
Real Root Isolation of Regular Chains

François Boulier1, Changbo Chen2,
François Lemaire1, and Marc Moreno Maza2

1 LIFL, Université de Lille 1, 59655 Villeneuve d’Ascq Cedex, France
{Francois.Boulier,Francois.Lemaire}@lifl.fr

2 ORCCA, University of Western Ontario (UWO), London, Ontario, Canada
{cchen252,moreno}@csd.uwo.ca

Abstract. We present an algorithm RealRootIsolate for isolating the real
roots of a polynomial system given by a zerodimensional squarefree reg-
ular chain. The output of the algorithm is guaranteed in the sense that
all real roots are obtained and are described by boxes of arbitrary preci-
sion. Real roots are encoded with a hybrid representation, combining a
symbolic object, namely a regular chain, and a numerical approximation
given by intervals. Our algorithm is a generalization, for regular chains,
of the algorithm proposed by Collins and Akritas. We have implemented
RealRootIsolate as a command of the module SemiAlgebraicSetTools of
the RegularChains library in Maple. Benchmarks are reported.

1 Introduction

Finding real roots for univariate polynomials has been widely studied. Some
methods guarantee the number of real roots and isolate each real root in an
arbitrary small interval. The algorithm presented in this paper is a generalization
to regular chains of the algorithm given by Collins and Akritas [6].

There exist many different approaches for isolating real roots of univariate
polynomials by means of Descartes rules of signs [11]. Uspensky [31] rediscov-
ered independently3 an inefficient version of Vincent’s work [1]. More recent
algorithms are closer to the original work of Vincent and based on continuous
fractions [2, 3]. The approach of [29] is very efficient in memory since it avoids
the storage of one polynomial at each node of the tree of the recursive calls.

The methods mentioned above are all for univariate polynomials with inte-
gral or rational coefficients. In [12], the authors apply Descartes Algorithm for
polynomials with bit-stream coefficients. In [15, 7], the authors present algo-
rithms for isolating the real roots of univariate polynomials with real algebraic
number coefficients. There exist different approaches for isolating real roots of
polynomial systems with finitely many complex solutions. Various constructions
are employed to generalize to multivariate systems the techniques known for
univariate equations: rational univariate representation [27], polyhedron alge-
bra [23], and triangular decompositions [25, 20, 33, 5].

3 Recent investigations of A. Akritas seem to prove that Uspensky only had an incom-
plete knowledge of Vincent’s paper, from [30, pages 363-368].

In this paper, we generalize the Vincent-Collins-Akritas Algorithm to zerodi-
mensional squarefree regular chains; therefore our work falls in the same category
as this latter group of papers. Our idea is to build inductively (one variable af-
ter another) “boxes” in which one and only one real solution lies. This basically
amounts to applying the Vincent-Collins-Akritas Algorithm to polynomials with
real algebraic coefficients defined by a regular chain. Our main algorithm Real-
RootIsolate takes a zerodimensional squarefree regular chain T as an input and
returns a list of disjoint boxes (Cartesian products of intervals) such that each
box contains exactly one real root of T . We have implemented our algorithm in
Maple in the module SemiAlgebraicSetTools of the RegularChains library.

Although rediscovered independently, the techniques presented here share
some ideas with those of [25, 26]. However, our algorithm focuses on finding iso-
lation boxes for real solutions of polynomial systems whereas Rioboo’s primary
goal is to implement the real closure of an ordered field. Moreover, Rioboo uses
Sturm sequences and subresultants for univariate polynomial real root isolation.

Other real root isolation algorithms based on triangular decompositions [20,
33, 5] rely on the so-called “sleeve polynomials”, see Section 2.5.

We do not report on a comparative implementation with the methods in [25,
7, 20, 33, 5]. In order to ensure a fair comparison, one would need to bring these
six real root isolation methods (including ours) in a common implementation
framework, which would require a significant amount of work.

As mentioned, the algorithm presented here has been implemented in Maple
interpreted code. However, it does not rely yet on fast polynomial arithmetic
nor modular methods for regular chain computations. As shown in [18], these
techniques should speed-up our implementation dramatically.

We compare our code with the RootFinding[Isolate] command (available in
Maple) based on the rational univariate representation [27]. With no surprise,
the highly optimized supporting C code allows RootFinding[Isolate] to outper-
form our modest Maple implementation on systems that are in Shape Lemma
position [4]. However, for different families of examples, corresponding to non-
equiprojectable4 varieties the situation is reversed which demonstrates the inter-
est of our approach, even in this unfair comparative implementation framework.

Another contribution of our work is that it equips Maple with a tool for
manipulating real numbers exactly. For instance, our code provides a data-type
(called a box) for encoding a point with n coordinates that are real algebraic
numbers, together with a function for deciding whether this point cancels a
given n-variate polynomial.

We investigate the impact of different strategies for isolating roots. In par-
ticular, we identify a family of examples where the use of normalized regular
chains instead of arbitrary (but still zero-dimensional) regular chains can speed-
up the root isolation even though normalization tends to substantially increase
coefficient sizes, as established in [9].

4 The notions of an equiprojectable variety and equiprojectable decomposition are
discussed in [8].

Algorithm 1 RootIsolateVCA(p)

Input: p squarefree polynomial of Q[x]
Output: an interval decomposition of the real roots of p
1: H ← a strict bound on the roots of p
2: return RootIsolateAuxVCA(p,]−H,H[)

Algorithm 2 RootIsolateAuxVCA(p,]a, b[)

Input: p squarefree polynomial in Q[x] and a < b rational
Output: an interval decomposition of the real roots of p which lie in]a, b[
1: nsv ← BoundNumberRootsVCA(p,]a, b[)
2: if nsv = 0 then return ∅
3: else if nsv = 1 then return]a, b[
4: else
5: m← (a + b)/2 res← ∅
6: if p(m) = 0 then res← {{m}}
7: {Next line ensures the roots are sorted increasingly}
8: return RootIsolateAuxVCA(p,]a,m[) ∪ res ∪ RootIsolateAuxVCA(p,]m, b[)

2 Real Root Isolation of a Zerodimensional Regular
Chain

After recalling the Vincent-Collins-Akritas algorithm in Section 2.1 and intro-
ducing definitions in Section 2.2 and Section 2.3, the algorithm RealRootIsolate
and its subalgorithms are presented in Section 2.4. In Section 2.5 we compare
our method with other existing approaches.

2.1 The Vincent-Collins-Akritas Algorithm

The Vincent-Collins-Akritas algorithm isolates the real roots of a squarefree
polynomial (with rational coefficients) with an arbitrary precision. A basic ver-
sion (Algorithm 1) is recalled here, before its generalization in Section 2.4.

Definition 1. Let V be a finite set of t real numbers. An interval decomposition
of V is a list I1, . . . , It such that each Ii is an open rational interval]a, b[or a
rational singleton {a}, each Ii contains one element of V and Ii∩Ij = ∅ if i 6= j.

In Algorithm 1, there are different ways to compute a strict bound H (in the

sense that any root α of p satisfies |α| < H). For example, if p =
∑d

i=0 aix
i, take

the Cauchy bound H = 1
|ad|

∑d
i=0 |ai|. Sharper bounds are given in [2].

The main arguments for the correctness of Algorithm 1 are the following.
Algorithm 3 computes a polynomial p̄ whose positive real roots are in bijection
with the real roots of p which lie in]a, b[. The application of Descartes’ rule
of signs on p̄ thus provides a bound on the number of real roots of p which lie
in]a, b[. This bound is exact when equal to 0 or 1 [24, Theorem 1.2]. Since p is
squarefree, the bound returned by Algorithm 3 will eventually become 0 or 1,
by [24, Theorem 2.5] so that the whole method terminates.

Algorithm 3 BoundNumberRootsVCA(p,]a, b[)

Input: p ∈ Q[x] and a < b rational
Output: a bound on the number of roots of p in the interval]a, b[

1: p̄← (x + 1)d p
(

a x+b
x+1

)
where d is the degree of p, and denote p̄ =

∑d
i=0 aix

i

2: a′e, . . . , a
′
0 ← the sequence obtained from ad, . . . , a0 by removing zero coefficients

3: return the number of sign variations in the sequence a′e, . . . , a
′
0

2.2 Regular Chains

In this paper one only considers zerodimensional squarefree regular chains, de-
noted zs-rc. Roughly speaking, a zerodimensional regular chain is a triangular
set5 of polynomials, with as many equations as variables, and which has a finite
number of complex roots (and consequently a finite number of real roots).

Let x1 < · · · < xs be s variables, and denote Qs = Q[x1, . . . , xs]. Let p ∈ Qs

be a non-constant polynomial. We denote by mvar(p) the main variable of p,
by init(p) the initial (or leading coefficient w.r.t. mvar(p)) of p, by mdeg(p)
the degree of p in its main variable and by sep(p) the separant of p, that is
∂p/∂mvar(p). If T is a set of polynomials in Qs, 〈T 〉 denotes the ideal generated
by T and V (T) denotes the set of all complex solutions of the system T = 0. For
a given xi, T≤xi

(resp. T>xi
) denotes the elements of T whose main variable is

less (resp. strictly greater) than xi.

Definition 2. Let T = {p1, . . . , ps} where each pi lies in Qs. The set T is a
zerodimensional squarefree regular chain (or zs-rc) of Qs if mvar(pi) = xi for
1 ≤ i ≤ s, init(pi) does not vanish on V ({p1, . . . , pi−1}) for any 2 ≤ i ≤ s, and
sep(pi) does not vanish on V ({p1, . . . , pi}) for any 1 ≤ i ≤ s.

Thanks to the first two conditions, it is easy to show that the system T = 0
has a finite number of complex solutions (counted with multiplicity), which is
equal to the product of the main degrees of the elements of T denoted Deg(T).
The third condition, which forbids multiple roots, is the natural generalization of
squarefree polynomials to regular chains. As for the algorithm RootIsolateVCA,
this condition is only required to make the isolation algorithms terminate.

In practice, the zs-rc can be computed using the Triangularize Algorithm [22]
available in the RegularChains library shipped with Maple. Moreover, the
regular chains are not built by checking the conditions of Definition 2 but by
using regularity tests of polynomials modulo ideals. A polynomial p is said to
be regular modulo an ideal I if it is neither zero, nor a zero-divisor modulo I. If
T is a regular chain, p is said to be regular modulo T if p is regular modulo the
ideal 〈T 〉. Thus, the following definition is equivalent to Definition 2.

Definition 3. Let T = {p1, . . . , ps} where each pi lies in Qs. The set T is
a zerodimensional squarefree regular chain (or zs-rc) of Qs if mvar(pi) = xi
for any 1 ≤ i ≤ s, init(pi) is regular modulo the ideal 〈p1, . . . , pi−1〉 for any
2 ≤ i ≤ s, and sep(pi) is regular modulo the ideal 〈p1, . . . , pi〉 for any 1 ≤ i ≤ s.
5 triangular set in the sense that each polynomial introduces exactly one more variable

The next lemma makes the link between the regularity property of a poly-
nomial q modulo a zs-rc and the fact that q does not vanish on the solutions of
a zs-rc. It is implicitly used to check whether or not a polynomial vanishes on a
root of a regular chain in the CheckZeroDivisor algorithm.

Lemma 1. Let T be a zs-rc of Qs and q a polynomial of Qs. Then q is regular
modulo T iff q does not vanish on any complex solution of T .

2.3 Boxes

This section defines the boxes used for isolating solutions of zs-rc, as well as
extra definitions needed to specify the algorithms of Section 2.4.

Definition 4. An s-box (or box) B is a Cartesian product B = I1 × · · · × Is
where each Ii is either a rational open interval]a, b[(a and b are rational) or a
singleton {a} with a rational. The width of B, denoted by |B|, is defined as the
maximum of the |Ii| where |Ii| = 0 if it is a singleton and b− a if Ii =]a, b[.

The algorithm EvalBox(p,B), where p ∈ Qs, and B is a s-box, returns an
interval I such that p(v) ∈ I for any v ∈ B. Different variants for EvalBox(p,B)
exist. Any variant for EvalBox(p,B) satisfying the following property can be used:
the box EvalBox(p,B) should tend to the singleton {p(x0)} when the width of B
tends to zero (by keeping the condition x0 ∈ B). This simply ensures that the
interval EvalBox(p,B) should shrink as the width of the box B decreases.

Definition 5. Let B = I1× · · · × Is be an s-box and T = {p1, . . . , ps} be a zs-rc
of Qs. We say (B, T) satisfies the Dichotomy Condition (or DC) if

– one and only one real root of T lies in B
– if I1 =]a, b[, p1(x1 = a) and p1(x1 = b) are nonzero and have opposite signs
– for each 2 ≤ k ≤ s, if Ik =]a, b[then the two intervals EvalBox(pk(xk = a), B)

and EvalBox(pk(xk = b), B) do not meet 0 and have opposite signs.6

This last condition is the natural generalization of the condition p(a) and p(b)
are nonzero and have opposite sign, and p vanishes only once on the interval]a, b[
in the univariate case. Condition DC allows to refine a box very much like one
refines the interval]a, b[by dichotomy.

Definition 6. Let V be a finite set of t points of Rs. A list B1, . . . , Bt of s-
boxes is called a box-decomposition of V if each point of V lies in exactly one
Bi and Bi ∩ Bj = ∅ if i 6= j. If T is a zs-rc, we call box-decomposition of T a
box-decomposition of the real roots of T = 0.

Definition 7. A task M = task(p,]a, b[, B, T) is defined as: T is a zs-rc of
Qs, p ∈ Qs+1, T ∪ {p} is a zs-rc, B is an s-box, (B, T) satisfies DC, and
a < b are rational numbers. The solutions of M denoted by Vt(M) are defined
as V (T ∪ {p}) ∩ (B×]a, b[) (i.e. the real solutions of T ∪ {p} which prolong the
real root in B and whose component xs+1 lies in]a, b[).

6 the sign of an interval not meeting zero is just the sign of any element of it

Algorithm 4 CheckZeroDivisor(p, T)

Input: T a zs-rc Qs and p ∈ Qs

Output: If p is regular modulo T , then the algorithm terminates normally. Otherwise,
an exception is thrown exhibiting t zs-rc T1, . . . , Tt such that C1 V (T1) ∪ · · · ∪
V (Tt) = V (T), and C2

∑t
i=1 Deg(Ti) = Deg(T) hold.

1: T1, . . . , Tt ← Regularize(p, T)
2: if p belongs to at least one 〈Ti〉 then throw exception(T1, . . . , Tt)

Algorithm 5 RefineBox(B, T)

Input: T is a zs-rc of Qs, (B, T) satisfies DC and |B| > 0
Output: an s-box B̄ such that |B̄| ≤ |B|/2, B̄ ⊂ B and (B̄, T) satisfies the DC

2.4 Algorithms

The main algorithm RealRootIsolate, which isolates the real roots of a zerodi-
mensional squarefree regular chain, is presented here. Only elements of proofs
are given. However, specifications are stated with details. One assumes n > 1.

The algorithms presented here use the mechanism of exceptions which is
available in a lot of programming languages. We find it appropriate since doing
computations using the D5 principle [10] can be seen as doing computations
as if the coefficient ring were a field. When a zero divisor is hit (leading to a
splitting), one raises an exception exhibiting the splitting. This exception can
then be caught to restart computations. This shortens and makes clearer7 the
algorithms presented here. Only the Algorithm 4 throws exceptions.

Algorithm 4 checks whether p is regular modulo T or not. If p is regular
modulo T , the algorithm returns normally, otherwise an exception is raised.
Algorithm 4 is called whenever one needs to know whether a polynomial vanishes
or not, on a real root x0 of T isolated by a box B. Indeed, if p is regular modulo T ,
thanks to Lemma 1, p does not vanish on x0. This allows to refine B until
EvalBox(p,B) does not contain 0, which gives the sign of p(x0).

The algorithm Regularize is not recalled here (see [22] for details) but its
specification is: if T is a zs-rc, Regularize(p, T) returns a list of zs-rc T1, . . . , Tt
such that for each Ti, p either belongs to 〈Ti〉 or is regular modulo Ti. Moreover
T1, . . . , Tt is (what we call) a splitting of T , which in dimension 0 satisfies the
two conditions C1 and C2 of the output of Algorithm 4. Due to condition C2,
splittings cannot occur indefinitely.

Algorithm 5 is able to refine a box containing a real root by dividing its
width by 2. It is simply the generalization of the dichotomy process for splitting
in two an isolating interval. The algorithm is not detailed here for brevity. The
main idea is to divide by two each interval Ii of B = I1× · · ·× Is which is larger
than |B|/2 while keeping the DC condition.

Algorithm 6 is a generalization of Algorithm 1 for a zs-rc. Line 1 isolates
the real roots of the univariate polynomial Tx1 . The variable toDo is a set of

7 otherwise, splittings need to be handled each time a function returns a value

Algorithm 6 RealRootIsolate(T)

Input: T is a zs-rc
Output: a box-decomposition B1, . . . , Bp of T
1: I1, . . . , It ← RootIsolateVCA(Tx1)
2: toDo← {(T>x1 , (Ii, T≤x1))}1≤i≤t

3: res← ∅
4: while toDo 6= ∅ do
5: pick and remove a (T>xi , (B, T≤xi)) from toDo
6: B′1, . . . , B

′
t′ ← SolveNewVar(Txi+1 , B, T≤xi)

7: if xi+1 = xn then res← res ∪ {B′1, . . . , B′t′}
8: else toDo← toDo ∪ {(T<xi+1 , (B

′
j , T≥xi+1))}1≤j≤t′

9: return res

Algorithm 7 SolveNewVar(p,B, T)

Input: T is a zs-rc of Qs, p ∈ Qs+1, T ∪ {p} is a regular chain, (B, T) satisfies DC
Output: a box-decomposition of the roots (x0

1, . . . , x
0
s+1) of T ∪ {p} such that

(x0
1, . . . , x

0
s) is the root of T which lies in B

1: refine B into a box B′ such that 0 /∈ EvalBox(ip, B
′)

2: compute a bound H on the roots of p(x0
1, . . . , x

0
s, xs+1)

3: toDo← {task(p,]−H,H[, B′, T)}
4: res← ∅
5: while toDo 6= ∅ do
6: pick and remove a task M from toDo
7: for all e in SolveTask(M) do
8: if e is a box then res← res ∪ {e} else toDo← toDo ∪ {e}
9: return res

(T>xi
, (B, T≤xi

)) such that each (B, T≤xi
) satisfies DC. It means that (B, T≤xi

)
represents one (and only one) real root of T≤xi

. The set T>xi
simply is the set

of polynomials which have not be solved yet. Algorithm 6 calls Algorithm 7
(which allows to solve one new variable) until all variables are solved. Note that
Algorithm 6 could be followed by a refinement of each returned box so that the
width of each box is smaller than a given precision.

Also remark that any raised exception will hit Algorithm 6 since none of the
algorithms presented here catches any exception. It is however very easy to adjust
Algorithm 6 so that it would catch exceptions and recall itself on each regular
chain returned by the splitting. The recursion would eventually stop because of
condition C2 of Algorithm 4 (i.e. splittings cannot occur indefinitely).

Algorithm 7 finds the real roots of p (seen as univariate in xs+1) that “pro-
long” the real root which lies in B. Line 1 always terminates, since ip is reg-
ular modulo T , so it does not vanish on any root of T . The bound H at
line 2 can be computed in the following way. Denote p =

∑d
i=0 aix

i
s+1 and

Ai = EvalBox(ai, B
′). Then take H = 1

min |Ad|
∑d

i=0(max |Ai|) where min |Ai|
(resp. max |Ai|) denotes the minimum (resp. maximum) of the modulus of the

Algorithm 8 SolveTask(M)

Input: a task M = task(p,]a, b[, B, T) where T is a zs-rc of Qs

Output: One of the four following cases:
1: ∅ which means Vt(M) = ∅.
2: a box B′ such that (B′, T ∪ {p}) satisfies DC and B′ is a box-decomposition of
Vt(M), which means Vt(M) is composed of only one point
3: two tasksM1 andM2 such that Vt(M1) and Vt(M2) forms a partition of Vt(M)
4: two tasksM1 andM2 plus a box B′ such that (B′, T ∪{p}) satisfies DC and the
three sets Vt(M1), Vt(M2) and {x0} form a partition of Vt(M), where x0 denotes
the only real root of T ∪ {p} which lies in B′.

1: nsv,B′ ← BoundNumberRoots(M)
2: if nsv = 0 then return ∅
3: else if nsv = 1 then
4: B′′ ← B′×]a, b[
5: refine B′′ until (B′′, T ∪ {p}) satisfies DC
6: return {B′′}
7: else
8: m← (a + b)/2 res← ∅ p′ ← p(xs+1 = m)
9: if p′ ∈ 〈T 〉 then res← {B′ × {m}} else CheckZeroDivisor(p′, T)

10: return res ∪ {task(p,]a,m[, B′, T),task(p,]m, b[, B′, T)}

bounds of the interval Ai. The rest of the algorithm is based on Algorithm 8
which transforms tasks into new tasks and boxes.

Algorithm 8 is a generalization of Algorithm 2. The cases nsv = 0 or 1 are
straightforward. When nsv > 1, one needs to split the interval]a, b[in two,
yielding two tasks returned on line 10. Lines 8-9 correspond to the lines 5-6 of
Algorithm 2. Indeed, checking p(m) = 0 is transformed into checking if p′ lies in
〈T 〉 or is not a zero divisor modulo T .

Algorithm 9 is a generalization of Algorithm 3. One discards the coefficients of
p′ which lie in 〈T 〉 because they vanish on the real root v which is in B. One also
ensures that the other coefficients (the a′i) are not zero divisors, so they cannot
vanish on v. Thus the loop at line 6 terminates. Moreover, this guarantees that
the number of sign variations is correct. Please note that the sequence a′e, . . . , a

′
0

is never empty. Indeed if all ai’s were in 〈T 〉, then all coefficients of p would lie
in 〈T 〉 (impossible since ip is regular modulo T).

2.5 Comparison with Other Methods

In the introduction we provided a comparison of our work with others. More
technical details are reported below.

[25, 26] give algorithmic methods (available in AXIOM) to manipulate real
algebraic numbers. These developments were designed for improving Cylindrical
Algebraic Decomposition (CAD) methods in AXIOM. Although [25] contains all
the tools to solve our problem, this paper focuses on the problem of manipulating
real algebraic numbers. It does not address directly the problem of isolating the
real roots of a given zerodimensional regular chain. [26] provides tools to perform

Algorithm 9 BoundNumberRoots(M)

Input: a task M = task(p,]a, b[, B, T) where T is a zs-rc of Qs

Output: (nsv,B′) such that B′ ⊂ B, (B′, T) satisfies DC, and nsv is a bound on
the cardinal of Vt(M). The bound is exact if nsv = 0 or 1.

1: p̄← (xs+1 + 1)d p
(
xs+1 =

a xs+1 + b

xs+1 +1

)
with d = mdeg(p)

2: denote p̄ =
∑d

i=0 aix
i
s+1

3: a′e, . . . , a
′
0 ← the sequence obtained from ad, . . . , a0 by removing the ai belonging

to 〈T 〉
4: for all a′i do CheckZeroDivisor(a′i, T)
5: B′ ← B
6: while there is an a′i such that 0 ∈ EvalBox(a′i, B

′) do B′ = RefineBox(B′, T)
7: return the number of sign variations of the sequence

EvalBox(a′e, B
′),EvalBox(a′e−1, B

′), . . . , EvalBox(a′0, B
′)

univariate polynomial real root isolation by using quasi Sylvester sequence which
according to [26] can be faster than the techniques based on the Descartes rules.

[15, 7] present algorithms for isolating real roots of univariate polynomials
with algebraic coefficients. Their algorithms require the ideal to be prime, and
this condition is ensured by performing univariate factorization [21] into irre-
ducible factors for polynomials with algebraic coefficients. Our method does not
require such factorizations and only requires the ideal to be squarefree. Thus,
our method replaces a decomposition into prime ideals by regularity tests which
are often less costly. Please note that the regularity tests we perform are in fact
replaced by interval arithmetics, as explained in the paragraph CheckZeroDivisor
of Subsection 3.1.

[27] is based on Gröbner basis computations and rational univariate repre-
sentation. Thus, [27] transforms the initial problem into the problem of isolating
the real roots of a univariate polynomial with rational number coefficients

[20] starts from a zerodimensional regular chain (although [20] uses the termi-
nology of characteristic sets) and proceeds variable by variable. Their technique
is different from ours. After isolating a real root say x01 for p1(x1) = 0, they
build two univariate polynomials p2(x2) and p

2
(x2) whose real roots will inter-

leave nicely (see [20, Definition 2]) when the precision on x01 is sufficiently low,
yielding isolation intervals for the variable x2. [33] improves techniques of [20]
by avoiding restarting the isolation from the beginning when decreasing the pre-
cision. Such techniques are also used in [5], where the authors consider general
zerodimensional triangular systems (which may not be a regular chain) and treat
multiple zeros directly.

Quoting the abstract of [23], the Authors use a powerful reduction strat-
egy based on univariate root finder using Bernstein basis representation and
Descartes’ rule. Basically, they reduce the problem to solving univariate poly-
nomials by using the Bernstein basis representation and optimizations based on
convex hulls.

3 Implementation

3.1 The SemiAlgebraicSetTools Package

The algorithm RealRootIsolate has been coded using exceptions in Maple in the
module SemiAlgebraicSetTools of the RegularChains library [17]. We present
some implementation issues and optimizations integrated in our code.

Precision. The user can specify a positive precision so all isolation boxes have a
width smaller than the given precision. If an infinite precision is provided, then
the algorithm only isolates the real roots by refining the boxes the least possible.
We take the precision into account as soon as possible in the algorithm, meaning
that the box is refined each time an box is extended with a new variable.

Constraints. The user can restrict the solutions by imposing that some variables
lie in a prescribed interval. If the intervals are restrictive (i.e. smaller than the
intervals computed using bounds), many useless branches are cut.

The CheckZeroDivisor algorithm is not directly called in our code. Indeed,
regularity test can be very expensive and should be avoided as much as possible.
When a call CheckZeroDivisor(p, T) returns, one knows that a box B isolating a
real root of T can always be refined until the interval EvalBox(p,B) does not meet
zero. This is in fact the only reason why we call CheckZeroDivisor. In order to
avoid a regularity test, we first try to refine B a few times to see if EvalBox(p,B)
still meets zero. If it does not, we do not need to check the regularity.

Refining boxes. In the Maple implementation, Algorithm 5 receives an extra
parameter xk. In that case, the box is only refined for the variables smaller
than xk (i.e. the variables xi with i ≤ k). This is useful at line 6 of Algorithm
BoundNumberRoots. Indeed, if mvar(a′i) = xk holds, then it is not necessary to
refine the complete box B′ to ensure that EvalBox(a′i, B

′) does not meet 0.

Change of variables. By modifying Algorithms 7 and 8, we call Algorithm 9

with a = 0 and b = 1. This replaces (xs+1 + 1)d p
(
xs+1 = a xs+1 + b

xs+1 +1

)
by several

substitutions p(xs+1 = xs+1/2), p(xs+1 = 1/xs+1) and p(xs+1 = xs+1+1) which
can be written very efficiently, the last one using fast Taylor shift [14].

Refining other branches. Due to the triangular structure of the system, many
roots share a common part (i.e. values for some variables are equal). When
refining a root, we refine the roots sharing a common part to save computations.

Further refining. After being computed, an isolation box of a real root v can
be refined further using the Maple command RefineBox. To do so, exceptions
has to be caught. Our implementation associates a regular chain T to each box
B encoding a real root. Thus, if T is split into T1, . . . , Ts, one replaces (B, T) by
the right (B, Ti) which also defines the real root v as done in [26, page 528].

EvalPoly. For evaluating EvalBox(p,B), we apply a Hörner scheme to p. For
example, the polynomial p := x32x1 + 3x22 + x2x

2
1 + x21 + x1 + 1 is re-arranged as

1 + (1 + x1)x1 + (x21 + (3 + x1x2)x2)x2. Assuming x2 > x1, the interval of B for
the variable x2 tends to be in practice wider than that for the variable x1, since
the intervals for smaller variables tend to be more refined than those for higher
variables. On the example, the Hörner form decreases the exponents of x2.

3.2 Further Development

Using fast polynomial arithmetic and modular methods. The current
implementation of the CheckZeroDivisor algorithm can be improved in a sig-
nificant manner. Indeed, the modular algorithm for regularity test of [18] and
implemented with the Modpn library [19] outperform the regularity test used
in CheckZeroDivisor by several orders of magnitude.

Computing with algebraic numbers. Using the two algorithms RefineBox
and CheckZeroDivisor, one can encode algebraic numbers and check if a multi-
variate polynomial cancels on some algebraic numbers. This allows computing
with algebraic numbers, very much as in [25]. Moreover, inequations and inequal-
ities could be included with almost no work. Indeed they can be handled at the
end of RealRootIsolate using CheckZeroDivisor. They can also be treated inside
the subalgorithms as soon as a box in construction involves all the variables of
an inequality or inequation, allowing to cut some branches.

Floating-point computations. As suggested by Fabrice Rouillier (private
communication), it would speed up the algorithm to use multiple-precision float-
ing-point computations with exact rounding (as in the MPFI library [28]).
Exceptions could be caught sooner to avoid losing already done computations.

Using continuous fractions as in [2, 3] may also be investigated.

Interval arithmetics. The algorithm EvalBox could certainly benefit from tech-
niques for “optimizing” polynomial expressions, as in [16].

Newton’s method. Some tries were made to incorporate a Newton method for
system of polynomials in the RefineBox algorithm. Due to the triangular form
of the system, the Jacobian is also triangular which eases the method. However,
although the convergence was really faster, it was not satisfactory because of
the coefficient swell in the isolation intervals. However, we believe that Newton’s
method should be investigated further.

4 Benchmarks

4.1 Description of the Experimentation

The names of the examples used for benchmarking are listed in Figure 4.3.
Most of them are classical. The lhlp files tests are taken from [20]. The ex-
amples chemical-reaction, geometric-constraints, neural-network, p3p-special and
Takeuchi-Lu appear in [32]. The nld-d-n and nql-n-d examples are described in
Section 4.3. The set of all the examples can be found at www.lifl.fr/~lemaire/
BCLM09/BCLM09-systems.txt. Benchmark results are given on Figure 4.3. They
were run on an AMD Phenom II X4 (4Gb of mem.) using Maple 14 64bits and
our latest development version of the RegularChains library. Timings are in
seconds. Timeouts are indicated with >. The column Sys denotes the name of
the system. The column v/e/s stands for the number of variables/equations/real
solutions.

The Maple command RootFinding[Isolate] isolates real roots within the times
indicated in the group of columns RF/Is. For multivariate systems, this com-
mand relies on Gröbner basis computations [13] and rational univariate rep-
resentation [27]. In Column 1, the command used is RootFinding [Isolate](sys,
variables, digits=10, output=interval). For Column 2 the same command is used
with the variable ordering reversed, in case the variable ordering is important.
Note that the option digits=10 ensures that the ten first digits of the results are
correct which is not the same as guaranteeing a width less than 1e-10 for the
isolation boxes in RealRootIsolate. However, the difficulty for isolating the real
roots is comparable since the roots are neither close to zero nor too big.

The other groups of columns correspond to three strategies for isolating real
roots using our algorithm RealRootIsolate. In each strategy, the initial system is
first decomposed into zs-rc using the Triangularize command together with the
option radical=’yes’ ensuring those regular chains are squarefree. In order to keep
things simple and uniform, the option probability=xx of Triangularize is not used.
Thus the modular algorithm of [8] is not applied even though it can solve all our
examples that the non-modular version cannot.

Strategy 1. We build regular chains (column Tr) and call the RealRootIsolate
algorithm (column Is/10) on each regular chain with a precision of 1e-10.

Strategy 2. A variant of Strategy 1 where we compute strongly normalized regu-
lar chains (column Tr/No) using the option normalized=’strongly’ of Triangularize.

Strategy 3. Another variant of Strategy 1. We build regular chains (column
Tr) and call the RealRootIsolate algorithm on each regular chain with an infi-
nite precision (column Is/∞), in the sense that the width of the boxes are not
constrained. Thus, only the isolation is performed. Then we call the command
RefineListBox to refine the list of boxes with a precision of 1e-5 (column ∞/5).
Then we refine again the boxes for a precision of 1e-10 (column 5/10).

4.2 Comparison of Different Strategies

Strategies 1 and 2 are comparable. Strongly normalized regular chains take more
time to be computed, since normalization is a post-processing for the command
Triangularize. The isolation time is roughly the same in general for both types
of regular chains. For the nld-d-n (except nld-9-3) family of examples, normal-
ization helps the isolation process. However, for some other examples, such as
5-body-homog, p3p-special and Rose, normalization make things worse.

Comparing Strategies 1 and 3 shows two things. First, it is usually faster to
isolate solutions with an infinite precision rather than with a small precision.
Second, it shows that the overall times for Strategies 1 and 3 are comparable.

4.3 Comparison with RootFinding

The RootFinding[Isolate] is obviously a lot faster on many examples. One should
keep in mind that this command calls internal routines written in C that have

been developed intensively for years. However, the RootFinding[Isolate] has diffi-
culties on some systems such as the nql-n-d and nld-d-n ones.

The nql-n-d (for non quasi linear) example is very specific and was suggested
by Fabrice Rouillier. It is defined by n equations in n variables xd1 − 2 = 0, xdi +

x
d/2
i −xi−1 = 0 for 2 ≤ i ≤ n for some even degree d. This system is already a zs-

rc. The algorithm RealRootIsolate solves it easily since the degrees are distributed
evenly among the equations. On the other hand, the RootFinding[Isolate] needs
to build a rational univariate representation which we believe has a very large
degree roughly equal to dn (that is about one million when d = 4 and n = 10).

A similar example is simple-nql-n-d defined by xd1 − 2 = 0, xdi − xi−1 = 0 for
2 ≤ i ≤ n. The degree of the rational univariate representation is also roughly
dn. For the example simple-nql-20-30, dn is around 1029.

The second family of systems which causes difficulties to RootFinding[Isolate]
are the nld-d-n (for non leading linear) defined by n equations of the form
x1 + · · ·+ xi−1 + xdi + xi+1 + · · ·+ xn − 1 = 0 for 1 ≤ i ≤ n. On those systems
the computations performed by Triangularize tend to split into many branches,
even though the equiprojectable decomposition consists of a few components
(generally 2). For System nld-9-3, the command Triangularize (used without nor-
malization option) produces 15 components where the largest coefficient has size
20 digits. The command EquiprojectableDecomposition (which requires the use of
normalized regular chains) produces 3 components for nld-9-3, where most coef-
ficients have more than 500 digits. Since nld-9-3 has 729 complex solutions, this
suggests that the univariate polynomial in the rational univariate representation
has degree 729 and coefficients with size at least 500 digits. This makes it diffi-
cult to isolate the real roots of such polynomial. Therefore, the nld-d-n examples
show that splitting can help solving some problems.

5 Conclusion

We presented a generalization of the Vincent-Collins-Akritas Algorithm for zero-
dimensional squarefree regular chains, and its implementation in Maple. Each
box isolating a root can be refined arbitrarily after being computed. This al-
lows manipulating algebraic numbers (encoded by a isolation box and a regular
chain) very much like in [25]. Many improvements of the algorithm RealRoo-
tIsolate are possible and should be investigated. Among them, we believe that
writing a C library to perform the isolation would improve a lot the timings. Yet
for some non-equiprojectable varieties, our algorithm and its Maple implemen-
tation show favorable performances.

References

[1] Akritas, A.G.: There is no Uspensky’s method. In: proceedings of ISSAC 1986
(1986)

[2] Akritas, A.G., Strzeboński, A.W., Vigklas, P.S.: Implementations of a new theorem
for computing bounds for positive roots of polynomials. Computing 78(4), 355–367
(2006)

RF/Is Strategy 1 Strategy 2 Strategy 3

Sys v/e/s 1 2 Tr Is/10 Tr/No Is/10 Tr Is/∞ ∞/5 5/10

4-body-homog 3/3/7 0.16 0.17 0.58 4.1 1.9 4.6 0.58 1.5 1.5 1.5
5-body-homog 3/3/11 0.19 0.2 0.83 11 10 16 0.81 3.5 3.9 3.7

Arnborg-Lazard-rev 3/3/8 <0.1 <0.1 0.35 2.9 0.42 2.8 0.34 0.88 1.1 1
Arnborg-Lazard 3/3/8 <0.1 <0.1 0.36 3 0.42 2.7 0.35 0.91 1.3 1.1

Barry 3/3/2 <0.1 <0.1 0.2 0.64 0.22 1.6 0.19 0.19 0.26 0.2
Caprasse-Li 4/4/18 <0.1 <0.1 0.61 1.4 0.77 0.9 0.63 0.35 0.62 0.46
Caprasse 4/4/18 <0.1 <0.1 0.65 1.4 0.8 0.9 0.62 0.37 0.65 0.5

chemical-reaction 4/4/4 <0.1 <0.1 0.23 1.3 0.26 1 0.23 0.29 0.71 0.45
circles 2/2/22 0.6 0.57 0.32 10 0.41 10 0.32 6.4 1.8 1.6
cyclic-5 5/5/10 0.22 0.22 1.1 1.9 1.6 0.77 1.1 0.4 1.5 0.69

Czapor-Geddes-Wang 5/5/2 <0.1 <0.1 0.98 2.5 5.4 3.3 0.99 1.1 1 0.84
fabfaux 3/3/3 <0.1 <0.1 0.65 2.9 14 3.4 0.66 0.89 1.3 1.3

geometric-constraints 3/3/8 <0.1 <0.1 0.16 0.91 0.18 0.92 0.17 0.23 0.41 0.35
GonzalezGonzalez 3/3/2 <0.1 <0.1 0.21 0.45 0.26 0.42 0.22 0.19 0.16 0.14

Katsura-4 5/5/12 <0.1 <0.1 0.41 5.7 0.51 7.8 0.41 1.4 2.6 2.4
lhlp1 3/3/6 <0.1 <0.1 0.19 0.54 0.21 0.76 0.19 0.19 0.2 0.17
lhlp2 3/3/2 <0.1 <0.1 0.2 0.46 0.24 0.65 0.19 0.18 0.19 0.14
lhlp3 3/3/2 <0.1 <0.1 0.15 0.37 0.18 0.4 0.16 0.14 0.15 <0.1
lhlp4 2/2/4 <0.1 <0.1 0.18 1.3 0.22 2.1 0.18 0.3 0.63 0.42
lhlp5 3/3/4 <0.1 <0.1 0.26 0.97 0.3 1.1 0.27 0.27 0.39 0.34
lhlp6 4/4/4 <0.1 <0.1 0.29 1.1 0.33 0.84 0.28 0.26 0.59 0.34

neural-network 4/4/22 0.57 0.57 0.44 7 0.67 6.1 0.42 1.7 3 2.7
nld-3-4 4/4/27 0.72 0.73 1.1 2.9 1.6 1.9 1.2 0.6 1.5 1.3
nld-3-5 5/5/111 47 47 9.1 23 12 14 8.9 4 12 10
nld-4-5 5/5/? >2000 >2000 >2000 ? >2000 ? >2000 ? ? ?
nld-7-3 3/3/7 58 58 1.7 3.8 2.9 3.1 1.6 4.6 <0.1 <0.1
nld-8-3 3/3/8 275 275 2.1 9.9 11 7 2.1 8.7 1.3 1.2
nld-9-3 3/3/7 1078 1083 7.9 14 32 27 7.9 16 <0.1 <0.1
nld-10-3 3/3/8 >2000 >2000 10 45 341 118 10 44 2.4 2.3
nql-5-4 5/5/2 66 62 0.2 0.59 0.22 0.57 0.2 0.26 0.11 0.14
nql-10-2 10/10/2 144 132 0.25 1.4 0.29 1.4 0.25 0.49 0.31 0.44
nql-10-4 10/10/2 >2000 >2000 0.32 1.4 0.38 1.4 0.31 0.53 0.27 0.37
nql-15-2 15/15/2 >2000 >2000 0.39 2.6 0.45 2.5 0.38 1.5 0.52 0.81

p3p-special 5/5/24 0.22 0.27 0.31 9 0.5 13 0.31 2.8 3.2 3.4
PlateForme2d-easy 6/6/0 <0.1 <0.1 0.57 0.16 0.76 0.17 0.56 0.14 <0.1 <0.1

r-5 5/5/1 1.1 1.1 0.32 0.13 0.36 0.13 0.31 0.12 <0.1 <0.1
r-6 6/6/1 >2000 >2000 0.48 0.11 0.56 0.1 0.48 <0.1 <0.1 <0.1

Rose 3/3/18 0.34 0.37 0.46 15 0.54 22 0.45 2.2 8.5 7.3
simple-nql-20-30 20/20/2 >2000 >2000 0.57 12 0.65 12 0.55 28 1.2 0.13

Takeuchi-Lu 4/4/14 <0.1 <0.1 0.27 3 0.31 3.9 0.27 0.46 1.9 1.2
Trinks-2 6/7/0 <0.1 <0.1 0.18 <0.1 0.19 <0.1 0.18 <0.1 <0.1 <0.1

Trinks-difficult 6/6/2 <0.1 <0.1 0.24 1.2 0.29 1.8 0.24 0.25 0.64 0.53
wilkinson20 1/1/21 <0.1 <0.1 0.11 0.49 0.13 0.5 0.11 0.13 0.21 0.17
wilkinsonxy 2/2/25 <0.1 <0.1 0.17 3.2 0.19 3.2 0.17 1.2 1 1

Fig. 1. Benchmarks

[3] Akritas, A.G., Vigklas, P.S.: A Comparison of Various Methods for Computing
Bounds for Positive Roots of Polynomials. Journal of Universal Computer Science
13(4), 455–467 (2007)

[4] Becker, E., Mora, T., Marinari, M.G., Traverso, C.: The shape of the shape lemma.
In: Proc. of the international symposium on Symbolic and algebraic computation.
pp. 129–133. ACM Press, New York, NY, USA (1994)

[5] Cheng, J.S., Gao, X.S., Yap, C.K.: Complete numerical isolation of real
roots in zero-dimensional triangular systems. Journal of Symbolic Computa-
tion 44(7), 768 – 785 (2009), http://www.sciencedirect.com/science/article/
B6WM7-4TKPVBT-1/2/34927cd53d447d69e3b126d3fa93006a

[6] Collins, G.E., Akritas, A.G.: Polynomial real root isolation using Descartes’rule
of signs. In: proceedings of ISSAC’76. pp. 272–275. Yorktown Heights NY (1976)

[7] Collins, G.E., Johnson, J.R., Krandick, W.: Interval arithmetic in cylindrical al-
gebraic decomposition. J. Symb. Comput. 34(2), 145–157 (2002)

[8] Dahan, X., Moreno Maza, M., Schost, É., Wu, W., Xie, Y.: Lifting techniques for
triangular decompositions. In: ISSAC’05. pp. 108–115. ACM Press (2005)

[9] Dahan, X., Schost, É.: Sharp estimates for triangular sets. In: ISSAC 04. pp.
103–110. ACM (2004)

[10] Della Dora, J., Dicrescenzo, C., Duval, D.: About a new method for computing
in algebraic number fields. In: Proc. EUROCAL 85 Vol. 2, Lect. Notes in Comp.
Sci., vol. 204, pp. 289–290. Springer-Verlag (1985)

[11] Descartes, R.: Géométrie (1636)
[12] Eigenwillig, A., Kettner, L., Krandick, W., Mehlhorn, K., Schmitt, S., Wolpert,

N.: A descartes algorithm for polynomials with bit-stream coefficients. In: CASC,
volume 3718 of LNCS. pp. 138–149. Springer (2005)

[13] Faugère, J.C.: A new efficient algorithm to compute Gröbner bases (F4). Journal
of Pure and Applied Algebra 139, 61–88 (1999)

[14] von zur Gathen, J., Gerhard, J.: Fast algorithms for taylor shifts and certain
difference equations. In: ISSAC. pp. 40–47 (1997)

[15] Johnson, J.R., Krandick, W.: Polynomial real root isolation using approximate
arithmetic. In: Proceedings of the 1997 international symposium on Symbolic and
algebraic computation. pp. 225–232. ACM (1997)

[16] Leiserson, C.E., Li, L., Moreno Maza, M., Xie, Y.: Efficient evaluation of large
polynomials. In: Proc. International Congress of Mathematical Software - ICMS
2010. Springer (2010)

[17] Lemaire, F., Moreno Maza, M., Xie, Y.: The RegularChains library. In: Ilias S.
Kotsireas (ed.) Maple Conference 2005. pp. 355–368 (2005)

[18] Li, X., Moreno Maza, M., Pan, W.: Computations modulo regular chains. In:
proceedings of ISSAC’09. pp. 239–246. ACM Press, New York, NY, USA (2009)

[19] Li, X., Moreno Maza, M., Rasheed, R., Schost, É.: The modpn library: Bringing
fast polynomial arithmetic into Maple. In: MICA’08 (2008)

[20] Lu, Z., He, B., Luo, Y., Pan, L.: An algorithm of real root isolation for poly-
nomial systems. In: Wang, D., Zhi, L. (eds.) Proceedings of Symbolic Numeric
Computation 2005. pp. 94–107 (2005)

[21] McCallum, S.: An improved projection operation for cylindrical algebraic decom-
position. In: Caviness, B.F., Johnson, J.R. (eds.) Quantifier Elimination and Cylin-
drical Algebraic Decomposition. pp. 242–268. Springer (1988)

[22] Moreno Maza, M.: On triangular decompositions of algebraic varieties. Tech. Rep.
TR 4/99, NAG Ltd, Oxford, UK (1999), presented at the MEGA-2000 Conference,
Bath, England

[23] Mourrain, B., Pavone, J.P.: Subdivision methods for solving polynomial equations.
Tech. rep., INRIA (August 2005), (number RR-5658)

[24] Mourrain, B., Rouillier, F., Roy, M.F.: The Bernstein Basis and Real Root Iso-
lation. Combinatorial and Computational Geometry, MSRI Publications 52, 459–
478 (2005)

[25] Rioboo, R.: Real algebraic closure of an ordered field, implementation in axiom.
In: Proc. ISSAC’92. pp. 206–215. ISSAC, ACM Press (1992)

[26] Rioboo, R.: Towards faster real algebraic numbers. J. Symb. Comput. 36(3-4),
513–533 (2003)

[27] Rouillier, F.: Solving zero-dimensional systems through the rational univariate
representation. AAECC 9, 433–461 (1999)

[28] Rouillier, F., Revol, N.: The multiple precision floating-point interval library
(MPFI) library. http://gforge.inria.fr/projects/mpfi/

[29] Rouillier, F., Zimmermann, P.: Efficient isolation of polynomial real roots. Journal
of Computational and Applied Mathematics 162(1), 33–50 (2003)

[30] Serret, J.A.: Cours d’Algèbre Supérieure. Gauthier–Villars, Paris, 4 edn. (1877)
[31] Uspensky, J.V.: Theory of Equations. McGraw – Hill Co., New–York (1948)
[32] Xia, B., Yang, L.: An algorithm for isolating the real solutions of semi-algebraic

systems. J. Symb. Comput. 34(5), 461–477 (2002)
[33] Xia, B., Zhang, T.: Real solution isolation using interval arithmetic. Comput.

Math. Appl. 52(6-7), 853–860 (2006)

