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In this paper, the theory of regular chains and a triangular decomposition method relying on
modular computations are presented in order to symbolically solve multivariate polynomial
systems. Based on the focus values for dynamic systems obtained by using normal form theory,
this method is applied to compute the limit cycles bifurcating from Hopf critical points. In
particular, a quadratic planar polynomial system is used to demonstrate the solving process and
to show how to obtain center conditions. The modular computations based on regular chains are
applied to a cubic planar polynomial system to show the computation efficiency of this method,
and to obtain all real solutions of nine limit cycles around a singular point. To the authors’ best
knowledge, this is the first article to simultaneously provide a complete, rigorous proof for the
existence of nine limit cycles in a cubic system and all real solutions for these limit cycles.
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1. Introduction

In the field of dynamical systems, an interesting topic is the study of the number of limit cycles of a given
system. For example, Hilbert’s 16th problem asks for an upper bound of the number of limit cycles for the
system

ẋ = F(x, y), ẏ = G(x, y) , (1)

where F(x, y) and G(x, y) are degree k polynomials of variables x and y, with real coefficients. The second
part of Hilbert’s 16th problem is to find the upper bound, called Hilbert number H(n), on the number
of limit cycles that system (1) can have. This problem has not been completely solved even for quadratic
systems (the case n = 2). Although the existence of four limit cycles was proved 30 years ago for quadratic
systems [Chen & Wang, 1979; Shi, 1980], whether H(2) = 4 is still open. For cubic polynomial systems,
many results have been obtained on the low bound of the Hilbert number. So far, the best result for cubic
systems is H(3) ≥ 13 [Li et al., 2009; Li & Liu, 2010; Yang et al., 2010]. This number is believed to be
below the maximal number which can be obtained for generic cubic systems. Some recent develpements
on Hilbert’s 16th problem may be found in the review articles [Li, 2003; Leonov, 2008] and the references
therein.

In the case of finding small-amplitude limit cycles bifurcating from an elementary center or a focus
point based on focus value computation, the problem has been completely solved only for generic quadratic
systems [Bautin, 1952], which can have three limit cycles in the vicinity of such a singular point. For cubic
systems, James and Llyod obtained [James & Lloyd, 1991] a formal construction, via symbolic computation,
of a special cubic system with eight limit cycles. In 2009, Yu and Corless [2009] showed the existence of
nine limit cycles with the help of a numerical method for another special cubic system.

Very recently, Lloyd and Pearson [2012] claimed to be the first to obtain a formal construction, via
symbolic computation, of a new cubic system with nine limit cycles. A key step of their derivation is to
show that two bivariate polynomials R1 and R2 have real solutions. They found that the resultant of R1

and R2 had a real solution and then concluded that R1 and R2 would have a real common solution. This is
not always true. In fact, the existence of a real solution of the resultant of two bivariate polynomials does
not necessarily imply the existence of a common real solution for the original two polynomial equations.
For example, given R1 = y2 + x + 1 and R2 = y2 + 2x + 1 with x < y, the resultant of R1 and R2 in y is x2,
which has a real solution x = 0. However the two equations R1 = R2 = 0 actually do not have common real
solutions. In addition, a similar flawed conclusion was made by the authors when they were claiming that
the existence of real solutions for R1 = R2 = 0 was implying the existence of real solutions for a trivariate
polynomial systems Ψ1 = Ψ2 = Ψ3 = 0. Therefore, the proof given by Lloyd and Pearson [2012] is not
complete.

In the present paper, we formally prove that a specific cubic dynamical system has nine limit cycles.
Our strategy is as follows. Given a cubic dynamical system, we reduce the fact that this system has (at
least) nine limit cycles to testing whether a given semi-algebraic set is empty or not. This test is based on
a symbolic procedure capable of producing an exact representation for each real solution of any system of
polynomial equations and inequalities. Once one such real solution has been found, then this procedure
can be halted and non-emptiness has been formally established. Therefore, our approach does not have the
flaws of [Lloyd & Pearson, 2012].

The symbolic computation of small limit cycles involves finding the common roots of a non-linear
polynomial system consisting of n focus values v0(γ1, . . . , γm), . . . , vn−1(γ1, . . . , γm), where the variables
γ1, . . . , γm are the parameters of the original system. With the help of algorithmic and software tools from
symbolic computation, we are able to compute nine limit cycles symbolically, using the same system as
that used by Yu & Corless [2009]. Unlike the methods used in previous studies which usually depend on
good choices of free parameters and the values of dependent parameters, the new method introduces a
systematic procedure to symbolically find the maximum number of limit cycles for a given system. It also
provides a symbolic proof on the existence of the computed number of limit cycles. In addition, center
conditions may be obtained as a by-product.

Symbolic methods for studying and solving non-linear polynomial systems are of great interest due
to their wide range of applications, for example, in theoretical physics, dynamical systems, biochemistry,
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to name a few. They are very powerful tools that surpass numerical methods by giving exact solutions,
whether the number of solutions is finite or not, and by identifying which solutions have real coordinates.

There are two popular families of symbolic methods, based on different algebraic concepts: Gröbner
bases [Becker, 1993; Buchberger & Winkler, 1998; Buchberger, 2006], and regular chains [Kalkbrener, 1991;
Yang & Zhang, 1991; Moreno Maza, 1999; Aubry et al.; 1999; Chen et al., 2007]. Gröbner bases methods
have gained much attention during the past four decades due to their simpler algebraic structure: the input
polynomial system, say F, is replaced by another polynomial system, say G, such that both F and G have
the same solution set and geometrical information (dimension, number of solutions) can easily be read
from G.

Methods based on regular chains are relatively new, and have many advantages compared to Gröbner
bases methods. For example, they tend to produce much smaller output [Dahan et al., 2012; Chen &
Moreno Maza, 2011] in terms of number of monomials and size of coefficients. In addition, regular chain
methods can proceed in an incremental manner, that is, by solving one equation after another, against
the previously solved equations. This allows for more efficient implementation and makes the processing of
inequality constrains much easier. These advantages will be further explained later in this paper.

Given a multivariate polynomial system F in a polynomial ring, for example Q[x] over Q, regular chains
methods compute the algebraic variety (or zero set - the set of common complex solutions) of F in the form
of a list of finitely many polynomial sets. Each of these sets is a polynomial system in triangular shape and
with remarkable algebraic properties; for these reasons, it is called a regular chain. The algebraic variety of
the input system F is given by the union of the common complex roots of the output regular chains. The
notion of a regular chain was introduced independently by Kalkbrener [Kalkbrener, 1991] and, by Yang and
Zhang [Yang & Zhang, 1991] as an enhancement for notion of a triangular set. Indeed, the regular chain is
a special type of triangular set which avoids possible degenerate cases that lead to empty solution [Chen
& Moreno Maza, 2011].

One of the main successes of the Computer Algebra community in the last 30 years is the discovery
of algorithms, called modular methods, that allow to keep the swell of the intermediate expressions under
control. Even better: with these methods, almost all intermediate (polynomial or matrix) coefficients fit
in a machine word, making these methods competitive in terms of running time with numerical methods.
Modular methods have been well developed for solving problems in linear algebra and for computing
greatest common divisors (GCDs) of polynomials [Von Zur Gathen & Gerhard, 2003]. They extend the
range of accessible problems that can be solved using exact algorithms. In the area of polynomial system
solving, the development of those methods is quite recent. They have been applied to Gröbner bases [Trinks,
1984; Arnold, 2003] and primitive element representations [Giusti et al., 1995; Giusti et al., 2001]. Thanks
to sharp size estimates [Dahan et al., 2012], the application of modular methods to polynomial system
solvers based on regular chains has been very successful in both practice and theory, see [Dahan et al.,
2005], opening the door to using fast polynomial arithmetic [Li et al., 2011] and parallelism [Moreno Maza
& Pan, 2012] in the implementation of those solvers. The modular method of [Dahan et al., 2005] is available
in the RegularChains package in Maple.

The rest of the paper is organized as follows. The advantages of incremental solving are further ex-
plained in the next section. The theory of regular chains and a modular method for solving polynomial
systems by means of regular chains are presented in the third section, together with a number of examples
and related Maple commands. The relationship of limit cycles and focus values is presented in the fourth
section, with an example of focus value computation using a perturbation method. Then, in the fifth sec-
tion, the regular chains method is applied to a generic quadratic system to show three small-amplitude
limit cycles around the origin and to obtain center conditions. Moreover, with a modular method based on
regular chain theory, a special cubic system is presented to show nine small-amplitude limit cycles in the
vicinity of the origin.

2. Incremental solving

The nature of the algebraic problem posed by this application to the study of dynamic systems and,
more precisely, the study of limit cycles require that the supporting algebraic tools provide the following
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specifications and properties.

Incremental solving of polynomial systems. Given a polynomial system of equations, f1 = ... = fm = 0, one
would like to solve one equation after another against the previously solved equations. To be more precise,
we first choose a format for the solutions. Here we consider regular chains. Thus, we can assume that the
common solutions of f1, . . . , fj, for 1 ≤ j < m, are given by finitely many regular chains T1, ..., Te. Then
the common solutions of f1, . . . , fj+1 are obtained by taking the union of the regular chains computed by
executing a procedure called Intersect and applied to fj+1 and T1, .., Te successively.

The advantages of this approach are numerous. First of all, from a theoretical point of view, if {f1, ..., fm}

is a regular sequence, then incremental solving is known to be a very effective process [Lecerf, 2003; Sommese
et al., 2008; Chen & Moreno Maza, 2011; Faugère, 2002].

There are also practical reasons. For instance, information (such as dimension, existence of real solu-
tions) may be extracted before completing the solving of the entire system f1 = ... = fm = 0.

Incremental processing of inequality constraints. Given a component of the solution set of a system of
polynomial equations, one would like to extract from that component the points that satisfy an inequality
constraint, either of the type f 6= 0 or of the type f > 0. For example, in the application to limit cycles, one
requires the first several focus values vanish, v0 = · · · = vn−1 = 0, but the last one vn 6= 0. Regular chains
provide this facility [Chen et al., 2011; Chen & Moreno Maza, 2012]. That is, for a component encoded by
one or several regular chains, one can extract the points of that component that satisfy a given inequality
constraint. Moreover, the output of this refinement process is again given by a special flavor of regular
chains, called regular semi-algebraic systems [Chen et al., 2010]. Therefore, incremental solving can also
be used with inequality constraints.

Practical efficiency. With respect to other algebraic tools for describing solution sets of polynomial systems,
regular chains have an advantage in terms of size [Dahan, 2009]. In addition, there are sharp size estimates
about the representation of the solutions of polynomial systems when this representation is done with
regular chains. This is essential in order to design efficient algorithms to compute these representations.

Moreover, these efficient algorithms are able to take advantages of modular techniques. We use a
standard example to introduce the principle of those techniques. Consider a square matrix A with integer
entries and for which its determinant d is to be computed exactly. It is well-known that using multi-precision
rational arithmetic will only solve examples of moderate size due to intermediate expression swell. Let B

be a bound on the absolute value of d and let p1, ..., ps be prime numbers such that their product exceeds
2B and each of these primes is of machine word size. One computes the determinant di of A modulo the
prime number pi. Then, the determinant d is obtained by applying the Chinese remainder theorem (CRT)
to the residues d1, ..., ds and the moduli p1, ..., ps. This approach not only avoids intermediate expression
swell, but it allows for using efficient algorithms over finite fields and efficient implementation techniques
in fixed single precision. Last but not least, the complexity of this modular computation process is less
than that of the direct approach for computing the determinant of A via Gaussian Elimination (or LU
decomposition, etc.) [Gathen & Gerhard, 1999].

The following example is introduced to demonstrate the idea of incremental solving. Given the system

F =






x ,

x + y2 − z2 ,

y − z3 ,

(2)

we want to find the real common roots. The incremental solving algorithm processes one additional equation
at a time. So it takes the first equation x = 0 and find the real roots, in this case the whole y-z plane (left
graph of Fig. 1). In the second step, the next equation x + y2 − z2 is taken into computation to obtain the
common roots x = 0, y = ±z (middle graph of Fig. 1). At the last step, y − z3 is added to compute the
final answer {x = 0, y = 0, z = 0}, {x = 0, y = 1, z = 1}, {x = 0, y = −1, z = −1} (right graph of Fig. 1).

3. The regular chains method

Similarly to a linear system which can be transformed to a triangular system by Gaussian elimination, a
non-linear polynomial system can be transformed into one or finitely many systems, such that each of them
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Fig. 1. The incremental solving of (2)

is in a triangular shape. Such a system is called a triangular set, in that the main (or leading) variables of
different polynomials are distinct. The notion of a triangular set was introduced in [Ritt, 1932; Wu, 1987],
with the purpose of representing and computing the set of the common zeros of a given polynomial system.
Since a triangular set is already in triangular form, it is ready to be solved by evaluating the unknowns one
after another using a back-substitution process, as for triangular linear systems. For example, the system

F =






x2
4 − 2x3 + x1 ,

x3
3 + 2x2 ,

x2
2x1 − 2x1 + 3 ,

2x2
1 + x1 ,

(3)

with ordered variables x1 < x2 < x2 < x4, is a triangular set since the polynomials in it have distinct main
variables, which are here x4, x3, x2, x1, respectively.

The backward solving process of a triangular set could sometimes lead to an empty solution set. In
the above example, one solution of the last equation is x1 = 0, which leads to no solution for x2. To avoid
such degenerate cases, the notion of a regular chain was introduced. A regular chain is a type of triangular
set which guarantees the success of the backward solving process . Regular chains are constructed by the
insight that every algebraic variety is uniquely represented by some generic points of their irreducible
components [Aubry et al., 1999]. These generic points are given by certain polynomial sets, called regular
chains. The common complex roots of any given multivariate polynomial system can be described by some
finite union of regular chains. Such a family of regular chains is called a triangular decomposition of the
input system.

3.1. Some definitions and examples for triangular decomposition

Before demonstrating the regular chains method, some definitions are given, followed by illustrative ex-
amples. Throughout this section, let Q denote the rational number field and C the complex number field.
Let Q[x] denote the ring of polynomials over Q, with ordered variables x = x1 < · · · < xn. Let p be a
polynomial of the polynomial ring Q[x] and let F ⊂ Q[x] be a finite subset. We denote by V(F) the algebraic
variety defined by F, that is, the set of points in Cn which are common solutions of the polynomials of F.

Definition 1. If the polynomial p ∈ Q[x] is not a constant, then the greatest variable appearing in p is
called the main variable (or leading variable) of p, denoted by mvar(p). Furthermore, the leading coefficient
and leading monomial of p, regarded as a univariate polynomial in mvar(p), are called the initial and the
rank of p, denoted by init(p) and rank(p), respectively.

Example 1. Let p := (x1 + 1)x2
2 + 1 ∈ Q[x1, x2], where x1 < x2. Then, mvar(p) = x2, init(p) = x1 + 1 and

rank(p) = x2
2.
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Definition 2. Let T ⊂ Q[x] be a triangular set, that is, a set of non-constant polynomials with pairwise
distinct main variables. The quasi-component of T , denoted by W(T), is the set of points in Cn which
vanish all polynomials in T , but none of the initials of polynomials in T . The minimal algebraic variety
containing W(T), denoted by W(T), is called the Zariski closure of W(T). Note that W(T) is a subset of
V(T), but may not equal V(T).

Example 2. Consider the polynomial ring Q[x, y, z], where x < y < z. Then, the set T := {y − x, yz2 − x}

is a triangular set. The quasi-component W(T) is {(x, y, z) ∈ C3 | x 6= 0, y = x, z2 − 1 = 0}. The Zariski

closure W(T) is {(x, y, z) ∈ C3 | y = x, z2 − 1 = 0}. The variety V(T) is {x = 0, y = 0} ∪ W(T).

Definition 3. Let T be a triangular set. A polynomial p is said to be zero modulo T if W(T) ⊆ V(p) holds.

A polynomial p is said to be regular modulo T if the dimension of the variety V(p) ∩ W(T) is strictly less

than that of W(T)1.

Example 3. Let T := {y − x, yz2 − x}. The polynomial y − x is zero modulo T since we have W(T) ⊆ V(p).

On the other hand, the polynomial z − x is regular modulo T since V(p) ∩ W(T) is the set of points
{(x, y, z) ∈ C3 | x2 − 1 = 0, y = x, z2 − 1 = 0}, whose dimension is zero, that is, less than the dimension of

W(T).

Definition 4. A triangular set T ⊂ Q[x] is a regular chain if one of the following two condition holds:

(i) T is empty or consists of a single polynomial;
(ii) T \ {Tmax} is a regular chain, where Tmax is the polynomial in T with largest main variable, and the

initial of Tmax is regular modulo T \ {Tmax}.

Example 4. The triangular set T := {y − x, yz2 − x} is a regular chain since {y − x} is a regular chain and
y is regular modulo {y − x}.

Definition 5. Let F ⊂ Q[x] be finite, and T := {T1, . . . , Te} be a finite set of regular chains of Q[x]. We call
T a triangular decomposition of V(F) if we have V(F) = ∪e

i=1W(Ti). We denote by Triangularize a function
for computing such decompositions.

Example 5. Let F := {y − x, yz2 − x}, T1 := {y − x, z2 − 1} and T2 := {x, y}. Then, {T1, T2} is a triangular
decomposition of V(F).

The corresponding Maple program is as follows:

with(RegularChains):

F:=[y-x,y*z^2-x];

R:=PolynomialRing([z,y,x]);

dec:=Triangularize(F,R,output=lazard);

map(Equations, dec, R);

which returns,

[[z-1, y-x], [z+1, y-x], [y, x]]

Definition 6. Let T be a regular chain, and p be a polynomial of Q[x]. Let T := {T1, . . . , Te} be a finite

set of regular chains of Q[x]. We call T a regular split of T w.r.t. p if (1) W(T) = ∪e
i=1W(Ti) and (2) the

polynomial p is either zero or regular modulo Ti, for i = 1, . . . , e. We denote by Regularize a function for
computing such decompositions.

Example 6. Let p := z − 1 and T := {y − x, yz2 − x}. Let T1 := {y − x, z + 1} and T2 := {y − x, z − 1}. Then
{T1, T2} is a regular split of T w.r.t. p.

The Maple program for this example is given by,

1The dimension of the empty set is defined as −1.
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with(ChainTools):

p:=z-1;

T := Chain([y-x, y*z^2-x], Empty(R), R);

reg, sing := op(Regularize(p, T, R));

map(Equations, reg, R);

map(Equations, sing, R);

which returns,

[[z+1, y-x]]

[[z-1, y-x]]

3.2. Triangular decomposition algorithm

In this section, we illustrate how to obtain a triangular decomposition of an input polynomial system.
Given an input set of polynomials F = [P1, . . . , Pm] ⊂ Q[x], we would like to compute a triangular

decomposition of V(F), that is, regular chains T1, . . . , Te ⊂ Q[x] such that we have V(F) = W(T1) ∪ · · · ∪

W(Te). The algorithm presented here works in an incremental manner, that is, by solving one input equation
after another, against the solutions of the previously solved equations. The core routine of this algorithm
is denoted as Intersect. It takes a regular chain T and a polynomial P as input, and returns regular chains
T1, . . . , Te, such that we have

V(P) ∩ W(T) ⊆ W(T1) ∪ · · · ∪ W(Te) ⊆ V(p) ∩ W(T) . (4)

We choose a polynomial p1 with minimum rank from F and remove it from F. Then, it is intersected
with the empty regular chain, and obtain the regular chain T as p1 itself. Next, the polynomial p2 with
minimum rank from the remaining F is chosen and removed. Then, p2 and the regular chain T are the
input for Intersect, which returns a list of regular chains T1, · · · , Te that satisfy (4). Further, p3 with the
minimum rank from the remaining input F is intersected with each Ti, i ∈ 1, · · · , e, and will give more
regular chains which also satisfy (4). The algorithm will go on until F is empty. A more detailed description
of the algorithm can be found in [Chen & Moreno Maza, 2011].

In order to illustrate this triangular decomposition process, we compute the triangular decomposition
of V(F) for the following example. Let F = [p1, p2, p3], where

p1 := z + y + x2 − 1 ,

p2 := z + y2 + x − 1 ,

p3 := z2 + y + x − 1 ,

(5)

with a order x < y < z.
Firstly, p1 is picked and removed from F as the lowest rank polynomial within the three polynomials,

and then is a regular chain T0 = p1 by definition.
Secondly, p2 with the lowest rank is chosen from the remaining two polynomials. Now p2 and T0 are

the input of Intersect, which computes V(z + y + x2 − 1, z + y2 + x − 1). The procedure Intersect works as
follows. By computing the resultant of z + y + x2 − 1 and z + y2 + x − 1, z is eliminated and we obtain a
bivariate polynomial (y − x)(y + x − 1). Then T1 := {(y − x)(y + x − 1), z + y + x2 − 1} is a regular chain2,
with V(z + y + x2 − 1, z + y2 + x − 1) = W(T1). Since the GCD of z + y + x2 − 1 and z + y2 + x − 1

modulo (y− x)(y+ x− 1) is z+y+ x2− 1, which is obtained by Maple’s command RegularGcd. Note that
(y−x)(y+x−1) has two factors. By factorizing it3, we obtain two regular chains T11 := {y−x, z+y+x2−1}

and T12 := {y+ x− 1, z+y+ x2 − 1} such that we have V(z+y+ x2 − 1, z+y2 + x− 1) = W(T11)∪W(T12).

2For this particular regular chain, one can check that W(T1) = V(T1). But this does not always hold unless the regular chain
is zero-dimensional.
3Irreducible factorization over Q is not necessary for computing triangular decomposition. However, factorization often helps
to improve the practical efficiency of polynomial system solvers based on triangular decomposition.
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In the third step, the variety V(p1, p2, p3) is finally computed. This is equivalent to computing the
union of V(p3) ∩ W(T11) and V(p3) ∩ W(T12).

Let us consider how to compute V(p3) ∩ W(T11). To this end, we first compute the resultant of
z2 + y + x − 1 and z + y + x2 − 1 and obtain resultant(z2 + y + x − 1, z + y + x2 − 1, z) = (y + x2 +

x − 1)(y + x2 − x). We then compute the resultant of (y + x2 + x − 1)(y + x2 − x) and y − x, and obtain
resultant((y + x2 + x − 1)(y + x2 − x), y − x, x) = (x2+2x−1)x2. Since the GCD of (y+x2+x−1)(y+x2−x)

and y−x mod (x2+2x−1)x2 is y−x, and the GCD of z2+y+x−1 and z+y+x2−1 mod {(x2+2x−1)x2, y−x}

is z+y+ x2− 1, we know that V(p3)∩W(T11) is the union of zero sets of {x2+ 2x− 1, y− x, z+y+ x2− 1}

and {x, y − x, z + y + x2 − 1}, which could be further simplified as {x2 + 2x − 1, y − x, z − x} and {x, y, z − 1}.
Similarly, V(p3)∩W(T12) can be decomposed into a union of zero sets of two regular chains {x, y−1, z}

and {x − 1, y, z}.
To summarize, we have the following triangular decomposition to represent the zero set of F:






z − x = 0

y − x = 0

x2 + 2x − 1 = 0

,






z = 0

y = 0

x − 1 = 0

,






z = 0

y − 1 = 0

x = 0

,






z − 1 = 0

y = 0

x = 0

. (6)

3.3. A method based on modular techniques for computing triangular

decomposition

For challenging input polynomial systems, the method described in the previous section may require vast
amounts of computing resources (time and space). This situation can be improved in a spectacular manner
by means of so-called modular techniques, which, broadly speaking, means computing by homomorphic
images instead of computing directly in the original polynomial ring. We present below such an improvement
for the case of input zero-dimensional systems whose coefficients are in Q.

Let F = {p1, . . . , pn} ⊂ Q[x]. Recall that x stands for n ordered variables x1 < · · · < xn. We assume
that the variety V(F) is finite and that the Jacobian matrix of F is invertible at any point of V(F). This
latter assumption allows the use of Hensel lifting techniques. The algorithm proposed in [Dahan et al.,
2005] computes a triangular decomposition of V(F) via the following two-step process:

(1) For some prime number ℘, compute a triangular decomposition of V(F mod ℘),
(2) Apply Hensel lifting to recover a triangular decomposition of V(F) from that of V(F mod ℘).

Some precautions need to be taken before the algorithm produces correct answers. In fact, extraneous
factorizations or recombinations could occur when working modulo some “unlucky” prime numbers. Since
the same input system F could admit different triangular decompositions, it is possible that a regular chain
obtained modulo ℘ does not match the modular image of any regular chains in a triangular decomposition
T1, . . . , Te of V(F). In [Dahan et al., 2005], the following example is considered. Let F = [p1, p2] where
p1 := 326x1 − 10x6

2 + 51x5
2 + 17x4

2 + 306x2
2 + 102x2 + 34, p2 := x7

2 + 6x4
2 + 2x3

2 + 12, with x1 < x2. We have
the following triangular decomposition of V(F), that is, over Q:

T1 =

{
x1 − 1 = 0 ,

x3
2 + 6 = 0 ,

T2 =

{
x2

1 + 2 = 0 ,

x2
2 + x1 = 0 .

(7)

Computing the regular chains that describe V(F mod 7) yields

t1 =

{
x2

2 + 6x2x
2
1 + 2x2 + x1 = 0 ,

x3
1 + 6x2

1 + 5x1 + 2 = 0 ,
t2 =

{
x2 + 6 = 0 ,

x1 + 6 = 0 ,
(8)

which are not the images of T1, T2 modulo 7. In order to overcome this difficulty, the notion of equiprojectable
decomposition was introduced in [Dahan et al., 2005].

For a given ordering of the coordinates, the equiprojectable decomposition of a zero-dimensional (that
is, with finitely many points) variety V is a canonical decomposition of V into components, each of which
being the zero set of a regular chain. This notion can be defined as follows. Consider the projection
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π := V ⊂ An(k̄) → An−1(k̄) that forgets the last coordinate, say x. We define N(α) := #π−1(π(α)), α ∈ V,
that is, the number of the points that share the same coordinate with α in the x-axis.

The variety V is split into V1, . . . , Vd such that each Vi, i = 1, . . . , d, consists of the point β ∈ V such
that N(β) = i. Then, a similar decomposition process is applied to each Vi by considering the second last
coordinate. Continuing in this manner yields a partition of C1 ∪ · · · ∪ Cd = V, which is a equiprojectable
decomposition. The key point is that each equiprojectable component Cj is the zero set of a regular chain
Tj, which can be made unique by requiring that each of its initials is equal to one. Together, those regular
chains T1, . . . , Td form now a canonical triangular decomposition of V.

In the last example, the triangular decomposition, t1, t2 of V(F mod 7), is not an equiprojectable
decomposition, as shown in the left graph of Fig. 2, since for the points which share the same x1 coordinate,
only the left and middle columns have the same number of points (which is two), while the right column
has three points. So the decomposition is rearranged such that the left and middle columns are represented
by one regular chain t ′2, and the last column is another regular chain t ′1 (the right graph of Fig. 2). One can
use the Maple’s procedure EquiprojectableDecomposition to compute the regular chains t ′1, t

′

2 from t1, t2,
and thus to obtain the equiprojectable decomposition of the input system.

t ′1 =

{
x1 − 1 = 0 ,

x3
2 + 6 = 0 ,

t ′2 =

{
x2

1 + 2 = 0 ,

x2
2 + x1 = 0 .

(9)

It is obvious that t ′1, t
′

2 are equal to T1, T2 mod 7.

t2

t1

t ′2

t ′1

Fig. 2: Equiprojectable decomposition

Now the modular triangular decomposition will only be lifted after the equiprojectable decomposition
is applied. Another key feature of this approach based on modular techniques is the size of the prime
number ℘. The following theorem provides an approach for selecting good primes so as to avoid unlucky
reductions.

Definition 7. The height of a non-zero number a ∈ Z, is H(a) := log(|a|). For a rational number P/Q ∈

Q, GCD(P, Q) = 1, the height is max(H(P), H(Q)). Finally, the height of a polynomial system F ∈

Z[x1, . . . , xm] is the maximum height of a non-zero coefficient in a polynomial of F.

Theorem 1 [Theorem 1 in [Dahan et al., 2005]. ]
Let F = [p1, . . . , pm] ⊂ Q[x] where each polynomial has degree at most d and height at most h, Let

T = T1, . . . , Te be the equiprojectable decomposition of V(F). There exists an A ∈ N − {0}, with H(A) ≤

a(m, d, h), and, for m ≥ 2,

a(m, d, h) = 2m2d2m+1(3h + 7log(m + 1) + 5mlogd + 10),

such that, if a prime number ℘ does not divide A, then ℘ cancels none of the denominators of the coef-
ficients of T , and the regular chains T1, . . . , Te reduced mod ℘ define the equiprojectable decomposition of
V(F mod ℘).

Therefore, the set of unlucky primes is finite. Moreover, one can always find a large enough ℘ that
guaranties the success of the modular algorithm sketched above.

Once the equiprojectable decomposition using some good prime ℘ is computed, the result is ready to
be lifted in the sense of Hensel lifting. According to Hensel’s lemma [Eisenbud, 1995], a simple root r of
a polynomial f mod ℘k can be lifted to root s of f mod ℘k+m, which also holds in the multivariate case.
Using this lemma, given a polynomial system F, its modular triangular decomposition t = t1, . . . , te over
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V(F mod ℘) is lifted to tk = tk
1, . . . , tk

e, which is the triangular decomposition of V(F mod ℘2k) [Schost,
2003]. Then, rational reconstruction is used to recover the regular chains with coefficients in Q.

Here, a probabilistic method is implemented which uses two primes ℘1, ℘2 that satisfy the condition
of Theorem 1. The use of a probabilistic algorithm is a very common technique to compute values modulo
primes, and then reconstruct the result to integers or rationals. It is very useful when the deterministic
bound is not available or, like in our case, very high. The algorithm usually terminates when the result
does not change for several primes. The output could be incorrect, but the probability of such failure is
very small and controllable. In Maple many procedures are implemented using, probabilistic algorithms
including the commands Determinant, LinearSolve, CharacteristicPolynomial, Eigenvalues, resultant etc.

In our case, the algorithm works as follows.

(1) Compute the equiprojectable triangularizations T and U for ℘1 and ℘2, respectively.
(2) Lift T to Tk = Tk

1 , . . . , Tk
e in Z(F mod ℘2k

1 ), where k starts from 1.
(3) Tk is taken as the input of the rational reconstruction to obtain Nk = Nk

1, . . . , Nk
e over Q.

(4) The algorithm terminates if Nk mod ℘2 equals U, and Nk is returned as the triangular decomposition
of F over Q.

(5) Otherwise, k is incremented by 1 and computations resume from Step 2.

Assume that N is the correct equiprojectable triangular decomposition of the input system F. The algorithm
fails when Nk mod ℘2 equals U (the modular image of Nk w.r.t ℘2), but Nk 6= N. It is also possible that
either one of ℘1, ℘2 divides A or both, so Nk modulo ℘2 may never agree with N modulo ℘2. However,
the choices of ℘1, ℘2 that lead to those bad cases are finite and controllable. See Theorem 2 in [Dahan et
al., 2005] for details. In Maple, the Triangularize command offers this modular method. With the option
’probability’=’prob’, the algorithm applies the probabilistic approach using the input probability of success
’prob’, which control the size of the prime numbers ℘1, ℘2.

3.4. Isolating real roots of a regular chain

In this section, we briefly review how to obtain the real roots of a regular chain. Let T be a regular chain
of Q[x1 < · · · < xn]. A Cartesian product of n intervals is called a box of Q[x1 < · · · < xn]. Let L be a list
of boxes. We say L isolates the real roots of T if

• The boxes in L are pairwise disjoint;
• Each real root of T belongs to one element of L;
• Every element of L contains a real root of T .

Example 7. Let T := {x2 − 2, y2 − x}. Then, the Maple output of a real root isolation of T is as follows:

{ 19 { -19

{ y = [--, 5/4] { y = [-5/4, ---]

{ 16 { 16

[{ , { ]

{ 181 91 { 181 91

{ x = [---, --] { x = [---, --]

{ 128 64 { 128 64

There are several existing algorithms and implementations [Lu et al., 2005; Xia & Zhang, 2006; Cheng et
al., 2007; Boulier et al., 2009] for isolating the real roots of regular chains. However, they all rely on Maple’s
univariate real root isolation routine, which is not efficient enough for our particular problem. Instead, we
adapt a hybrid routine. The univariate polynomial in the regular chain T is isolated by a parallel and cache
optimal Collins-Akritas algorithm implemented in Cilk++ [Chen et al., 2012]. The obtained intervals are
used to isolate the rest of the polynomials in T by a sleeve-polynomials like algorithm [Cheng et al., 2007],
implemented in Maple.
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4. Limit cycle and focus value

In system (1), suppose that F(x, y) and G(x, y) contain m parameters γ1, . . . , γm, and there is a Hopf
critical point at the origin, then the normal form of the system can be written in polar form up to the
(2n + 1)-th order as [Yu, 1998].

dr

dt
= r(v0 + v1r

2
+ v2r

4
+ · · · + vnr

2n
) , (10)

r
dθ

dt
= r

„

1 +
dφ

dt

«

= r
“

1 + ω + t1r
2

+ t2r
4

+ · · · + tnr
2n

”

, (11)

where each vk, k = 0, 1, . . . , n is the kth-order focus value of the origin. Note that there are only r2k (k =

0, 1, . . . , n) terms, since the odd power terms vanish. Each of the focus values vk is a polynomial of the
parameters γj, (j = 1, 2, . . . , m) of the original system.

The small-amplitude limit cycles near the origin can be determined from the equation,

dr/dt = 0 = r(v0 + v1r
2 + v2r

4 + · · · + vnr2n) , (12)

then the right hand side of the equation (10) needs to be manipulated such that there are n (and at most
n) positive real roots for r2.

Assuming the first n + 1 focus values v0, v1, . . . , vn−1, vn are computed, we will find a combination of
parameters such that the first n focus values v0, v1, . . . , vn−1 all vanish except the vn. This can generate
at most n limit cycles. Then, proper perturbations on the zeros of the n focus values yields n limit cycles.
More precisely, a theorem on the relationship between the number of limit cycles and the focus values has
been established in [Yu & Chen 2008], which is given here for convenience.

Theorem 2. Suppose the origin is an elementary center of (1). If the first n focus values associated with
the origin depend on n parameters {γj}, j = 1, 2, . . . , n such that

v0 = v1 = · · · = vn−1 = 0, vn 6= 0 , (13)

then there are at most n small-amplitude limit cycles in the vicinity of the origin. Further suppose that
vk(Γ), k = 0, 1, . . . , n − 1, Γ = {γ1, . . . , γn}, has some positive real solution Γ = C, C = {c1, . . . , cn} such
that vk(C) = 0 and the following condition holds,

det

[

∂(v0, v1, . . . , vn−1)

∂(γ1, γ2, . . . , γn)

]∣

∣

∣

∣

Γ=C

6= 0 , (14)

then there are exactly n small-amplitude limit cycles around the origin.

Accordingly, in order to compute n small limit cycles near the origin, one needs to find the common
roots of a multivariate polynomial system:

v0(γ1, . . . , γn) = · · · = vn−1(γ1, . . . , γn) = 0 , (15)

where the variables γ1, . . . , γn are parameters of the original system. Once the common roots of v0, . . . , vn−1

are computed, the next focus value vn will be evaluated at these roots. If some of the common roots does
not make vn vanish, then this set of roots will lead to n limit cycles, given their Jacobian to be non-zero.
Otherwise, the common roots leading to vn = 0 will be the candidate conditions for the origin to be a
center.

There are many commonly used methods to compute focus values, including the perturbation method
based on multiple time scales [Yu, 1998, 2001, 2002, 2006; Nayfeh, 1973, 1993], the singular point
method [Liu & Li, 1990; Liu & Huang, 2005; Chen & Liu, 2004; Chen et al., 2006], and Poincare-Takens
method [Yu & Chen 2008]. In this article, we apply the perturbation method to compute the focus values.

5. Application to limit cycle computation

In this section, we apply the results presented in previous sections to compute limit cycles bifurcating from
an isolated singular point (the origin of the system). Without loss of generality, suppose system (1) has
at most n limit cycles. Then the first n + 1 focus values need to be computed. v0, . . . , vn−1 are taken as
the input for the triangular decomposition and vn is used to verify if the output regular chains represent
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limit cycles. Two examples are given in this section. In the first example, we use the general quadratic
system (16) to illustrate how to use the regular chains method to find the limit cycle conditions and center
conditions, respectively. It is actually a simple case where small limit cycles have already been thoroughly
studied [Yu & Corless, 2009] using variable elimination method. The regular chains method computes all
the possible common complex roots of the input system, and provides a systematical procedure of analyzing
the properties of the outputs. If a regular chain T makes vn vanish, then it is a candidate of center condition;
if vn does not vanish on T then it is a limit cycle condition. This can be checked by calling the built-in
Maple procedure Regularize.

In the second example, we follow the work of [Yu & Corless, 2009] on a special cubic system that
yields nine limit cycles with the help of numerical computation. Unlike the case of quadratic system, the
existence of nine limit cycles for this cubic system has not been confirmed by purely symbolic algorithm.
Due to the large input focus value system, the modular method based on regular chain theory is applied.

5.1. Generic quadratic system

Consider the general quadratic system [Yu & Corless, 2009], which is the system (23) truncated at 3rd-order
terms,

ẋ = αx + y + x2 + (b + 2d)xy + cy2 ,

ẏ = −x + αy + dx2 + (e − 2)xy − dy2 ,
(16)

where α, b, c, d and e are independent parameters. It has been proved [Bautin, 1952] that this system
has three small-amplitude limit cycles near the origin. α is set to zero to make the zero-order focus value
v0 = 0, then the rest focus values up to v4 are obtained using the perturbations method,

v1 = −(1/8)b(c + 1)

v2 = −(1/288)(c + 1)(20bc2 + 19bce − 18bc + 30dce + 18b + 5b3 + 3be + 56d2b − 6de2 − be2 + 34b2d + 30de)

v3 = −(1/663552)(c + 1)(112800dec2 − 33564bec2 + 68944b2dc2 + 1054be3c + 10224dc2e2 + 151200dce

+4746be2c − 52320de2c + 238080d3ec − 1400b2de2 + 7776dce3 + 26409be2c2 + 104160dc3e + 71500bc3e

+98304bd2c + 1764bce + 130176bd2e − 15568bd2e2 + 22510b3ec + 36288b2de + 250112bd2c2 − 82464b2dc

+267136bd2ec + 126464b2dce + 87156b + 88344bc2 − 1071be2 − 30132be + 292608d2b − 99792de2

+142560de + 118800b2d − 82128bc3 − 35526b3c − 37248d3e2 + 27640b4d + 127536b3d2 − 94b3e2

+222208bd4 − 1968de4 − 83be4 + 270208b2d3 + 4756bc4 + 7985b3c2 + 1110be3 + 7014b3e + 238080d3e

+24096de3 + 40176bc + 4473b3 + 2293b5) ,

(17)
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v4 = −(1/238878720)(c + 1)(258892800d4be + 82198656b2c2d3 − 204901296b2c4d − 56338704b3c2d2

+831702b3ce3 + 263761920bc2d4 − 119804160bc4d2 + 8476608b3c2e2 − 29882016b4c2d

+18389145b3c3e + 3850887b5ce − 17649bce5 + 31704606bc4e2 − 10436580bc5e + 7987025bc3e3

+742995bc2e4 + 344856de2b4 + 157049280dec2 − 7783989eb3c2 − 12255624bec2 − 59918688b2dc2

−2618973be3c − 83645568dc2e2 + 150426720dce − 3031152e2bc3 − 179620608b2cd3 + 208343040bd4c

+7007904be2c − 129060864de2c + 881619e3bc2 − 21854976d4be2 + 845184d2b3e2 + 228864000d5ec

+307564800d3ec3 − 116280de4b2 − 3741696d3b2e2 − 1332000d2be4 − 3115008d3e2c2

+19222272d3e3c + 31738560de2c4 + 65987040dec5 + 534120de5c + 10858872de3c3 − 911400de4c2

+522720000d3ec − 115056768dcb4 − 26398440b2de2 + 46163304dce3 + 68285280edc4 + 3137580be2c2

+111913920dc3e − 301641120b3cd2 − 105235956ebc4 − 1264968bc3e + 296421120bd2c − 1935048e2b3c

−427123200dc3b2 − 19519380bce + 98286048bd2e − 96552720bd2e2 − 16922112e2dc3 − 325651200bd2c3

+20525499b3ec − 145720320e2d3c + 604638e4bc + 21063528e3dc2 − 7734480e4dc + 35263080b2de

+218522880bd2c2 − 2090880b2dc + 493843200ed3c2 + 341404704bd2ec + 146193336b2dce

−62052000e2bd2c + 342006432ebd2c2 + 65831736eb2dc2 − 18987024e2b2dc + 158803248b3cd2e

+338098944b2cd3e + 38615568b4cde + 5083512b2cde3 + 59250288bc2d2e2 + 368805984bc3d2e

+393851904bcd4e + 13093680bcd2e3 + 37870296b2c2de2 + 130825704b2c3de + 4543992b2de3

+162174720b2d3e + 69325104b3d2e + 17444112b4de + 21348144d2be3 + 59923800b + 66397320bc2

+15739110be2 − 48688452be + 299427840d2b − 123591744de2 + 102993120de + 98507664b2d + 66713760bc3

−27441504b3c − 201636864d3e2 − 23445216b4d + 16298352b3d2 − 4639752b3e2 + 371957760bd4

−15410088de4 + 685611be4 + 263984256b2d3 + 148406760bc4 − 30238380b3c2 − 3321567be3

+13493385b3e + 336441600d3e + 61004664de3 − 59586960bc5 − 100956048b3c3 − 13151334b5c

−3304704d3e4 + 23561376d2b5 + 92370176d3b4 + 209773824d4b3 − 103128de6 + 3281784db6

+142458880d6b + 262901760d5b2 − 4431e4b3 + 6355e6b + 30825e2b5 − 29515776d5e2 − 41260494b3c4

−3141747b5c2 − 75978440bc6 + 624246e3b3 − 103137e5b + 1883415eb5 + 44268288d3e3 + 1981416de5

+228864000d5e + 49163760bc − 5071734b3 − 4189203b5 + 193675b7) .

(18)

The existence of three small-amplitude limit cycles requires that the focus values v0, v1, v2 vanish, while
v3 6= 0 [Yu & Chen, 2008]. Since v0 is already zero, the triangular decomposition of v1 and v2 gives the
following regular chains.

c + 1 = 0,

{
d = 0 ,

b = 0 ,

{
e = 0 ,

b = 0 ,

{
e − 5c − 5 = 0 ,

b = 0 .
(19)

Note that these regular chains represent the common roots of v1 and v2. They are candidates of center
conditions or the conditions for the existence of three limit cycles, depending on whether v3 vanishes on
them or not. In this case, it is easy to check by directly substituting each regular chain into v3. However,
in a more general case with a large input system, regular chains obtained by triangular decomposition
are not simple. It can not be substituted into higher-order focus values. Therefore, two different methods
are introduced to verify the properties of the regular chains. The first method involves the triangular
decomposition using one or few more higher-order focus values, while the second method uses the Regularize

procedure to check whether the input regular chains make the next focus value vanish implicitly.
In the first method, another triangular decomposition using all three focus values v1, v2 and v3 is

conducted. The newly generated regular chains are then compared with the ones obtained using only v1

and v2. The triangular decomposition of v1, v2 and v3 gives the new regular chains,

c + 1 = 0,

{
d = 0 ,

b = 0 ,

{
e = 0 ,

b = 0 ,






d2 + 2c2 + c = 0 ,

e − 5c − 5 = 0 ,

b = 0 .

(20)

Comparing with the regular chains in (19) generated from v1 and v2, the first three regular chains {c+ 1 =

0}, {d = 0, b = 0}, {e = 0, b = 0} are identical. This indicates that on these three regular chains v3 vanishes
as well, therefore they are center conditions. Now consider the fourth regular chain, d2+2c2+c must also be
zero in order to make v3 vanishes on {e−5c−5 = 0, b = 0}. Therefore {e−5c−5 = 0, b = 0, d2+2c2+c 6= 0}

is a condition for the existence of three limit cycles, while {e − 5c − 5 = 0, b = 0, d2 + 2c2 + c = 0} is a
possible center condition.



14 Changbo Chen, Rob Corless, Marc Moreno Maza, Pei Yu, Yiming Zhang

To further verify the result, one can conduct the triangular decomposition with one additional focus
value v4, which yields,

c + 1 = 0,

{
d = 0 ,

b = 0 ,

{
e = 0 ,

b = 0 ,






d2 + 2c2 + c = 0 ,

e − 5c − 5 = 0 ,

b = 0 .

(21)

These are exactly the same regular chains as that given in (20). So v4 vanishes on the regular chain
{e − 5c − 5 = 0, b = 0, d2 + 2c2 + c = 0}, which confirms that it is a center condition.

The advantage of this method is easy to see how the results are verified. However, the triangular de-
composition computation with additional higher-order focus values could be very heavy, and sometimes
impossible to compute. Therefore, we introduce another method which is less illustrative but computation-
ally efficient.

The second method uses the built-in Maple procedure Regularize. Recall from Example 6, Regularize

takes a polynomial p and a regular chain T as input, in this case the polynomial is v3, and T is chosen
from (19). It returns two lists. The first one consists of the regular chain Tr such that p is regular modulo
Tr. The second list consists of the regular chain Tz such that p is zero (or singular) modulo Tz. If the first
list is empty, then p is zero modulo the input regular chain T , implying that T will make v3 vanish. If the
second list is empty, then p is regular modulo T , which implies that this regular chain will make p 6= 0.

After the triangular decomposition of v1 and v2 the regular chains in (19) are then used to regularize
v3. The Regularize process shows that for the first three regular chains in (19), the first output list is
empty, implying that the first three regular chains make v3 vanish. For the last regular chain, the second
output of the Regularize procedure is empty, indicating that the last regular chain makes v3 6= 0. One
can also use Regularize on v4 with respect to each regular chain in (19) as well to further verify, which
gives exactly the same result as that obtained using the first method. Compared to the first method, the
Regularize procedure takes much less time in computation. We shall apply the Regularize method in the
next subsection to compute nine limit cycles for a special cubic system.

5.2. A special cubic system

A general normalized cubic system with a fixed point at the origin has the form:

ẋ = a10x + a01y + a20x
2

+ a11xy + a02y
2

+ a30x
3

+ a21x
2
y + a12xy

2
+ a03y

3
,

ẏ = b10x + b01y + b20x
2

+ b11xy + b02y
2

+ b30x
3

+ b21x
2
y + b12xy

2
+ b03y

3
,

(22)

where aij’s and bij’s are parameters. According to [Yu & Corless, 2009], the system can be simplified into

ẋ = αx + y + ax
2

+ (b + 2d)xy + cy
2

+ fx
3

+ gx
2
y + (h − 3p)xy

2
+ ky

3
,

ẏ = −x + αy + dx
2

+ (e − 2a)xy − dy
2

+ ℓx
3

+ (m − h − 3f)x
2
y + (n − g)xy

2
+ py

3
,

(23)

where a can be an arbitrary nonzero constant, usually set to a = 1 by a proper scaling.
It has been proved [Liu & Li, 1989] that α = b = d = e = h = n = m = 0 is a center condition for the

origin. In order to find nine limit cycles we need v0 = · · · = v8 = 0, but v9 6= 0. We follow the set-up of [Yu
& Corless, 2009] and set the following 5 parameters to be zero:

α = b = d = e = h = 0 . (24)

By the perturbation method, eight focus values are computed, with v1 given by

m/8 , (25)

which obviously indicates that m = 0 to ensure v1 = 0. With this new condition, the second focus value
v2 becomes

−1/8fn + 1/8pn . (26)

Note that nf is a factor in v3 and all higher-order focus values. This indicates that either n = 0, leading to
the center condition [Liu & Li, 1989], or a new candidate condition for center: α = b = d = e = h = m =
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f = p = 0. So, in the following, we assume nf 6= 0. Thus, the only choice of making v2 = 0 for existence of
limit cycles is

p = f . (27)

Under this condition, v3 has the following form:

−1/192fn(3n + 15ℓ − 30c + 45 − 35c2 + 15k) . (28)

Since nf 6= 0, an easy choice of making v3 vanish is

n = −5ℓ + 10c − 15 +
35

3
c2 − 5k . (29)

Now there are 5 free parameters,

c, k, ℓ, f, g, (30)

remaining in the five focus values v4, v5, . . . , v8. Using the above results and removing the common factor
nf and a constant factor in the resulting focus values we obtain

v4 =648 − 162c − 516c
2

+ 72ℓ + 81k + 45g − 30gc − 434c
3

+ 60cℓ + 54ck − 168c
4

+ 56c
2
ℓ − 24k

2

− 6gk − 7c
2
g − 6gℓ − 30kℓ − 6ℓ

2
+ 21kc

2
,

(31)

v5 =231336 − 265836c
3
k + 37350kc

2
ℓ + 6174c

2
gℓ − 4428gkℓ + 1764c

2
gk − 66204gc − 184098c

2
ℓ

+ 40392gk − 133182c
2
g + 25002gℓ + 74610kℓ − 361344kc

2
+ 270c

2
ℓ
2

− 14448c
4
ℓ − 101871kc

4

− 1944kℓ
2

− 7506k
2
ℓ + 24165k

2
c
2

− 13587c
4
g − 1575g

2
c
2

− 540g
2
ℓ − 864f

2
k

− 13860f
2
c
2

− 864f
2
ℓ − 540g

2
k − 3618gk

2
− 810gℓ

2
− 34296c

3
ℓ − 156888ck − 135828cℓ

− 4590g
2
c + 360cℓ

2
+ 40104ckℓ + 6912gcℓ − 3348gck − 41580c

3
g − 11880f

2
c + 38394ck

2

− 497556c
2

+ 655080c
3

+ 548132c
4

+ 60525k
2

+ 16110ℓ
2

+ 187306c
5

− 270ℓ
3

+ 54152c
6

− 5832k
3

+ 6885g
2

+ 17820f
2

− 607122c + 115398ℓ + 363339k + 131625g ,

(32)
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v6 =323074872gkc
2
ℓ + 46434531132c

3
k − 10614656412kc

2
ℓ − 4323518316c

2
gℓ + 1747144728gkℓ

− 8537169420c
2
gk + 477367776k

2
c
2
ℓ − 242856468kc

2
ℓ
2

+ 512185086kc
4
ℓ − 4214700gc

2
ℓ
2

− 103297626gc
4
ℓ − 762314922gkc

4
− 34795656gkℓ

2
− 93514176gk

2
ℓ + 234557856gk

2
c
2

+ 191130624f
2
c
2
ℓ − 80777088f

2
kℓ − 26967924g

2
kc

2
− 33543720g

2
kℓ + 29212704g

2
c
2
ℓ

− 428849856f
2
kc

2
− 189314496f

2
gc

2
− 18942336f

2
gk − 18942336f

2
gℓ + 3496808634c

5
k

− 12158345106gc + 494477136gckℓ − 5648392872c
2
ℓ + 6530829606gk − 8063653761c

2
g

+ 2727654102gℓ + 5077228878kℓ − 14369006205kc
2

− 2308784724c
2
ℓ
2

+ 11211047880c
4
ℓ

+ 26955499191kc
4

+ 847752156kℓ
2

+ 2178967392k
2
ℓ − 10546897392k

2
c
2

+ 11692092699c
4
g

− 1454945976g
2
c
2

+ 324725760g
2
ℓ + 1155995712f

2
k − 3206863872f

2
c
2

+ 492687360f
2
ℓ

+ 522334332g
2
k + 1571957280gk

2
+ 409782564gℓ

2
+ 1168019685kc

6
− 20942712kℓ

3

+ 499013568k
3
c
2

− 53343360k
3
ℓ − 22915872k

2
ℓ
2

− 1728185544k
2
c
4

+ 11043864c
2
ℓ
3

− 527082024c
6
ℓ + 144765594c

4
ℓ
2

− 26181792g
2
k

2
− 7361928g

2
ℓ
2

− 29683332g
2
c
4

− 66407040gk
3

+ 512530473gc
6

− 7688520gℓ
3

− 11975040f
2
ℓ
2

− 287005824f
2
c
4

− 68802048f
2
k

2
− 15098076g

3
c
2

− 3143448g
3
k − 3143448g

3
ℓ + 617404032ck

3

− 449534652c
5
ℓ + 17856001944c

3
ℓ − 4222690272c

3
k

2
− 181543032g

2
c
3

+ 2704428702gc
5

− 1408703616f
2
c
3

− 31447268118ck − 38578680g
3
c − 12575398716cℓ − 909902808g

2
c

+ 1301328c
3
ℓ
2

+ 16674336cℓ
3

− 1886860656cℓ
2

− 10011607128ckℓ − 4634256888gck

+ 233217792f
2
cℓ + 337929408gck

2
+ 1314575496c

3
kℓ − 247758264ckℓ

2
+ 365912640ck

2
ℓ

− 561043368gc
3
ℓ + 150984gcℓ

2
− 2608877592gc

3
k − 208987776f

2
ck + 40376880g

2
cℓ

− 91362168g
2
ck − 251475840f

2
gc + 14327069940c

3
g + 377213760f

2
g − 1438591104f

2
c

− 7726593888ck
2

+ 2289369096 + 11186921988c
2

+ 49162023090c
3

− 4045402440c
4

+ 7440988536k
2

+ 1963517274ℓ
2

− 46874362782c
5

+ 176926680ℓ
3

− 19564392796c
6

+ 1527553728k
3

+ 1314588204g
2

+ 3474845568f
2

− 369870578c
7

− 47900160k
4

+ 176215256c
8

− 3470040ℓ
4

+ 57868020g
3

− 17873296866c + 4874228136ℓ + 5523913665k + 3624801597g .

(33)

The other 2 polynomials,

v7 = v7(c, f, g, k, ℓ), v8 = v8(c, f, g, k, ℓ) , (34)

with degrees 10 and 12, are too large to be presented here. These five focus values are input to the
triangular decomposition algorithm. To simplify the computing process, a better order was generated
before the triangular decomposition (by using the built-in Maple procedure SuggestVariableOrder),

f > g > ℓ > k > c . (35)

According to the size of the input system, a sufficiently large prime,

℘ := 304166505300000047 , (36)

with 258 bits, is chosen to conduct the modular triangular decomposition. Note that the prime chosen here
guarantees the success of modular algorithm.

The program was successfully executed to generate seven regular chains. In order to be lifted, they
are mapped into two equiprojectable regular chains. The first one is omitted since it contains f = 0. The
second regular chain is






f2 + Q1(c) + 109048982804251206 ,

g + Q2(c) + 213759544982554218 ,

ℓ + Q3(c) + 212357665370487176 ,

k + Q4(c) + 235643319065695752 ,

Q5(c) + 249698644301675923 ,

(37)
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where Q1(c), Q2(c), · · · , Q5(c) are polynomials in c with order 425, 425, 425, 425 and 426, respectively. This
regular chain is lifted using the same prime given in (36) to obtain,

T =






R1(c)f2 + S1(c) + P1 ,

R2(c)g + S2(c) + P2 ,

R3(c)ℓ + S3(c) + P3 ,

R4(c)k + S4(c) + P4 ,

S5(c) + P5 ,

(38)

where R1(c), · · · , R4(c), S1(c), · · · , S5(c) are polynomials in c, with order 426 in S5(c) and 425 in the rest;
P1, . . . , P5 are big constant terms, and approximately equal to






P1 ≈ 0.9531642255 · 102755 ,

P2 ≈ 0.6286620222 · 101432 ,

P3 ≈ 0.6286809511 · 101432 ,

P4 ≈ −0.2811943803 · 101428 ,

P5 ≈ −0.1285851059 · 10517 .

(39)

Since these constants are long, only their first 10 digits and their size are presented. In order to check if
v9 vanishes or not on the common roots of T , one can follow the quadratic example, and use Regularize

procedure. However, since T is very large, we check this by the following steps instead. Firstly, we compute
Tp = T mod ℘, and check if Tp is a regular chain which turns out to be true. Secondly, we take v9 mod ℘

and Tp as the input for Regularize, and find out that v9 mod ℘ does not vanish on Tp. According to the
specialization property of resultants [Mishra, 1993] (or Theorem 4 in [Chen & Moreno Maza, 2012]), this
is a sufficient condition for v9 6= 0 on T . Therefore, we have found the conditions such that v1 = v2 = · · · =

v8 = 0 but v9 6= 0, indicating that there exist at most nine limit cycles. Note that one requirement during
the lifting procedure is that the Jacobian to be nonzero, which satisfies the condition of Theorem 2. This
implies that all the positive real roots of the second regular chain lead to nine limit cycles.

By isolating the real roots of the obtained regular chain, we found that it has 78 real roots. The
computer outputs of the intervals for the first several ones are shown below:

[f = [-11/32, -41/128], g = [-93359084781/1073741824, -186718169557/2147483648],

l = [1244408533/67108864, 39821073059/2147483648],

k = [64099524509/68719476736, 128199049023/137438953472],

c = [-121790475331111530718965725230856466924457099433735144066985116204186867199659306166505138577217\

441/341757925747345613183203472987128338336432723577064443191526657251555156124902488003673933909\

85216, -38059523540972353349676789134642645913892843573042232520932848813808395999893533177032855\

80538045/1067993517960455041197510853084776057301352261178326384973520803911109862890320275011481\

043468288]]

[f = [41/128, 11/32], g = [-93359084781/1073741824, -186718169557/2147483648],

l = [1244408533/67108864, 39821073059/2147483648],

k = [64099524509/68719476736,128199049023/137438953472],

c = [-121790475331111530718965725230856466924457099433735144066985116204186867199659306166505138577217\

441/341757925747345613183203472987128338336432723577064443191526657251555156124902488003673933909\

85216, -38059523540972353349676789134642645913892843573042232520932848813808395999893533177032855\

80538045/1067993517960455041197510853084776057301352261178326384973520803911109862890320275011481\

043468288]]

[f = [-19/4, -35/8], g = [-5239003/262144, -83824045/4194304],

l = [292265139/16777216, 1169060569/67108864],

k = [-247962889/134217728, -991851547/536870912],

c = [-115680680925314261355705483664130489454918902845080667457220728245158022295965108754679631530185\

579177248617/366959778558411441857731343248333910527450398266924979798014214301907660174157569291\

20296849762010984873984, -14460085115664282669463185458016311181864862855635083432152591030644752\

786995638594334953941273197397156077/458699723198014302322164179060417388159312997833656224747517\

7678773845752176969616140037106220251373109248]]

...

The total time used for the modular triangular decomposition is 1622615.24 sec (almost 19 days),
on a computer with Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz and 8G of memory. Isolating the
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real roots of the regular chain takes about nine hours in Maple on one node of a cluster. The node has 4
processors, each of which is a 12-core AMD Opteron(tm) 6168 @ 0.8GHz processor, and total memory of
250 GB.

To illustrate the critical focus values, we take one solution with 1000 significant figures (only the first
50 decimals are printed for convenience):

α = b = d = e = h = m = 0 ,

p = f ,

n = −5ℓ + 10c − 15 +
35

3
c
2

− 5k ,

c = −3.5636474286524271074464850122360152178067239603615 · · · ,

f = −0.33257083410940510824128708562052896225706851485676 · · · ,

g = −86.947423200934377419805695811344083098600366046486 · · · ,

l = 18.543132142599506651625032427714327516815314466604 · · · ,

k = 0.93277084686805751726888595860136166253862306463035 · · · .

which yields the following approximations for critical focus values:

v0 = 0 , v4 = −0.2628637706 · 10
−1088

, v9 = 0.9410263940 · 10
19

.

v1 = 0 , v5 = −0.3957953881 · 10
−1078

,

v2 = 0 , v6 = −0.5385553132 · 10
−1076

,

v3 = 0 , v7 = −0.5135260069 · 10
−1074

,

v8 = −0.4251758871 · 10
−1072

,

and the determinant of the Jacobian matrix is −0.4633625957 · 101259. This clearly indicates the existence
of nine limit cycles. By increasing the precision used to 2000 digits, the size of v4, . . . , v8 is reduced to
O(10−2000). These numbers are zero in actuality. By having constructed isolating intervals for the real root
earlier, this was proved. The numerical computation here merely illustrates the proof.

6. Conclusion

Quantitative analysis of polynomial dynamical systems, such as determining the number of small-amplitude
limit cycles around the origin, naturally leads to solve systems of multivariate polynomial equations and
inequalities. Proving formally that such a semi-algebraic system is consistent, and, if it is, computing all
its solutions or a sample of them, are goals that make the use of symbolic and exact methods desirable.

In this paper, we have demonstrated that the theory of regular chains possesses powerful algorithmic
tools to achieve those goals. We have applied to large input focus value systems an algorithm for computing
triangular decompositions of polynomial systems via modular techniques. From these calculations, we have
obtained conditions for the existence of limit cycles and potential center conditions. One example, in
particular, exhibiting nine limit cycles shows the computational power and efficiency of these tools from
regular chain theory.

These tools, available in the RegularChains library in Maple can be applied to solve other polynomial
systems arising from real physical or engineering systems.

Acknowledgments

This work was supported by the Natural Science and Engineering Research Council of Canada (NSERC),
and ADF from the University of Western Ontario.

Appendix A. Maple input for the quadratic example

read "focusvalues_quadric": # Read in the focus values

eqs := [v2, v3];
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vars := SuggestVariableOrder(eqs); # Suggest a best order for the variables

R := PolynomialRing(vars); # Construct the polynomial ring

dec := Triangularize(eqs, R, output=lazard);

# Compute the triangular decomposition

Info(dec, R);

# Display the output which contains four regular chains,

# [[c+1], [d, b], [e-5*c-5, b], [e, b]];

# Now we check if $v4$ vanishes on each of the regular chains

#Method1: using Regularize.

Regularize(v4, dec[1], R);

# [[], [regular_chain]]

# This output shows that v4 vanishes on zeros of dec[1];

# This is equivalent to say that dec[1] is a center condition.

Regularize(v4, dec[2], R);

# Same as above

Regularize(v4, dec[4], R);

# Same as above

Regularize(v4, dec[3], R);

# The output is [[regular_chain], []],

# which says that v4 does not vanish on all the zeros of dec[3]

# Method2:

dec2 := Triangularize([v2, v3, v4], R, output=lazard);

Info(dec2, R);

# [[c+1], [d, b], [e, b], [d^2+2*c^2+c, e-5*c-5, b]]

# According the result from dec (v2, v3 only),

# [c+1], [d, b], [e, b] are center conditions, since v4 vanishes on them.

# d^2+2*c^2+c must be zero in order to make v4 vanishes at [e-5*c-5, b].

# Thus, [e-5*c-5=0, b=0], but d^2+2*c^2+c<>0 is condition for limit cycle.

dec3 := Triangularize([v2, v3, v4, v5], R, output=lazard);

Info(dec3, R);

# [[c+1], [d, b], [e, b], [d^2+2*c^2+c, e-5*c-5, b]]

# By dec2, all the components from dec2 makes v5 vanishes,

# which means [d^2+2*c^2+c, e-5*c-5, b] is a new center condition.

Appendix B. Maple input for the cubic example

read "focusvalues_cubic";

with(RegularChains);

F:= [F1, F2, F3, F4, F5];

R:= PolynomialRing[vars]; # Construct the polynomial ring

vars:= SuggestVariableOrder(F); # Suggest a best order for the variables

p := 304166505300000047; # Pick a large enough prime

Rp := PolynomialRing(vars, p); # Construct the polynomial ring mod p

dec := Triangularize(F, Rp); # Compute the triangular decomposition modulo p

map(NumberOfSolutions, dec, Rp);
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# Check the number of solutions of each output regular chain

# [474, 214, 112, 34, 18, 1, 1]

ndec := [seq(op(NormalizeRegularChain(rc, Rp, ’normalized’=’strongly’)), rc=dec)];

# Normalize each regular chain

edec := [op(EquiprojectableDecomposition(ndec, Rp))];

# Compute the equiprojectable decomposition, which contains two regular chains

# edec[1], edec[2]

with(MatrixTools);

jm1 := JacobianMatrix(F, edec[1], Rp); # Jacobian of edec[1]

MatrixTools:-MatrixInverse(jm1, edec[1], Rp);

# Check if the Jacobian is invertable, which returns false

jm2 := JacobianMatrix(F, edec[2], Rp); # Jacobian of edec[2]

MatrixTools:-MatrixInverse(jm2, edec[2], Rp);

# The Jacobian of edec[1] is zero

Equation(edec[1],Rp); # Show the equations in edec[1], which contains f=0

# This is a known center condition

# The Jacobian of edec[2] is non-zero

Lift(F, R, edec[2], 10, p); # Lift the edec[2]

eqn0 := Equations(dec, Rp); # Extract the equations from edec[2]

#check if the five equations is initial is 0 mod p

expand(Initial(eqn0[1], R)) mod p;

expand(Initial(eqn0[2], R)) mod p;

expand(Initial(eqn0[3], R)) mod p;

expand(Initial(eqn0[4], R)) mod p;

expand(Initial(eqn0[5], R)) mod p;

#check if still a regular chain mod p;

eqp := map(x->expand(x) mod p, eq0);

rc := Empty(Rp);

rc := Chain(eqp[5..-1], rc, Rp); # Reconstruct the regular chain mod p

Regularize(Initial(eqp[4], Rp), rc, Rp);

# [[regular_chain], []]

rc := Chain(ListTools:-Reverse(eqp[4..-1]), Empty(Rp), Rp);

Regularize(Initial(eqp[3], Rp), rc, Rp);

# [[regular_chain], []]

rc := Chain(ListTools:-Reverse(eqp[3..-1]), Empty(Rp), Rp);

Regularize(Initial(eqp[2], Rp), rc, Rp);

# [[regular_chain], []]

rc := Chain(ListTools:-Reverse(eqp[2..-1]), Empty(Rp), Rp);

Regularize(Initial(eqp[1], Rp), rc, Rp);

# [[regular_chain], []]

rc := Chain(ListTools:-Reverse(eqp), Empty(Rp), Rp);

# It turns out that it is still a regular chains mod p

read "v9": # Read the next focus value v9

Regularize(v9, rc, Rp); # Check if the regular chain makes v9 vanish

#[[regular_chain], []]
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# v9 does not vanish on the regular chain, so the eq0 deals to limit cycles

References

Arnold, E. [2003] “Modular algorithms for computing Gröbner bases,” Journal of Symbolic Computation
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