x be a variable.
We denote by deg(p, x) and lc(p, x) the degree and the leading coefficient of p w.r.t. x.
The greatest variable appearing in p is called the main variable, denoted by mvar(p). The
leading coefficient, the degree, the reductum of p w.r.t. mvar(p) are called the initial, the
main degree, the tail of p; they are denoted by init(p), mdeg(p), tail(p) respectively. The
integer k such that xk = mvar(p) is called the level of the polynomial p. We denote by
der(p) the derivative of p w.r.t. mvar(p). The notions presented below were introduced
in [14] and they are illustrated at the beginning of Section 3.

Separation. Let C be a subset of Kn−1 and P ⊂ k[x1, . . . , xn−1, xn] be a finite set of level
n polynomials. We say that P separates above C if for each α ∈ C:
• for each p ∈ P , the polynomial init(p) does not vanish at α,
• the polynomials p(α, xn) ∈ K[xn], for all p ∈ P , are squarefree and coprime.

Note that this definition allows C to be a semi-algebraic set, see Theorem 3.

Cylindrical decomposition. By induction on n, we define the notion of a cylindrical
decomposition of Kn together with that of the tree associated with a cylindrical decompo-
sition of Kn. For n = 1, a cylindrical decomposition of K is a finite collection of sets
D = {D1, . . . , Dr+1}, where either r = 0 and D1 = K, or r > 0 and there exists r non-
constant coprime squarefree polynomials p1, . . . , pr of k[x1] such that for 1 ≤ i ≤ r we have
Di = {x1 ∈ K | pi(x1) = 0}, and Dr+1 = {x1 ∈ K | p1(x1) · · · pr(x1) 6= 0}. Note that the
Di’s, for all 1 ≤ i ≤ r + 1, form a partition of K. The tree associated with D is a rooted tree
whose nodes, other than the root, are D1, . . . , Dr, Dr+1 which all are leaves and children
of the root. Now let n > 1, and let D′ = {D1, . . . , Ds} be any cylindrical decomposition
of Kn−1. For each Di, let ri be a non-negative integer and let {pi,1, . . . , pi,ri} be a set of
polynomials which separates above Di. If ri = 0, set Di,1 = Di ×K. If ri > 0, set

Di,j = {(α, xn) ∈ Kn | α ∈ Di and pi,j(α, xn) = 0},

for 1 ≤ j ≤ ri and set Di,ri+1 =
{

(α, xn) ∈ Kn | α ∈ Di and
(∏ri

j=1 pi,j(α, xn)
)
6= 0
}
.

The collection D = {Di,j | 1 ≤ i ≤ s, 1 ≤ j ≤ ri + 1} is called a cylindrical decomposition
of Kn. The sets Di,j are called the cells of D. If T ′ is the tree associated with D′ then the
tree T associated with D is defined as follows. For each 1 ≤ i ≤ s, the set Di is a leaf in T ′

which has all Di,j ’s for children in T ; thus the Di,j ’s are the leaves of T .
Note that each node N of T is either associated with no constraints, or associated with

a polynomial constraint, which itself is either an equation or an inequation. Note also that,
if the level of the polynomial defining the constraint at N is `, then ` is the length of a path
from N to the root. Moreover, the polynomial constraints along a path from the root to
a leaf form a polynomial system called a cylindrical system of k[x1, . . . , xn] induced by T .
Let S be such a cylindrical system. We denote by Z(S) the zero set of S. Therefore, each
cell of D is the zero set of a cylindrical system induced by T .

Let Γ be a sub-tree of T such that the root of Γ is that of T . Then, we call Γ a
cylindrical tree of k[x1, . . . , xn] induced by T . This cylindrical tree Γ is said partial if it
admits a non-leaf node N such that the zero set of the constraint of N is not equal to the
union of the zero sets of the constraints of the children of N . If Γ is not partial, then it is
called complete.
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In the algorithms of Section 4, the cylindrical tree is an essential data structure. Section 3
discusses the main properties and operations on this data structure.

Let F = {f1, . . . , fs} be a finite set of polynomials of k[x1 < · · · < xn]. A cylindrical
decomposition D of Kn is called F -invariant if for any given cell D of D and any given
polynomial f ∈ F , either f vanishes at all points of D or f vanishes at no points of D.

Example 1. Let F := {y2 + x, y2 + y}. An F -invariant cylindrical decomposition of C2 is
illustrated by Figure 1.

x = 0 x + 1 = 0

y + 1 = 0 y = 0 y2 + x = 0

y = 0 y2 + y 6= 0 y + 1 = 0 y3 − y 6= 0 y2 + y = 0

(y2 + x)(y2 + y) 6= 0

x2 + x 6= 0

y − 1 = 0

Figure 1: an F := {y2 + x, y2 + y} invariant complex cylindrical tree

We observe that every cylindrical system induced by a cylindrical tree is a simple system,
as defined by Wang in [37]. This notion was first introduced by Thomas in 1937 [36]. Simple
systems have many nice properties. For example, if [A,B] is a simple system, then the pair
[A,
∏
p∈B p] is a squarefree regular system, as defined by Wang in [37, 38].

Let Γ be a cylindrical system of k[x] and let p be a polynomial of k[x]. We say that p
is invertible modulo Γ if for any α ∈ Z(Γ), we have p(α) 6= 0. We say that p is zero modulo
Γ if for any α ∈ Z(Γ), we have p(α) = 0. We say that p is sign invariant above Γ if p is
either zero or invertible modulo Γ. Let q be another polynomial of k[x]. We say that p = q
modulo Γ if Z(Γ) ∩ Z(p) = Z(Γ) ∩ Z(q).

Greatest common divisor (GCD). Let p and f be two level n polynomials in k[x]. Let Γ
be a cylindrical system of k[x1, . . . , xn−1]. For any u ∈ Kn−1 of Z(Γ), assume at least one
of lc(p, xn)(u) and lc(f, xn)(u) is not zero. A polynomial g ∈ k[x] is called a GCD of p and
f modulo Γ if for any u ∈ Kn−1 of Z(Γ),
• g(u) is a GCD of p(u) and f(u) in K[xn], and
• we have lc(g, xn)(u) 6= 0.

Let dp = deg(p, xn), df = deg(f, xn). Recall that we assume dp, df ≥ 1. Let λ =
min(dp, df ). Let Γ be a cylindrical system of k[x1, . . . , xn−1]. Let S0, . . . , Sλ−1 be the
subresultant polynomials [31, 22] of p and f w.r.t. xn. Let si = coeff(Si, x

i
n) be the princi-

ple subresultant coefficient of Si, for 0 ≤ i ≤ λ− 1. If dp ≥ df , we define Sλ = f , Sλ+1 = p,
sλ = init(f) and sλ+1 = init(p). If dp < df , we define Sλ = p, Sλ+1 = f , sλ = init(p) and
sλ+1 = init(f).
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Theorem 1. Let j be an integer, with 1 ≤ j ≤ λ + 1, such that sj is invertible modulo Γ
and such that for any 0 ≤ i < j, we have si = 0 modulo Γ. Then Sj is a GCD of p and f
modulo Γ.

Proof. It can be easily proved by the specialization property of subresultant chains. In
particular, it is a direct corollary of Theorem 5 in [13].

3 Data structure for cylindrical decomposition

In this section, we describe the data-structures that are used by the algorithms presented
in this paper for computing cylindrical decompositions. To understand the motivation of
our algorithm design, let us consider a simple example with n = 2 variables. Let a, b
be two coprime squarefree non-constant univariate polynomials in k[x1]. Observe that
L := k[x1]/〈a b〉 is a direct product of fields. Let also c, d be two bivariate polynomials of
k[x1, x2], such that deg(c, x2) > 0, deg(d, x2) > 0, and lc(c, x2) = lc(d, x2) = 1 hold and
such that c, d are coprime and squarefree univariate as polynomials of L[x2]. Therefore the
following four polynomial systems are simple systems{

a(x1)b(x1) = 0
c(x1, x2) = 0

,

{
a(x1)b(x1) = 0
d(x1, x2) = 0

,

{
a(x1)b(x1) = 0

c(x1, x2)d(x1, x2) 6= 0
,
{
a(x1)b(x1) 6= 0

that we denote respectively by S1, S2, S3, S4. It is easy to check that the zero sets Z(S1),
Z(S2), Z(S3), Z(S4) are the cells of a cylindrical decomposition D of K2.

Let f ∈ k[x1] be another univariate polynomial. Assume that one has to refine D
into a cylindrical decomposition of K2 which is required to be {f}-invariant. That is, one
has to test whether f is invertible or zero modulo each of the systems S1, S2, S3, S4, and
further decompose when appropriate. Assume that the polynomial a divides f whereas b, f
are coprime. Assume also that the system S1 is processed first in time. By computing
gcd(f, ab), which yields a, one splits S1 into the following two sub-systems that we denote
by S1,1 and S1,2. {

a(x1) = 0
c(x1, x2) = 0

, and

{
b(x1) = 0

c(x1, x2) = 0.

Assume that S2 is processed next. By computing gcd(f, ab) (again) one splits S2 into the
following two sub-systems that we denote by S2,1 and S2,2.{

a(x1) = 0
d(x1, x2) = 0

, and

{
b(x1) = 0

d(x1, x2) = 0.

Consequently, in the course of the creation of S1,1, S1,2, S2,1 and S2,2, the same polynomial
GCD and the same field extensions (namely k[x1]/〈a〉 and k[x1]/〈b〉) were computed twice.
This duplication of calculation and data is a common phenomenon and a performance
bottleneck in most algorithms for decomposing polynomial systems.

Mathematically, each constructible set should not be represented more than once in a
computer program. To implement this idea, all constructible sets manipulated during the
execution of a given computer program should be seen as part of the same universe, say Kn.
Moreover, the subroutines of this program should have the same view on the universe, which
is then a shared data-structure, such that whenever a subroutine modifies the universe all
subroutines have immediate access to the modified universe. Satisfying these requirements is
a well-known challenge in computer science, an instance of which is the question of memory
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consistency for shared-memory parallel computer architectures, such as multicores. With
our above example, even if we do not intend to run computations concurrently, we are
concerned with the practical efficiency and ease-of-use of the mechanisms that maintain
up-to-date all views on the universe.

Recall that a cylindrical decomposition can be identified to a tree where each node is a
constructible set of Kn given by either an equation constraint, or an inequation constraint,
or no constraints at all. In this latter case, the corresponding constructible set is the whole
space. All algorithms in Section 4 work on a given cylindrical decomposition D encoded by
a tree T (as defined in Section 2). That is, the tree T is regarded as the universe.

We assume that there is a procedure for updating the tree T , which, given a “node-
to-be-replaced” N and its “replacing nodes” N1, . . . , Ne, is called split(N ;N1, . . . , Ne) and
works as follows:

1. for i = 1, . . . , e, for each child C of N deeply copy (thus creating new nodes) the
sub-tree rooted at C and make that copy of C a child of Ni,

2. update the parent of N such that N1, . . . , Ne are new children of the the parent of N ,
3. remove the entire sub-tree rooted at N from the universe, including N .

We assume that all updates are performed sequentially (thus using mutual exclusion mecha-
nism in case of concurrent execution of the algorithms of Section 4) such that no data-races
can occur.

We also assume that each node N (whether it is a node in the present or has been re-
moved from the universe) has a unique key, called key(N), and a data field, called value(N),
storing various information including:
• a time stamp past or present,
• if past, the list of its replacing nodes (as specified with the split procedure) and the

list of its children at the time it was replaced,
• if present, the list of its children and a pointer to the parent.
All nodes are stored in a dictionary H which can be accessed by all subroutines. Mod-

ifying the universe means updating H using the split procedure. Since all our algorithms
stated in Section 4 are sequential, no synchronization issue has to be considered. The
mechanism described above allows us to achieve our goals.

4 Constructing a cylindrical tree incrementally

In this section, we present an incremental algorithm for computing a cylindrical tree, as
defined in Section 2. We start by commenting on the style of the pseudo-code. Secondly,
we present the specifications of the algorithm and related subroutines. Thirdly, we state all
the algorithms in pseudo-code style. Finally, proof sketches of the algorithms are provided
at the end of this section.

Following the principles introduced in Section 3, our procedures operate on a “universe”
(which is a cylindrical tree T ) that they modify when needed. These modifications are of
two types:
• splitting a node,
• attaching information to a node.

In addition to the attributes described in Section 3, a node has attributes corresponding
to the results of operations like Squarefree, Gcd, Intersect. In other words, our procedures
do not return values; instead they store their results in the nodes of the universe. This
technique greatly simplifies pseudo-code.
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Since attributes of nodes are intensively used in our pseudo-code, we use the standard
“dot” notation of object oriented programming languages. In addition, since a node can
have many attributes, we make the following convention. Suppose that a node V is split
into two nodes V1 and V2. Some attributes are likely to have different values in V1 (resp. V2)
and V . But most of them will often have the same values in both nodes. Therefore, after
setting up the values of the attributes that differ, we simply write V1.others := V .others to
define the attributes of V1 whose values are unchanged w.r.t. V .

Several procedures iterate through all the paths of the universe T . By path, we mean
a path (in the sense of graph theory) from the root of T to a leaf of T . The current
path is often denoted by Γ or C. Recall from Section 2 that a path in T corresponds to
a simple system, say S. Computing modulo S may split S and thus modify the universe
automatically, that is, in a transparent manner in the pseudo-code. However, splitting S
also changes the current path. For clarity, we explicitly invoke a function called UpdatePath,
which updates its first argument (namely the current path) from the universe.

In order to iterate through all the paths of the universe T , we use a function NextPathToDo.
This command is a generator or an iterator in the sense of the theory of programming lan-
guages. That is, it views T as a stream of paths and returns the next path-to-be-visited, if
any. Thanks to the fact that the universe is always up-to-date, the function NextPathToDo
is able to return the next path-to-be-visited in the current state of the universe.

A frequently used operation on the universe and its paths is ExtractProjection, see for
instance Algorithm 6. When applied to the universe T and an integer k (for 0 ≤ k < n,
where n is the length of a path from the root of T to a leaf of T ) ExtractProjection returns
a “handle” on the universe “truncated” at level k, that is, the universe where all nodes of
level higher than k are ignored (thus viewing the level k nodes as leaves). When applied to
path, ExtractProjection has a similar output.

We often say that a function (see for instance Algorithm 5) returns a refined cylindrical
decomposition. This is another way of saying that the universe is updated to a new state
corresponding to a cylindrical decomposition refining (in the sense of a partition of a set
refining another partition of the same set) the cylindrical decomposition of the previous
state.

After these preliminary remarks on the pseudo-code, we present the specifications of the
algorithm and related subroutines.

The top level algorithm for computing a cylindrical tree is described by Algorithm 4.
It takes a set F of non-constant polynomials in k[x1 < · · · < xn] as input and returns an
F -invariant cylindrical decomposition of Kn. This algorithm relies on a core operation,
called Intersect, which computes a cylindrical decomposition in an incremental manner.

The Intersect operation is described by Algorithm 5. It takes a cylindrical tree T and
a polynomial p of k[x1 < · · · < xn] as input. It refines tree T such that p is sign invariant
above each path of the refined tree T . This operation is achieved by refining each path of
T with IntersectPath.

The IntersectPath operation is described by Algorithm 6. It takes a polynomial p, a
cylindrical tree T and a path Γ of T in k[x1 < · · · < xn] as input. It refines Γ and updates
the tree T accordingly such that p is sign invariant above each path derived from Γ in the
updated tree T . This operation finds the node N in Γ whose level is the same as that of
p. Let ΓN be the sub-path of Γ from N to the root of T . The IntersectPath operation then
calls the routine IntersectMain so as to refine ΓN into a tree TN such that p becomes sign
invariant w.r.t. TN .

The routine IntersectMain is described by Algorithm 7. It takes a cylindrical tree T , a
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path Γ of T , and a polynomial of the same level as the leaves of T in k[x1 < · · · < xn] as
input. It refines Γ and updates the tree T accordingly such that p becomes sign invariant
above each path derived from Γ in the updated tree.

The routine IntersectMain works in the following way. It first splits Γ such that above
the projection Cn−1 of each new branch C of Γ in Kn−1, the number of distinct roots
of p w.r.t. xn is invariant. This is achieved by the operation Squarefree, described by
Algorithm 8. The squarefree part of p above a branch C is denoted by sp. If p has no
roots or is identically zero above Cn−1, the sign of p above C is determined immediately.
Otherwise, a case discussion is made according to the structure of the leaf node V of C.
If V has no constraints associated to it, then V is simply split into two new nodes sp = 0
and sp 6= 0. Assume now that V has a constraint, which can be either of the form f = 0 or
of the form f 6= 0, where f is a level n polynomial squarefree modulo Cn−1. This case is
handled by computing the GCD g of sp and f modulo Cn−1. The node V then splits based
on the GCD g and the co-factors of sp and f .

The GCD is computed by the operation Gcd, described by Algorithm 9 and 10. The
co-factors are computed by Algorithm 11. The Squarefree and Gcd operations rely on the op-
eration MakeLeadingCoefficientInvertible, described by Algorithm 12. This latter operation
takes as input a polynomial p of k[x1 < · · · < xn], a cylindrical tree T of k[x1 < · · · < xn−1]
and a path Γ of T . Then, it refines Γ and updates T accordingly such that above each path
C of T derived from Γ, the polynomial p is either zero or its leading coefficient is invertible.

All the algorithms also rely on the following three operations which perform manipula-
tions and traversal of the tree data structure. For these three operations, only specifications
are provided below while their algorithms are explained in Section 3.

Algorithm 1: UpdatePath(Γ, T )

- Input: A cylindrical tree T . A path Γ in some past state of T .
- Output: A subtree ST in present state of T . ST is derived from Γ according to the

historical data of T .

Algorithm 2: ExtractProjection(T, k)

- Input: A cylindrical tree T of k[x1 < · · · < xn]. An integer k, 0 ≤ k ≤ n.
- Output: A cylindrical tree Tk in k[x1 < · · · < xk] such that Tk is the projection of T

in k[x1 < · · · < xk].

Algorithm 3: NextPathToDon(T)

- Input: A cylindrical tree T in k[x1 < · · · < xn].
- Output: For a fixed traversal order of a tree, return the first “ToDo” path Γ of T .

Theorem 2. For a set of polynomials in k[x1, . . . , xn], Algorithm 4 computes an F -
invariant cylindrical decomposition of Kn.

Proof. Firstly, we prove the termination. The basic mutual calling graph of its subroutines
are:

IntersectMainn → Squarefreen → IntersectMainn−1 → · · · ,
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Algorithm 4: CylindricalDecompose(F )

Input: F is a set of non-constant polynomials in k[x1 < · · · < xn].
Output: An F -invariant cylindrical decomposition of Kn.
begin1

create a tree T with only one vertex V0: the root of T ;2

for i from 1 to n do3

create a vertex Vi; Vi.signs := ∅; Vi.formula := “any xi”;4

Vi−1.child := Vi;5

for p ∈ F do6

Intersectn(p, T );7

return T ;8

end9

Algorithm 5: Intersectn(p, T )

Input: A cylindrical tree T of k[x1 < · · · < xn]. A non-constant polynomial p of
k[x1 < · · · < xn].

Output: A refined cylindrical decomposition such that p is sign invariant above
each path of T .

while Γ := NextPathToDon(T ) 6= ∅ do1

IntersectPathn(p,Γ, T );2

Algorithm 6: IntersectPathn(p,Γ, T )

Input: A cylindrical tree T of k[x1 < · · · < xn]. A path Γ of T . A polynomial p of
k[x1 < · · · < xn].

Output: A refined cylindrical decomposition T such that p is sign invariant above
each path derived from Γ.

begin1

if p ∈ k then2

return;3

else4

k := level(p);5

if k = n then6

IntersectMainn(p,Γ, T );7

else8

Tk := ExtractProjection(T, k);Γk := ExtractProjection(Γ, k);9

IntersectMaink(p,Γk, Tk);10

UpdatePath(Γ, T );11

for each leaf V of Γ do12

Let Lk be the ancestor of V of level k; V.signs[p] := Lk.signs[p] ;13

end14
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Algorithm 7: IntersectMainn(p,Γ, T )

Input: A cylindrical tree T of k[x1 < · · · < xn]. A path Γ of T . A polynomial p of
level n in k[x1 < · · · < xn].

Output: A refined cylindrical decomposition T such that p is sign invariant above
each path derived from Γ.

begin1

Tn−1 := ExtractProjection(T, n− 1); Γn−1 := ExtractProjection(Γ, n− 1);2

Squarefreen(p,Γn−1, Tn−1);3

UpdatePath(Γ, T );4

while C := NextPathToDon(Γ) 6= ∅ do5

V := C.leaf ; Cn−1 := ExtractProjection(C, n− 1);6

sp := Cn−1.leaf.Squarefree[p];7

if sp = 0 then8

V.signs[p] := 0;9

else if sp = 1 then10

V.signs[p] := 1;11

else if V.formula is “any xn” then12

split V into two new vertices V1 and V2;13

V1.formula := sp = 0; V1.signs := V.signs; V1.signs[p] := 0;14

V2.formula := sp 6= 0; V2.signs := V.signs; V2.signs[p] := 1;15

V1.others := V.others; V2.others := V.others;16

Cn−1.leaf.children := V1, V2;17

else18

// V.formula is of the form f = 0 or f 6= 0

Gcdn(sp, f, Cn−1, Tn−1);19

UpdatePath(C, T );20

for each leaf V of C do21

let L be the parent of V ;22

cp, g, cf := CoFactor(sp, L.Gcd[sp, f ], f);23

if V.formula is of the form f = 0 then24

if g = 1 then25

V.signs[p] := 1;26

else if cf = 1 then27

V.signs[p] := 0;28

else29

split V into two new vertices V1 and V2;30

V1.formula := g = 0;V1.signs := V.signs; V1.signs[p] := 0;31

V2.formula := cf = 0;V2.signs := V.signs; V2.signs[p] := 1;32

V1.others := V.others; V2.others := V.others;33

L.children := V1, V2;34

else35

if cp = 1 then36

V.signs[p] := 1;37

else38

split V into two new vertices V1 and V2;39

V1.formula := cp = 0; V1.signs := V.signs; V1.signs[p] := 0;40

V2.formula := (f ∗ cp) 6= 0;41

V2.signs := V.signs; V2.signs[p] := 1;42

V1.others := V.others; V2.others := V.others;43

L.children := V1, V2;44

end45

10



Algorithm 8: Squarefreen(p,Γ, T )

Input: A cylindrical tree T of k[x1 < · · · < xn−1]. A path Γ of T . A polynomial p
of level n.

Output: A refined cylindrical tree T of k[x1 < · · · < xn−1]. Above each path C of
T derived from Γ, there is a dictionary C.leaf.Squarefree. Let
p∗ := C.leaf.Squarefree[p]. We have:

• p = p∗ modulo C.
• If p∗ is of level n, then both init(p∗) and discrim(p∗) are invertible modulo C.
• If p∗ is of level less than n, then p∗ is either 0 or 1.

begin1

if n = 1 then2

let r be the root of T ; r.Squarefree[p] := SquarefreePart(p);3

return4

MakeLeadingCoefficientInvertiblen(p, p,Γ, T );5

while C := NextPathToDon−1(Γ) 6= ∅ do6

f := C.leaf.InvertLc[p];7

if level(f) < n or deg(f, xn) = 1 then8

C.leaf.Squarefree[p] := f9

else10

Gcdn(f, der(f), C, T );11

for each leaf L of C do12

g := L.Gcd[f, der(f)];13

if g = 1 then14

L.Squarefree[p] := f15

else16

L.Squarefree[p] := pquo(f, g)17

end18

Algorithm 9: Gcdn(p, f,Γ, T )

Input: A cylindrical tree T of k[x1 < · · · < xn−1]. A polynomial
p ∈ k[x1 < · · · < xn] of level n. A path Γ of T . A polynomial f of level n
such that init(f) is invertible modulo Γ.

Output: A refined cylindrical tree T . Above each path C of T derived from Γ,
there is a dictionary C.leaf.Gcd such that C.leaf.Gcd[p, f ] is a GCD of p
and f modulo C.

begin1

let S be the subresultant chain of p and f ;2

if mdeg(p) ≥ mdeg(f) then3

d := mdeg(f)4

else5

d := mdeg(p) + 16

return Gcdn(p, f, S, d, 0,Γ, T );7

end8
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Algorithm 10: Gcdn(p, f, S, d, i,Γ, T )

Input:
• A polynomial p ∈ k[x1 < · · · < xn] of level n.
• A polynomial f of level n such that lc(f) is invertible modulo Γ.
• The subresultant chain S of p and f w.r.t. xn.
• A non-negative integer d (as defined in the pseudo-code of Algorithm 9) and such

that the principle subresultant coefficient sd is invertible modulo Γ.
• A non-negative integer i such that 0 ≤ i ≤ d and the principle subresultant

coefficient sj is zero modulo Γ, for all 0 ≤ j < i.
• A path Γ of T .
• A cylindrical tree T of k[x1 < · · · < xn−1].

Output: A refined cylindrical tree T . Above each path C of T derived from Γ,
there is a dictionary C.leaf.Gcd such that C.leaf.Gcd[p, f ] is a GCD of p
and f modulo C.

begin1

if i = d then2

Γ.leaf.Gcd[p, f ] := Si;3

return;4

IntersectPathn−1(si,Γ, T );5

while C := NextPathToDon−1(Γ) 6= ∅ do6

if C.leaf.signs[si] = 1 then7

if i = 0 then8

C.leaf.Gcd[p, f ] := 19

else10

C.leaf.Gcd[p, f ] := Si11

else12

Gcdn(p, f, S, d, i+ 1, C, T )13

end14
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Algorithm 11: CoFactor(p, g, f)

Input: Two polynomials p and f of level n in k[x1 < · · · < xn]. A polynomial g
which is either 1 or of level n in k[x1 < · · · < xn].

Output: As described by the algorithm.
begin1

if g = 1 then2

cp := p; gg := 1; cf := f ;3

else if mdeg(g) = mdeg(f) then4

gg := f ;5

if mdeg(g) = mdeg(p) then6

cf := 1; cp := 1;7

else8

cf := 1; cp := pquo(p, gg)9

else if mdeg(g) = mdeg(p) then10

gg := p; cf := pquo(f, gg); cp := 1;11

else12

cp := pquo(p, g); cf := pquo(f, g); gg := g;13

return cp, gg, cf ;14

end15

Algorithm 12: MakeLeadingCoefficientInvertiblen(p, p̄,Γ, T )

Input: A polynomial p of k[x1 < · · · < xn]. A polynomial p̄ of k[x1 < · · · < xn]
such that p = p̄ modulo Γ. A cylindrical tree T of k[x1 < · · · < xn−1]. A
path Γ of T .

Output: A refined cylindrical tree T of k[x1 < · · · < xn−1]. Above each path C of
T derived from Γ, there is a dictionary C.leaf.InvertLc. Let p∗ be the
polynomial C.leaf.InvertLc[p]. Then, we have:

• p = p∗ modulo C.
• If p∗ is of level n, then init(p∗) is invertible modulo the path C.
• If p∗ is of level less than n, then p∗ is either 0 or 1.

begin1

IntersectPathn−1(lc(p̄, xn),Γ, T );2

while C := NextPathToDon−1(Γ) 6= ∅ do3

if C.leaf.signs[lc(p̄, xn)] = 1 then4

if level(p̄) < n then5

C.leaf.InvertLc[p] := 16

else7

C.leaf.InvertLc[p] := p̄8

else9

if level(p̄) < n then10

C.leaf.InvertLc[p] := 011

else12

MakeLeadingCoefficientInvertiblen(p, tail(p̄), C, T )13

end14
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and
IntersectMainn → Gcdn → IntersectMainn−1 → · · ·

So the termination is easily proved by induction. The correctness follows from the specifi-
cation of its subroutines and Theorem 1.

Example 2. In this example, we illustrate the operation IntersectPath. Let F := {y2 +
x, y2 + y}. The incremental algorithm first computes an y2 + x sign invariant complex
cylindrical tree, which is described by the following tree T .

T :=


x = 0

{
y = 0 : y2 + x = 0
y 6= 0 : y2 + x 6= 0

x 6= 0

{
y2 + x = 0 : y2 + x = 0
y2 + x 6= 0 : y2 + x 6= 0

Let Γ be the path {x = 0, y 6= 0} of T . Calling IntersectPath(y2 + y,Γ, T ) will update T into
the following tree.

x = 0

 y = 0 : y2 + x = 0
y = −1 : y2 + x 6= 0 ∧ y2 + y = 0

otherwise : y2 + x 6= 0 ∧ y2 + y 6= 0

x 6= 0

{
y2 + x = 0 : y2 + x = 0
y2 + x 6= 0 : y2 + x 6= 0

5 Building a CAD tree from a complex cylindrical tree

In this section, we review briefly how to compute a CAD of Rn from a cylindrical decom-
position of Cn. The reader may refer to [14] for more details. Recall that n ≥ 1 holds.
We denote by πn−1 the standard projection from Rn to Rn−1 that maps (x1, . . . , xn−1, xn)
onto (x1, . . . , xn−1).

Stack over a connected semi-algebraic set. Let S be a connected semi-algebraic subset
of Rn−1. The cylinder over S in Rn is defined as ZR(S) := S × R. Let θ1 < · · · < θs
be continuous semi-algebraic functions defined on S. The intersection of the graph of θi
with ZR(S) is called the θi-section of ZR(S). The set of points between two consecutive
sections of ZR(S) is a connected semi-algebraic subset of Rn, called a sector of ZR(S). All
the sections and sectors of ZR(S) form a disjoint decomposition of ZR(S), called a stack
over S.

Cylindrical algebraic decomposition. A finite partition D of Rn is called a cylindrical
algebraic decomposition (CAD) of Rn if one of the following properties holds.
• Either n = 1 and D is a stack over R0.
• Or the set of {πn−1(D) | D ∈ D} is a CAD of Rn−1 and each D ∈ D is a section or

sector of the stack over πn−1(D).
When this holds, the elements of D are called cells.

Sign invariance and delineability. Let p be a polynomial of R[x1, . . . , xn], and let S be a
subset of Rn. The polynomial p is called sign invariant on S if the sign of p(α) does not
change when α ranges over S. Let F ⊂ R[x1, . . . , xn] be a finite polynomial set. We say S
is F -invariant if each p ∈ F is invariant on S. A cylindrical algebraic decomposition D is
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F -invariant if F is invariant on each cell D ∈ D. Let p be a polynomial of R[x1, . . . , xn],
and let S be a connected semi-algebraic set of Rn−1. We say that p is delineable on S if the
real zeros of p define continuous semi-algebraic functions θ1, . . . , θs such that, for all α ∈ S
we have θ1(α) < · · · < θs(α). In other words, p is delineable on S if its real zeros naturally
determine a stack over S. We recall the following Theorem introduced in [14].

Theorem 3. Let P = {p1, . . . , pr} be a finite set of polynomials in R[x1 < · · · < xn] of
level n. Let S be a connected semi-algebraic subset of Rn−1. If P separates above S, then
each pi is delineable on S. Moreover, the product of the p1, . . . , pr is also delineable on S.

Let F be a finite set of polynomials in Q[x1 < · · · < xn]. Let CT be an F -invariant
complete cylindrical tree of Cn. Applying Theorem 3 to polynomials in CT , we can derive
an F -invariant cylindrical algebraic decomposition of Rn by induction on n. A procedure
MakeSemiAlgebraic, was introduced in [14] to derive a CAD from a CT via real root isolation
of zero-dimensional regular chains.

Example 3. Let F := {y2 + x}. An F -invariant cylindrical algebraic decomposition is
described by the following tree.

T :=



x < 0


y < −

√
|x| : y2 + x > 0

y = −
√
|x| : y2 + x = 0

y > −
√
|x| ∧ y <

√
|x| : y2 + x < 0

y =
√
|x| : y2 + x = 0

y >
√
|x| : y2 + x > 0

x = 0

 y < 0 : y2 + x > 0
y = 0 : y2 + x = 0
y > 0 : y2 + x > 0

x > 0 for any y : y2 + x > 0

6 Making use of equational constraints and other opti-
mizations

In this section, we discuss several possible optimizations to algorithms presented in Sec-
tion 4.

Firstly, we discuss how to compute a CAD dedicated to a semi-algebraic system, which
provides a systematic solution for making use of equational constraints when computing
CADs. The motivation for making use of equational constraints comes from quantifier
elimination. Let

PF := (Qk+1xk+1 · · ·Qnxn)FF (x1, . . . , xn),

be a prenex formula, where FF is a DNF formula. To perform QE by CAD, the first
computation step is to collect all the polynomials appearing in FF as a polynomial set F
and compute an F -invariant CAD of Rn. This process of computing an F -invariant CAD
exhausts all possible sign combinations of F , including those which do not appear in FF , and
thus often computes much more than needed for solving the input QE problem. Different
techniques in the literature have been proposed for taking advantage of the structure of
the input problem. These methods include partial CAD [17] for lazy lifting, simplified
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projection operator for handling pure strict inequalities [27, 33], smaller projection sets for
making use of equational constraints [16, 29, 7, 30].

To make the discussion clear, we first quote a paragraph of [7]. “The idea is as follows:
if an input formula includes the constraint f = 0, then decompose Rr into regions in which
f has invariant sign, and then refine the decomposition so that the other polynomials have
invariant sign in those cells in which f = 0. The signs of the other polynomials in cells in
which f 6= 0 are, after all, irrelevant. Additionally, the method of equational constraints
seeks to deduce and use constraints that are not explicit in the input formula, but rather
arise as consequences of two or more explicit constraints (e.g. if f = 0 and g = 0 are explicit
constraints, then res(f, g) = 0 is also a constraint.)”

This idea, of course, is attractive. Much progress on it has also been made. However,
the reason why it is a generally hard problem for CAD is that the framework of PCAD
does not have much flexibility to allow propagation of equational constraints. In the world
of PCAD, one always tries to obtain a generic projection operator and then applies the
same projection operator recursively. To obtain a generic projection operator for handling
equational constraints is hard because many problems inherently require different projection
operators during projection. Therefore case discussion is important.

In fact, case discussion is very common in algorithms for computing triangular decompo-
sitions. For such algorithms, equational constraints are natural input of these algorithms.
The two keys ideas “splitting only above f = 0” and “if f = 0 and g = 0 are explicit
constraints, then res(f, g) = 0 is also a constraint” have already been systematically taken
care of in the Intersect operation of the authors’ paper for computing triangular decompo-
sitions [12].

Next we explain how to modify algorithms presented in Section 4 to automatically
implement these ideas.

Suppose now that the input of Algorithm CylindricalDecompose is a system of equations
or inequations, this algorithm will then compute a partial cylindrical tree such that its zero
set is exactly the zero set of input system. This can be simply achieved by passing an
equation or inequation to the function Intersect. W.l.o.g., let us assume that an equation
p = 0 is passed as an argument of Intersect. Then for this function and all its called
subroutines, we will cut the computation branches above which p is known to be nonzero
and never proceed with computation branches above which p cannot be zero. For example,
we will not create a new vertex at step 15, 32, 42 in Algorithm IntersectMain. We will delete
the vertex V at step 11, 26, 37 since p is nonzero on V .

The first important optimization in IntersectMain which can be implemented is to avoid
Squarefree computation at step 3 if Γ.leaf is an equational constraint. This idea is quite
close to “splitting only above f = 0”. Another important optimization can be done at step
19 of IntersectMain. Assume that V.formula is an equational constraint f = 0, then when
Gcd is called, in step 5 of Algorithm 10, we can do as follows. If i = 0, then si is the
resultant of p and f . Thus we should pass si = 0 to the IntersectPath operation in order
to avoid useless computations on the branch si 6= 0. This addresses the idea “if f = 0
and g = 0 are explicit constraints, then res(f, g) = 0 is also a constraint.” Moreover, these
optimizations are systematically performed during the whole computation.

Next we briefly mention several other important optimizations. Let V be a leaf of a
path Γ of a cylindrical tree. Assume that V.formula is of the form f 6= 0 or of the form
f = 0. We can safely replace f by its primitive part since lc(f) is invertible modulo Γn−1.
Replacing f by its irreducible factors over Q is often a more efficient choice. Last but not
least, recall that a path Γ in the cylindrical tree is a simple system. Writing Γ as two parts
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Γ := [T,H], where T is a set of equations and H is a set of inequations. We know that T
is a regular chain and Γ is a squarefree regular system. Thus the Zariski closure of Γ is the
variety of the saturated ideal of T . We can call the pseudo division operation prem(p, T )
or prem(f, T ) to test whether p or f is zero modulo Γ. And sometimes replacing p by
prem(p, T ) and f by prem(f, T ) also ease the computations.

Example 4. Let F := {y2 + x = 0, y2 + y = 0} be a system of equations. Taking F as
input, Algorithm CylindricalDecompose generates the following partial cylindrical tree T of
C2 such that the zero set of F is exactly the union of the zero sets of the paths in T .

x = 0

y = 0

x + 1 = 0

y + 1 = 0

Figure 2: A partial cylindrical tree T adapted to F

7 Benchmark

In this section, we report on the experimental results of a preliminary implementation in
the RegularChains library of Maple of the algorithms of Sections 4 and 5.

The examples in Table 1 and Table 2 are from papers on polynomial system solving,
such as [11, 3] and the references therein. All the tests were launched on a machine with
Intel Core 2 Quad CPU (2.40GHz) and 8.0Gb total memory. The time-out is set as 1 hour.
In the tables, the symbol > 1h means time-out.

The Maple functions are launched in Maple 15 with the latest RegularChains library.
The memory usage is limited to 60% of total memory. The software Qepcad is launched
with the option +N500000000+L200000, where the first option specifies the memory to be
pre-allocated (about 23% of total memory for our machine) and the second option specifies
the number of prime numbers to be used.

In Table 1, we report on timings for computing cylindrical decomposition of the com-
plex space with different algorithms and options. Each input system is a set of polynomials.
The notation tcd-rec denotes an implementation of the original recursive algorithm in [14],
while the notation tcd-inc denotes the incremental algorithm presented in Section 4. Both
tcd-rec and tcd-inc take a set of polynomials as input. The notation tcd-eqs refers to an
optimized version of tcd-inc which makes use of equational constraints, as explained in Sec-
tion 6. With the implementation tcd-eqs, every input polynomial set is regarded as a set
of equations (equating each input polynomial to zero). As we can see in Table 1, the incre-
mental algorithm presented in this paper is much more efficient than the original recursive
algorithm. The timings of tcd-eqs show that the optimizations presented in Section 6 for
making use of equational constraints are very effective.
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Table 1: Timings for computing cylindrical decomposition of the complex space
System tcd-rec tcd-inc tcd-eqs System tcd-rec tcd-inc tcd-eqs

AlkashiSinus 3373.966 14.568 4.168 MontesS10 > 1h > 1h 2.952
Alonso 9.636 1.404 0.700 MontesS12 > 1h > 1h 7.528

Arnborg-Lazard-rev 2759.940 2419.543 16.233 MontesS15 > 1h > 1h 77.048
Barry 39.346 1.808 0.556 MontesS16 > 1h > 1h 8.228

blood-coagulation-2 235.310 9.472 0.808 MontesS4 556.390 102.122 0.488
Bronstein-Wang 255.427 35.990 1.120 MontesS5 1449.810 119.059 1.004

cdc2-cyclin > 1h 68.920 65.976 MontesS7 > 1h > 1h 1.060
circles 276.389 2.280 0.520 MontesS9 269.636 4.212 0.980

genLinSyst-3-2 916.245 19.537 1.384 nql-5-4 > 1h 1.056 0.528
genLinSyst-3-3 > 1h 160.406 12.408 r-5 68.364 3.232 0.876

Gerdt > 1h > 1h 1.188 r-6 1456.883 46.458 1.200
GonzalezGonzalez 141.072 53.451 0.732 Raksanyi 1471.351 118.227 1.000

hereman-2 > 1h 40.042 0.908 Rose > 1h 51.855 1.072
lhlp5 31.069 3.984 0.648 Wang93 > 1h > 1h 18.877

Maclane > 1h > 1h 6.420 YangBaxterRosso 54.895 1.560 0.844

Table 2: Timings for computing CAD
System qepcad qepcad-eqs mathematica-eqs tcad tcad-eqs
Alonso 7.516 5.284 0.74 61.591 5.776

Arnborg-Lazard-rev > 1h > 1h 0.952 > 1h 17.325
Barry Fail 216.425 0.032 8.580 1.004

blood-coagulation-2 > 1h > 1h > 1h 985.709 7.260
Bronstein-Wang > 1h > 1h 26.726 333.892 2.564

cdc2-cyclin > 1h > 1h 0.208 574.127 503.863
circles 21.633 5.996 41.211 > 1h 40.902

GonzalezGonzalez 10.528 10.412 0.012 214.213 1.136
lhlp2 960.756 5.076 0.016 3.124 0.952
lhlp5 10.300 10.068 0.016 35.338 1.084

MontesS4 > 1h > 1h 0.004 2682.391 0.888
MontesS5 Fail Fail > 1h > 1h 9.400

nql-5-4 93.073 5.420 1303.07 113.675 1.004
r-5 > 1h 1802.676 0.016 1282.928 1.208
r-6 > 1h > 1h 0.024 > 1h 1.500

Rose Fail > 1h > 1h 606.361 3.136
AlkashiSinus > 1h > 1h 2.232 > 1h 58.775

genLinSyst-3-2 Fail Fail 217.062 3013.764 6.588
MontesS10 > 1h > 1h > 1h > 1h 22.797
MontesS12 > 1h > 1h > 1h > 1h 330.996
MontesS15 > 1h > 1h 0.004 > 1h 395.964
MontesS7 > 1h > 1h 245.807 > 1h 2.452
MontesS9 Fail Fail > 1h 110.902 4.944
Wang93 Fail Fail > 1h > 1h 152.673
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In Table 2, we report on timings for computing CAD with three different computer
algebra packages: Qepcad, the CylindricalDecomposition command of Mathematica and the
algorithm presented in Section 4. Each system is a set of polynomials. Two categories
of experimentation are conducted. The first category is concerned with the timings for
computing a full CAD of a set of polynomials. For Mathematica, we cannot find any options
of CylindricalDecomposition for computing a full CAD of a set of polynomials. Therefore for
this category, only the timings of Qepcad and TCAD are reported. The second category
is concerned with the timings for computing a CAD of a variety. For this category, the
timings for Qepcad, Mathematica and TCAD are all reported.

The notation qepcad denotes computations that Qepcad performs by (1) treating each
input system as a set of non-strict inequalities and, (2) treating all variables as free vari-
ables and, (3) executing with the “full-cad” option. The notation tcad corresponds to
computations that TCAD performs by (1) treating each input system as a set of non-strict
inequalities and, (2) computing a sign invariant full CAD of polynomials in the input sys-
tem and, (3) selecting the cells which satisfy those non-strict inequalities. In this way, both
qepcad and TCAD compute a full CAD of a set of polynomials.

The notation qepcad-eqs denotes the computations that Qepcad performs by (1) treat-
ing each input system as a set of equations and, (2) treating all variables as free variables
and, (3) executing with the default option. The notation mathematica-eqs represents com-
putations where the CylindricalDecomposition command of Mathematica treats each input
system as a set of equations. The notation tcad-eqs corresponds to computations where
TCAD treats each input system as a set of equations.

From Table 2, we make the following observations. When full CADs are computed,
within one hour time limit, Qepcad only succeeds on 6 out of 24 examples while TCAD
succeeds on 14 out of 24 examples. When CADs of varieties are computed, for all the 10
out of 24 examples that Qepcad can solve within one hour time limit, both Mathematica
and TCAD succeed with usually less time. For the rest 14 examples, TCAD solves all of
them while Mathematica only succeeds on 7 of them.

8 Conclusion

In this paper, we present an incremental algorithm for computing CADs. A key part of
the algorithm is an Intersect operation for refining a given complex cylindrical tree. If this
operation is supplied with an equational constraint, it only computes a partial cylindrical
tree, which provides an automatic solution for propagating equational constraints. We have
implemented our algorithm in Maple. The experimentation shows that the new algorithm
is much more efficient than our previous recursive algorithm. We also compared our im-
plementation with the software packages Qepcad and Mathematica. For many examples,
our implementation outperforms the other two. This incremental algorithm can support
quantifier elimination. We will present this work in a future paper.
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