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Motivation

Background

Fork-join model

The fork-join execution model is a model of computations where
concurrency is expressed as follows.

A parent gives birth to child tasks. Then all tasks (parent and
children) execute code paths concurrently and synchronize at the
point where the child tasks terminate.

On a single core, a child task preempts its parent which resumes its
execution when the child terminates.

CilkPlus and OpenMP

CilkPlus and OpenMP are multithreaded extensions of C/C++,
based on the fork-Join model and primarily targeting shared memory
architectures.

CilkPlus uses random work-stealing scheduler whereas OpenMP
uses work-sharing scheduler.



Motivation

Motivation: interoperability

Challenge

Different concurrency platforms (e.g: Cilk and OpenMP) can
hardly cooperate at run-time since their schedulers are based on
different strategies (work stealing vs work sharing).

This is unfortunate: there is, indeed, a real need for interoperability.

Example:

In the field of symbolic computation:
• the DMPMC (TRIP project) library provides sparse polynomial

arithmetic and is entirely written in OpenMP,
• the BPAS (UWO) library provides dense polynomial arithmetic is

entirely written in Cilk.

We know that polynomial system solvers require both sparse and
dense polynomial arithmetic and thus could take advantage of a
combination of the DMPMC and BPAS libraries.



Motivation

Motivation: comparative implementation

Challenge

Performance bottlenecks in multithreaded programs are very hard to
detect:

• algorithm issues: low parallelism, high cache complexity
• hardware issues: memory traffic limitation
• implementation issues: true/false sharing, etc.
• scheduling costs: thread/task management, etc.
• communication costs: thread/task migration, etc.

We propose to use comparative implementation. for narrowing
performance bottlenecks.

Code Translation:

Of course, writing code for two concurrency platforms, say P1, P2, is
clearly more difficult than writing code for P1 only.

Thus, we propose automatic code translation between P1 and P2.
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MetaFork: fork-join constructs and semantics

MetaFork

Definition

MetaFork is an extension of C/C++ and a multithreaded language
based on the fork-join concurrency model.
MetaFork differs from the C language only by its parallel constructs.
By its parallel programming constructs, the MetaFork language is
currently

• a super-set of CilkPlus and,
• includes the following widely used parallel constructs of OpenMP #pragma

omp parallel, #pragma omp task, #pragma omp sections,
#pragma omp section, #pragma omp for, #pragma omp taskwait,
#pragma omp barrier, #pragma omp single and #pragma omp

master.

However, this language does not compromise itself in any scheduling
strategies (work-stealing, work-sharing) and thus makes no assumptions
about the run-time system.



MetaFork: fork-join constructs and semantics

MetaFork constructs for parallelism

MetaFork has four parallel constructs:

meta fork 〈function− call〉
• we call this construct a function spawn,
• it is used to express the fact that a function call is executed by a child

thread, concurrently to the execution of the parent thread,

Example:

long fib_par(long n) {

long x, y;

if n < 2 return (n);

x = meta_fork fib_par(n-1);

y = fib_par(n-2);

meta_join;
return (x+y);

}

meta join
• this indicates a synchronization point.



MetaFork: fork-join constructs and semantics

MetaFork constructs for parallelism

meta for (start, end, stride) 〈loop− body〉
• we call this construct a parallel for-loop,
• the execution of the parent thread is suspended when it reaches

meta for and resumes when all children threads have completed their
execution,

• there is an implicit barrier at the end of the parallel area;

Example:

int main()

{

int a[ N ];

meta_for(int i = 0; i < N; i++)

{

a[ i ] = i;

}

}



MetaFork: fork-join constructs and semantics

MetaFork constructs for parallelism

meta fork [shared(variable)] 〈body〉
• we call this construct a parallel region,
• is used to express the fact that a block is executed by a child thread,

concurrently to the execution of the parent
• no equivalent in CilkPlus.

Example:

int main()

{

int sum_a=0;

int a[ 5 ] = {0,1,2,3,4};

meta_fork shared(sum_a){
for(int i=0; i<5; i++)

sum_a += a[ i ];

}

}



MetaFork: fork-join constructs and semantics

Expressing fork-join concurrency in CilkPlus & OpenMP

platform function spawn parallel for-loop parallel region sync

CilkPlus
√ √

×
√

OpenMP ×
√ √ √

MetaFork
√ √ √ √



MetaFork: fork-join constructs and semantics

MetaFork data attribute rules (1/3)

MetaFork terminology:

Local and non-local variables

Consider a parallel region or parallel for-loop Y and its immediate outer
scope X. We say that X is the parent region of Y and that Y is a child
region of X.
A variable v defined in Y is said local to Y otherwise we call it an
non-local variable for Y .

Let v be a non-local variable for Y . Assume v gives access to a block of
storage before reaching Y . (Thus, v cannot be a non-initialized pointer.)

Shared and private variables

We say that v is shared by X and Y if its name gives access to the
same block of storage in both X and Y ; otherwise we say that v is
private to Y .
If Y is a parallel for-loop, we say that a local variable w is shared within
Y whenever the name of w gives access to the same block of storage in
any loop iteration of Y ; otherwise we say that w is private within Y .



MetaFork: fork-join constructs and semantics

MetaFork data attribute rules (2/3)

Recall:

Value-type and reference-type variables

In C, a value-type variable contains its data directly as opposed to a
reference-type variable, which contains a reference to its data.
Value-type variables are either of primitive types (char, float, int,
double and void) or user-defined types (enum, struct and union)
Reference-type variables are pointers, arrays and functions.

static and const qualified variables

In C, a static variable is a variable that has been allocated statically
and whose lifetime extends across the entire run of the program.
a const variable is a variable which cannot be altered by the program
during its execution.



MetaFork: fork-join constructs and semantics

MetaFork data attribute rules (3/3)

Data attribute rules of meta fork:

A non-local variable v which gives access to a block of storage before
reaching Y is

• shared between the parent X and the child Y whenever v is (1) a global
variable or (2) a file scope variable or (3) a reference-type variable or (4)
declared static or const, or (5) qualified shared.

• otherwise v is private to the child.

In particular, value-type variables (that are not declared static or
const, or qualified shared and, that are not global variables or file
scope variables) are private to the child.

Data attribute rules of meta for:

A non-local variable which gives access to a block of storage before
reaching Y is shared between parent and child.
A variable local to Y is

• shared within Y whenever it is declared static.
• otherwise it is private within Y .

In particular, loop control variables are private within Y .



MetaFork: fork-join constructs and semantics

MetaFork semantics of parallel constructs

Semantics of MetaFork

To formally define the semantics of each of the parallel constructs in
MetaFork, we introduce the serial C-elision of a MetaFork
program M as a C program whose semantics define those of M.
For spawning a function call or executing a parallel for-loop,
MetaFork has the same semantics as CilkPlus. In these cases,
the serial C-elision is obtained by replacing

• meta fork with the empty string,
• meta for with for.

The non-trivial part is to define the serial C-elision of a parallel region
in MetaFork, that is, when the meta fork keyword is followed by a
block of code.
We formally define the serial C elision of the meta fork construct
when applied to a code block. This is done essentially by wrapping
this code block into a function which is, then, called.



MetaFork: code translation examples

Plan

1 Motivation

2 MetaFork: fork-join constructs and semantics

3 MetaFork: code translation examples

4 MetaFork: interoperability between CilkPlus and OpenMP

5 The MetaFork framework: generation of parametric code

6 Concluding remarks



MetaFork: code translation examples

Original MetaFork code and translated OpenMP code

long fib parallel(long n)

{

long x, y;

if (n<2) return n;

else if (n<BASE)

return fib serial(n);

else

{

x = meta fork fib parallel(n-1);

y = fib parallel(n-2);

meta join;
return (x+y);

}

}

long fib parallel(long n)

{

long x, y;

if (n<2) return n;

else if (n<BASE)

return fib serial(n);

else

{

#pragma omp task shared(x)
x = fib parallel(n-1);

y = fib parallel(n-2);

#pragma omp taskwait
return (x+y);

}

}



MetaFork: code translation examples

Original OpenMP code and translated MetaFork code

int main()

{

int a[ N ];

int b = 0;

#pragma omp parallel
#pragma omp for private(b)
for(int i = 0; i < N; i++)

{

b = i ;

a[ i ] = b;

}

}

int main()

{

int a[ N ];

int b = 0;

meta_for(int i = 0; i < N; i++)

{

int b;

b = i ;

a[ i ] = b;

}

}



MetaFork: code translation examples

Original MetaFork code and translated CilkPlus code

int main()

{

int sum_a=0, sum_b=0;

int a[ 5 ] = {0,1,2,3,4};

int b[ 5 ] = {0,1,2,3,4};

meta_fork shared(sum_a){
for(int i=0; i<5; i++)

sum_a += a[ i ];

}

meta_fork shared(sum_b){
for(int i=0; i<5; i++)

sum_b += b[ i ];

}

meta_join;
}

void fork_func0(int* sum_a, int* a)

{

for(int i=0; i<5; i++)

(*sum_a) += a[ i ];

}

void fork_func1(int* sum_b, int* b)

{

for(int i=0; i<5; i++)

(*sum_b) += b[ i ];

}

int main()

{

int sum_a=0, sum_b=0;

int a[ 5 ] = {0,1,2,3,4};

int b[ 5 ] = {0,1,2,3,4};

cilk_spawn fork_func0(&sum_a, a);

cilk_spawn fork_func1(&sum_b, b);

cilk_sync;
}
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MetaFork: interoperability between CilkPlus and
OpenMP

Experimentation: set up

Source of code

John Burkardt’s Home Page (Florida State University)
http://people.sc.fsu.edu/ %20jburkardt/c src/openmp/openmp.html

Barcelona OpenMP Tasks Suite (BOTS)
Cilk++ distribution examples
Students’ code

Compiler options

CilkPlus code compiled with GCC 4.8 using -O2 -g -lcilkrts -fcilkplus
OpenMP code compiled with GCC 4.8 using -O2 -g -fopenmp

Architecture

Running time on p = 1, 2, 4, 6, 8, . . . processors. All our compiled programs
were tested on :

Intel Xeon 2.66GHz/6.4GT with 12 physical cores and hyper-threading,
sharing 48GB RAM,
AMD Opteron 6168 48core nodes with 256GB RAM and 12MB L3.



MetaFork: interoperability between CilkPlus and
OpenMP

Validation

Verifying the correctness of our translators was a major requirement.
Depending on the test-case, we could use one or the other following
strategy.

For Cilk++ distribution examples and the BOTS (Barcelona OpenMP
Tasks Suite) examples:

- both a parallel code and its serial elision were executed and the
results were compared,

- since serial elisions remain unchanged by our translators, the
translated programs could be verified by the same procedire.

For FSU (Florida State University) examples:

- Since these examples do not include a serial elision of the parallel
code, they are verified by comparing the result between the original
program and translated program.



MetaFork: interoperability between CilkPlus and
OpenMP

Experimentation: two experiences

Comparing two hand-written codes via translation

For each test-case, we have a hand-written OpenMP program and a
hand-written CilkPlus program
For each test-case, we observe that one program (written by a student)
has a performance bottleneck while its counterpart (written by an expert
programmer) does not.
We translate the efficient program to the other language, then check
whether it incurs the same performance bottleneck as the inefficient
program. This generally help narrowing the issue.

Automatic translation of highly optimized code

For each test-case, we have either a hand-written-and-optimized
CilkPlus program or a hand-written-and-optimized OpenMP program.
We want to determine whether or not the translated programs have
similar serial and parallel running times as their
hand-written-and-optimized counterparts.



MetaFork: interoperability between CilkPlus and
OpenMP

Comparing hand-written codes (1/2)

Figure: Mergesort: n = 5 · 108

Different parallelizations of the same
serial algorithm (merge sort).
The original OpenMP code (written
by a student) misses to parallelize the
merge phase (and simply spawns the
two recursive calls) while the original
CilkPlus code (written by an expert)
does both.
On the figure, the speedup curve of
the translated OpenMP code is as
theoretically expected while the
speedup curve of the original
OpenMP code shows a limited
scalability.
Hence, the translated OpenMP (and
the original CilkPlus program)
exposes more parallelism, thus
narrowing the performance bottleneck
in the original hand-written OpenMP
code.



MetaFork: interoperability between CilkPlus and
OpenMP

Comparing two hand-written codes (2/2)

Figure: Matrix inversion: n = 4096

Here, the two original parallel
programs are based on different
serial algorithms for matrix
inversion.
The original OpenMP code uses
Gauss-Jordan elimination
algorithm while the original
CilkPlus code uses a
divide-and-conquer approach
based on Schur’s complement.
The code translated from
CilkPlus to OpenMP suggests
that the latter algorithm is more
appropriate for fork-join
multithreaded languages targeting
multicores.



MetaFork: interoperability between CilkPlus and
OpenMP

Automatic translation of highly optimized code (1/2)

(a) DnC MM: 4096 (b) DnC MM: 8192

Figure: Speedup curve on intel node

About the algorithm (divide-and-conquer matrix multiplication): high
parallelism, data-and-compute-intensive, optimal cache complexity

CilkPlus (original) and OpenMP (translated) codes scale well



MetaFork: interoperability between CilkPlus and
OpenMP

Automatic translation of highly optimized code (2/2)

Figure: Protein alignment sequence:
speedup curves.

Dynamic programming
typical example: relatively
high parallelism but high
communication
/synchronization costs.
The original code was
heavily tuned to address
these latter costs.
OpenMP (original) and
CilkPlus (translated)
codes scale well up to 8
cores.



MetaFork: interoperability between CilkPlus and
OpenMP

Parallelism overhead measurements

Below table shows the running time of the serial version v/s single core for
some examples.

Test input size Translated CilkPlus Original OpenMP
Serial T1 serial T1

FFT (BOTS) 33554432 7.50 8.12 7.54 7.82
MergeSort (BOTS) 33554432 3.55 3.56 3.57 3.54
Strassen 4096 17.08 17.18 16.94 17.11
SparseLU 128 568.07 566.10 568.79 568.16

Table: Running time of the serial version v/s single core.
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The MetaFork framework: generation of parametric
code

Parallelizing polynomial multiplication

Serial dense univariate polynomial multiplication

for(i=0; i<=n; i++){

c[i] = 0; c[i+n] = 0;

for(j=0; j<=n; j++)

c[i+j] += a[i] * b[j];

}

Dependence analysis suggests to set t(i, j) = n− j and p(i, j) = i + j.

Synchronous parallel dense univariate polynomial multiplication

for (p=0, p<=2*n, p++) c[p]=0;

for (t=0, t=n, t++)

meta_for (p=n-t; p<=2*n -t; p++)

c[p] = c[p] + a[t+p-n] * b[n-t];

}



The MetaFork framework: generation of parametric
code

Switching from synchronous to asynchronous (1/2)

The synchronous and asynchronous inequality systems

0 ≤ t ≤ n
n− t ≤ p ≤ 2n− t

0 ≤ p ≤ 2n
0 ≤ t ≤ n

n− p ≤ t ≤ 2n− p

Asynchronous parallel dense univariate polynomial multiplication

meta_for (p=0; p<=2*n; p++){

c[p]=0;

for (t=max(0,n-p); t<= min(n,2*n-p);t++)

c[p] = c[p] + a[t+p-n] * b[n-t];

}



The MetaFork framework: generation of parametric
code

Switching from synchronous to asynchronous (2/2)

> ff := &E([i,j]), (0 <= i) &and (i <= n) &and

(0 <= j) &and (j <= n) &and (t = n - j) &and (p = i + j):

> R := PolynomialRing([i,j,t,p,n]):

> sols := QuantifierElimination(ff, R);

sols := ((((0 <= n) &and (0 <= p)) &and

(p <= 2 n)) &and (Max(-p + n, 0) <= t)) &and

(t <= Min(n, -p + 2 n))

Our QE tools generate a case discussion (disjunction of mutually
exclusive clauses, defined by a triangular system).

A post-processing algorithm merges cells to simplify the generated
program, solving a concern posed by Grösslinger, Griebl and Lengauer.



The MetaFork framework: generation of parametric
code

Generating parametric code & use of tiling techniques (1/4)

Non-practical parallel dense polynomial multiplication (recall)

meta_for (p=0; p<=2*n; p++){

c[p]=0;

for (t=max(0,n-p); t<= min(n,2*n-p);t++)

C[p] = C[p] + A[t+p-n] * B[n-t];

}

Issues with the asynchronous schedule:

The above generated code is not practical for multicore implementation:

1 the number of processors is in Θ(n). (Not to mention poor locality!)

2 the work is unevenly distributed among the workers.



The MetaFork framework: generation of parametric
code

Generating parametric code & use of tiling techniques (2/4)

meta_for (p=0; p<=2*n; p++){

c[p]=0;

for (t=max(0,n-p); t<= min(n,2*n-p);t++)

C[p] = C[p] + A[t+p-n] * B[n-t];

}

Improving the parallelization

Make the number of processors a parameter N ; let r be a real
processor.

We group the virtual processors (or threads) into 1D blocks, each of
size B. Each thread is known by its block number b and a local
coordinate u in its block.

Blocks represent good units of work which have good locality
property. The total number of blocks may exceed N so blocks are
processed in a cyclic manner; the cycle index is s.

We have: 0 ≤ r ≤ N − 1, b = sN + r, 0 ≤ u < B, p = bB + u.



The MetaFork framework: generation of parametric
code

Generating parametric code: using tiles (3/4)

Let us first generate CUDA-like code. Hence we do not need to worry about
scheduling the blocks and we just schedule the threads within each block.
Thus we only consider the following relations on the left to which we apply
our QE tools (in order to get rid off i, j) leading to the relations on the right

o < n
0 ≤ i ≤ n
0 ≤ j ≤ n
t = n− j
p = i + j

0 ≤ b
o ≤ u < B
p = bB + u,



B > 0
n > 0

0 ≤ b ≤ 2n/B
0 ≤ u < B

0 ≤ u ≤ 2n−Bb
p = bB + u,

(1)

from where we derive the following program:

for (p=0; p<=2*n; p++) c[p]=0;

meta_for (b=0; b<= 2 n / B; b++) {

for (u=0; u<=min(B-1, 2*n - B * b); u++) {

p = b * B + u;

for (t=max(0,n-p); t<=min(n,2*n-p) ;t++)

c[p] = c[p] + a[t+p-n] * b[n-t];

}

}



The MetaFork framework: generation of parametric
code

Generating parametric code: using tiles and scheduling them (4/4)

DO PAR r=0,NP-1

DO t=0,n

DO s=ceiling(-t/(NP*B) -r/NP +(n-B+1)/(NP*B)),

floor(-t/(NP*B) -r/NP +(2*n)/(NP*B))

DO u=max(0,-t-r*B-s*NP*B+n),min(B-1,-t-r*B-s*NP*B+2*n)

DO p=max(n-t,r*B+s*NP*B+u),min(2*n-t,r*B+s*NP*B+u)

C(p) = C(p) + A(t+p-n) * B(n-t)



The MetaFork framework: generation of parametric
code

Generation of parametric parallel programs

Summary

Given a theoretically good algorithm (e.g. divide-and-conquer matrix
multiplication) and
a given a type of hardware that depends on various parameters (e.g. a
GPGPU with amount S of the shared memory per streaming
multiprocessor, maximum number P of threads supported by each
streaming multiprocessor, etc.)
our goal is to automatically generate code that depends on the hardware
parameters (S, P , etc.)
which, then, do not need to be known at compile-time.
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Concluding remarks

Concluding remarks

Summary

We presented a platform for translating programs between
multithreaded languages based on the fork-join parallelism model.

Translations are performed via MetaFork. a language which
borrows from CilkPlus and OpenMP.

Translation process does not add overheads on the tested examples.

Work in progress

The MetaFork language is extending to pipeline parallelism

The MetaFork framework is being enhanced with automatic
generation of parametric parallel programs
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