
Computing the Integer Points of a Polyhedron, I:
Algorithm

Rui-Juan Jing1,2 and Marc Moreno Maza2

1 KLMM, UCAS, Academy of Mathematics and Systems Science, Chinese Academy
of Sciences, rjing8@uwo.ca,

2 University of Western Ontario, moreno@csd.uwo.ca.

Abstract. Let K be a polyhedron in Rd, given by a system of m linear
inequalities, with rational number coefficients bounded over in absolute
value by L. In this series of two papers, we propose an algorithm for
computing an irredundant representation of the integer points of K, in
terms of “simpler” polyhedra, each of them having at least one integer
point. Using the terminology of W. Pugh: for any such polyhedron P ,
no integer point of its grey shadow extends to an integer point of P . We
show that, under mild assumptions, our algorithm runs in exponential
time w.r.t. d and in polynomial w.r.t m and L. We report on a software
experimentation. In this series of two papers, the first one presents our
algorithm and the second one discusses our complexity estimates.

1 Introduction

The integer points of polyhedral sets are of interest in many areas of mathemat-
ical sciences, see for instance the landmark textbooks of A. Schrijver [19] and
A. Barvinok [3], as well as the compilation of articles [4]. One of these areas
is the analysis and transformation of computer programs. For instance, integer
programming [7] is used by P. Feautrier in the scheduling of for-loop nests [8]
and Barvinok’s algorithm [2] for counting integer points in polyhedra is adapted
by M. Köppe and S. Verdoolaege in [16] to answer questions like how many
memory locations are touched by a for-loop nest. In [17], W. Pugh proposes an
algorithm, called the Omega Test, for testing whether a polyhedron has inte-
ger points. In the same paper, W. Pugh shows how to use the Omega Test for
performing dependence analysis [17] in for-loop nests. Then, in [18], he uses the
Omega Test for deciding Presburger arithmetic formulas.

In [18], W. Pugh also suggests, without stating a formal algorithm, that the
Omega Test could be used for quantifier elimination on Presburger formulas.
This observation is a first motivation for the work presented in this series of
two papers: we adapt the Omega Test so as to describe the integer points of a
polyhedron via a projection scheme, thus performing elimination of existential
quantifiers on Presburger formulas. Projections of polyhedra and parametric
programming are tightly related problems, see [13]. Since the latter is essential
to the parallelization of for-loop nests [7], which is of interest to the authors [5],
we had here a second motivation for developing the proposed algorithm.

2

In [9] M. J. Fischer and M. O. Rabin show that any algorithm for deciding
Presburger arithmetic formulas has a worst case running time which is a doubly
exponential in the length of the input formula. However, this worst case scenario
is based on a formula alternating existential and universal quantifiers. Mean-
while, in practice, the original Omega Test (for testing whether a polyhedron
has integer points) can solve “difficult problems” as shown by W. Pugh in [18]
and others, e.g. D. Wonnacott in [22]. This observation brings our third moti-
vation: determining realistic assumptions under which our algorithm, based on
the Omega Test, could run in a single exponential time.

Our algorithm takes as input a system of linear inequalities Ax ≤ b where
A is a matrix over Z with m rows and d columns, x is the unknown vector
and b is a vector of m coefficients in Z. The points x ∈ Rd satisfying Ax ≤ b
form a polyhedron K and our algorithm decomposes its integer points (that is,
K∩Zd) into a disjoint union (K1 ∩Zd1) ⊍ ⋯ ⊍ (Ke ∩Zde), where K1, . . . ,Ke are

“simpler” polyhedra such that Ki ∩Zd ≠ ∅ holds and di is the dimentions of Ki,
for 1 ≤ i ≤ e. To use the terminology introduced by W. Pugh for the Omega test,
no integer point of the grey shadow of any polyhedron Ki extends to an integer
point of Ki. As a consequence, applying our algorithm to Ki would return Ki

itself, for 1 ≤ i ≤ e. Let us present the key principles and features of our algorithm
through an example. Consider the polyhedron K of R4 given below:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2x + 3y − 4z + 3w ≤ 1

−2x − 3y + 4z − 3w ≤ −1

−13x − 18y + 24z − 20w ≤ −1

−26x − 40y + 54z − 39w ≤ 0

−24x − 38y + 49z − 31w ≤ 5

54x + 81y − 109z + 81w ≤ 2

.

A first procedure, called IntegerNormalize, detect implicit equations and solve
them using techniques based on Hermite normal form, see Sect. 3 and 4.1. In our
example 2x+3y−4z+3w = 1 is an implicit equation and IntegerNormalize(Ax ≤ b)
returns a triple (t,x = Pt + q, Mt ≤ v) where t is a new unknown vector, the
linear system x = Pt + q gives the general form of an integer solution of the
implicit equation(s) and Mt ≤ v is obtained by substituting x = Pt + q into
Ax ≤ b. In our example, the systems x = Pt + q and Mt ≤ v are given by:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

x = −3t1 + 2t2 − 3t3 + 2

y = 2t1 + t3 − 1

z = t2
w = t3

and

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

3t1 − 2t2 + t3 ≤ 7

−2t1 + 2t2 − t3 ≤ 12

−4t1 + t2 + 3t3 ≤ 15

−t2 ≤ −25

.

A second procedure, called DarkShadow, takes Mt ≤ v as input and returns a
couple (t′,Θ) where t′ stands for all t-variables except t1, and Θ is a linear
system in the t′-variables such that any integer point solving of Θ extends to an
integer point solving Mt ≤ v. In our example, t′ = {t2, t3} and Θ is given by:

3

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

2t2 − t3 ≤ 48

−5t2 + 13t3 ≤ 67

−t2 ≤ −25

The polyhedron D of R2 defined by Θ, and the inequalities of Mt ≤ v not
involving t1, is called the dark shadow of the polyhedron defined by Mt ≤ v. On

Fig. 1: The real, the dark and the grey shadows of a polyhedron.

the left-hand side of Fig. 1, one can see the polyhedron defined in R3 by Mt ≤ v
together with its dark shadow D (shown in dark blue) as well as its projection on
the (t2, t3)-plane, denoted by R and called real shadow by W. Pugh. The right-
hand side of Fig. 1 gives a planar view of D and R. As we will see in Sect. 4.4, if
M′t′ ≤ v′ is the linear system generated by applying Fourier-Motzkin elimination
(without removing redundant inequalities) to Mt ≤ v (in order to eliminate t1)
then Θ is given by a linear system of the form M′t′ ≤ w′. This explains why,
on the right-hand side of Fig. 1, each facet of the dark shadow D is parallel
to a facet of the real shadow R. While this property is observed on almost all
practical problems, in particular in the area of analysis and transformation of
computer programs, it is possible to build examples where this property does
not hold. We have examples in Section 5 of the second paper.

On the right-hand side of Fig. 1, one observes that the region R ∖D, called
grey shadow, contains integer points. Some of them, like (t2, t3) = (29,9), do not
extend to an integer solution of Mt ≤ v. Indeed, plugging (t2, t3) = (29,9) into
Mt ≤ v yields 37

2
≤ t1 ≤ 56

3
, which has no integer solutions. However, other integer

points of R∖D may extend to integer solutions of Mt ≤ v. In order to determine
them, a third procedure, called Greyshadow, considers in turn the negation of
each inequality θ of Θ. However, for each θ of Θ, instead of simply making a
recursive call to the entire algorithm applied to Mt ≤ v ∪ {θ}, simplifications
(involving θ and the inequalities from which θ is derived) permit to replace this
recursive call by several ones in lower dimension, thus guaranteeing termination
of the whole algorithm. Details are given in Sect. 4.5 and 4.6.

Returning to our example, the negation of the inequality 2t2 − t3 ≤ 48 from
Θ, combined with the system Mt ≤ v, yields the following

4

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−2t1 + 2t2 − t3 = 12

3t1 − 2t2 + t3 ≤ 7

−4t1 + t2 + 3t3 ≤ 15

−t2 ≤ −25

,

which, by means of IntegerNormalize, rewrites to:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

t1 = t4
t2 = t5 + 1

t3 = −2t4 + 2t5 + 1

, and

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

t4 ≤ 8

−10t4 + 7t5 ≤ 11

−t5 ≤ −24

,

where t4, t5 are new variables. Continuing in this manner with the Greyshadow
procedure, a decomposition of the integer points of Mt ≤ v is given by:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3t1 − 2t2 + t3 ≤ 7

−2t1 + 2t2 − t3 ≤ 12

−4t1 + t2 + 3t3 ≤ 15

2t2 − t3 ≤ 48

−5t2 + 13t3 ≤ 67

−t2 ≤ −25

2 ≤ t3 ≤ 17

,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

t1 = 15

t2 = 27

t3 = 16

,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

t1 = 18

t2 = 33

t3 = 18

,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

t1 = 14

t2 = 25

t3 = 15

,

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

t1 = 19

t2 = 50 + t6
t3 = 50 + 2t6

−25 ≤t6 ≤ −16.

.

Denoting these 5 systems respectively by S1, . . . , S5 the integer points of K are
finally given by the union of the integer points of the systems x = Pt+q ∪ Si, for
1 ≤ i ≤ 5. The systems S2, . . . , S5 look simple enough to be considered as solution
sets. What about S1? The system S1, as well as S2, . . . , S5, satisfies a “back-
substitution” property which is similar to that of a regular chain in the theory
of polynomial system solving [1]. This property (formally stated in Sect. 4.2),
when applied to S1, says that for all 2 ≤ i ≤ 3, every integer point of R4−i solving
all the inequalities of S1 involving ti, . . . , t3 only, extends to an integer point of
R5−i solving all the inequalities of S1 involving ti−1, . . . , t3.

With respect to the original Omega Test [17], our contributions are as follows.
1. We turn the decision procedure of the Omega Test into an algorithm decom-

posing all the integer points of a polyhedron.
2. Our decomposition is disjoint whereas the recursive calls in the original

Omega Test may search for integer points in intersecting polyhedral regions.
3. The original Omega Test uses an ad-hoc routine for computing the integer

solutions of linear equation systems, while we rely on Hermite normal form
for this task. Consequently, we deduce complexity estimates for that task.

4. We also provide complexity estimates for the procedures Greyshadow and
DarkShadow under realistic assumptions. From there, we derive complexity
estimates for the entire algorithm, whereas no complexity estimates were
known for the original Omega Test.

We report our work in a series of two papers. The present one describes and
proves our algorithm. The second one establishes our complexity estimates.

5

2 Polyhedral Sets

This section is a review of the theory of polyhedral sets. It is based on the books
of B. Grünbaum [10] and A. Schrijver [19], where proofs of the statements below
can be found.

Given a positive integer d, we consider the d-dimensional Euclidean space Rd
equipped with the Euclidean topology. Let K be a subset of Rd. The dimension
dim(K) of K is a − 1 where a is the maximum number of affinely independent
points in K. Let a ∈ Rd, let b ∈ R and denote by H the hyperplane defined by
H = {x ∈ Rd ∣ aTx = b}. We say that the hyperplane H supports K if either
sup{aTx ∣ x ∈K} = b or inf{aTx ∣ x ∈K} = b holds, but not both.

From now on, let us assume that K is convex. A set F ⊆K is a face if either
F = ∅ or F = K, or if there exists a hyperplane H supporting K such that we
have F = K ∩ H. The set of all faces of K is denoted by F(K). We say that
F ∈ F(K) is proper if we have F ≠ ∅ or F ≠K. We note that the intersection of
any family of faces of K is itself a face of K.

We say that K is a polyhedral set or a polyhedron if it is the intersection of
finitely many closed half-spaces of Rd. We say that K is full-dimensional, if we
have dim(K) = d, that is, if the interior of K is not empty. The proper faces of
K that are ⊆-maximal are called facets and those of dimension zero are called
vertices. We observe that every face of K is also a polyhedral set.

Let H1, . . . ,Hm be closed half-spaces such that the intersection ∩i=mi=1 Hi is
irredundant, that is, ∩i=mi=1 Hi ≠ ∩i=mi=1,j≠iHi for all 1 ≤ j ≤m. We observe that this

intersection is closed and convex. For each i = 1⋯m, let ai ∈ Rd and bi ∈ R such
that Hi is defined by aTi x ≤ bi. We denote by A the m×d matrix (aTi ,1 ≤ i ≤m)
and by b the vector (b1, . . . , bd)T .

From now on, we assume that K = ∩i=mi=1 Hi holds. Such irredundant decom-
position of a polyhedral set can be computed from an arbitrary intersection of
finitely many closed half-spaces, in time polynomial in both d and m, using linear
programming; see L. Khachian in [15]. The following property is essential. For
every face F of K, there exists a subset I of {1, . . . ,m} such that F corresponds
to the set of solutions to the system of equations and inequalities

aTi x = bi for i ∈ I, and aTi x ≤ bi for i /∈ I .

This latter property has several important consequences. For each i = 1⋯m, the
set Fi = K ∩ {aTi x = bi} is a facet of K and the border of K equals ∪i=mi=1 Fi. In
particular, each proper face of K is contained in a facet of K. Each facet of a
facet of K is the intersection of two facets of K. Moreover, if the (m×d)-matrix
A has full column rank, then the ⊆-minimal faces are the vertices. The set F(K)
is finite and has at most 2m elements.

For a ∈ Rd and b ∈ R, we say that aTx ≤ b is an implicit equality in Ax ≤ b if
for all x ∈ Rd we have

Ax ≤ b Ô⇒ ax = b . (1)

Following [19], we denote by A= (resp. A+) and b= (resp. b+) the rows of A
and b corresponding to the implicit (resp. non-implicit) equalities. The following

6

properties are easy to prove. If K is not empty, then there exists x ∈K satisfying
both

A=x = b= and A+x < b+ .

The facets of K are in 1-to-1 correspondence with the inequalities of A+x ≤
b+. In addition, if K is full-dimensional, then A+ = A and b+ = b both hold;
moreover the system of inequalities Ax ≤ b is a unique representation of K, up
to multiplication of inequalities by positive scalars.

From now on and in the sequel of this paper, we assume that variables are
ordered as x1 > ⋯ > xd. We call initial coefficient, or simply initial, of an in-
equality aTi x ≤ bi, for 1 ≤ i ≤ m, the coefficient of aTi x in its largest variable.
Following the terminology of W. Pugh in [17], if v is the largest variable of the
inequality aTi x ≤ bi, we say that this inequality is an upper (resp. lower) bound
of v whenever the initial c of aTi x ≤ bi is positive (resp. negative); indeed, we
have v ≤ γ

c
(resp. v ≥ γ

c
) where γ = bi − aTi x − c v.

Canonical representation. Recall that we assume that none of the inequalities
of Ax ≤ b is redundant. If K is full-dimensional and if the initial of each inequality
in Ax ≤ b is 1 or −1, then we call Ax ≤ b the canonical representation of K w.r.t.
the variable ordering x1 > ⋯ > xd and we denote it by can(K;x1, . . . , xd).

We observe that the notion of canonical representation can also be expressed
in a more geometrical and less algebraic way, that is, independently of any co-
ordinate system. Assume again that K is full-dimensional and that the inter-
section ∩i=ni=1 Hi = K of closed half-spaces H1, . . . ,Hn is irredundant. Since K
is full-dimensional, the supporting hyperplane of each facet of K must be the
frontier of one half-space among H1, . . . ,Hn. Clearly, two (or more) half-spaces
among H1, . . . ,Hn may not have the same frontier without contradicting one of
our hypotheses (K is full-dimensional, ∩i=ni=1 Hi is irredundant). Therefore, the
half-spaces H1, . . . ,Hn are in one-to-one correspondence with the facets of K.
This implies that there is a unique irredundant intersection of closed half-spaces
equaling K and we denote it by can(K).
Projected representation. Let again Ax ≤ b be the canonical representation
of the polyhedral set K w.r.t. the variable ordering x1 > ⋯ > xd. We denote
by Ax1 (resp. A<x1) and bx1 (resp. b<x1) the rows of A and b corresponding
to the inequalities whose largest variable is x1 (resp. less than x1). For each
upper bound cx1 ≤ γ of x1 and each lower bound −ax1 ≤ −α of x1 (where c > 0,
a > 0, γ ∈ R[x2, . . . , xd] and α ∈ R[x2, . . . , xd] hold), we have a new inequality
cα−aγ ≤ 0. Augmenting A<x1 with all inequalities obtained in this way, we obtain
a new linear system which represents a polyhedral set which is the standard
projection of K on the d − 1 least coordinates of Rd, namely (x2, . . . , xd); hence
we denote this latter polyhedral set by Πx2,...,xdK and we call it the real shadow
of K, following the terminology of [17]. The procedure by which Πx2,...,xdK
is computed from K is the well-known Fourier-Motzkin elimination procedure,
see [15]. We call projected representation of K w.r.t. the variable ordering x1 >
⋯ > xd and denote by proj(K;x1, . . . , xd) the linear system given by Ax1x ≤ bx1

if d = 1 and, by the conjunction of Ax1x ≤ bx1 and proj(Πx2,...,xdK;x2, . . . , xd),
otherwise.

7

3 Integer Solutions of Linear Equation Systems

We review how Hermite normal forms [6, 19] can be used to represent the integer
solutions of systems of linear equations. Let A = (ai,j) and H = (hi,j) be two
matrices over Z with m rows and d columns, and let b be a vector over Z with
d coefficients. We denote by r the rank of A and by h the maximum bit size of
coefficients in the matrix [A b]. Definition 1 is taken from [14], see also [12].

Definition 1. The matrix H is called a column Hermite normal form (abbr.
column HNF) if there exists a strictly increasing map f from [d− r + 1, d]∩Z to
[1,m] ∩Z satisfying the following properties for all j ∈ [d − r + 1, d] ∩Z:
1. for all integer i such 1 ≤ i ≤m and that i > f(j) both hold, we have hi,j = 0,
2. for all integer k such that j < k ≤ d holds, we have hf(j),j > hf(j),k ≥ 0,
3. the first d − r columns of H are equal to zero.

We say that H is the column Hermite normal form of A if H is a column Hermite
normal form and there exists a uni-modular d× d-matrix U over Z such that we
have H = AU . When those properties hold, we call {f(d − r + 1), . . . , f(d)} the
pivot row set of A.

Remark 1. The matrix A admits a unique column Hermite normal form. Let H
be this column Hermite normal form and let U be the uni-modular (d×d)-matrix
given in Definition 1. Let us decompose U as U = [UL, UR] where UL(resp. UR)
consist of the first d − r (resp. last r) columns of U . Then we define HL ∶= AUL
and HR ∶= AUR. We have HL = 0m,d−r, where 0m,d−r is the zero-matrix with
m rows and d − r columns. We observe that UR is a full column-rank matrix.
Moreover, if A is full row-rank, that is, if r =m holds, then HR is non-singular.

Lemma 2 shows how to compute the integer solutions of the system of linear
equations Ax = b when A is full row-rank. In the general case, one can use
Lemma 1 to reduce to the hypothesis of Lemma 2. While the construction of
this latter lemma relies on the HNF, alternative approaches are available. For
instance, one can use the equation elimination procedure of the Omega Test [17],
However, no running-time estimates are known for that procedure.

Notation 1 For I ⊆ {1, . . . ,m}, we denote by AI (resp. bI) the sub-matrix
(resp. vector) of A (resp. b) consisting of the rows of A (coefficients of b) with
indices in I.

Lemma 1. Let I be the pivot row set of A, as given in Definition 1. Assume
that Ax = b admits at least one solution in Rd. Then, for any x ∈ Rd, we have

Ax = b ⇐⇒ AIx = bI .

Proof. We clearly have {x ∣ Ax = b} ⊆ {x ∣ AIx = bI}. We prove the reversed
inclusion. Since I is the pivot row set of A, one can check that rank(A) =
rank(AI) holds. Since Ax = b admits solutions, we have rank(A) = rank([A b]).
Similarly, we have rank(AI) = rank([AI bI]). Therefore, we have rank([A b]) =
rank([AI bI]). Hence, any equation aTx = b in Ax = b is a linear combination
of the equations of AIx = bI , thus {x ∣ AIx = bI} ⊆ {x ∣ Ax = b} holds.

8

Lemma 2. We use the same notations as in Definition 1 and Remark 1. We
assume that HR is non-singular. Then, the system Ax = b has an integer solution
if and only if H−1

R b is integral. In this case, all integral solutions to Ax = b are
given by x = Pt + q where
1. the columns of P consist of a Z-basis of the linear space {x ∶ Ax = 0},
2. q is a particular solution of Ax = b, and
3. t = (t1, . . . , td−r) is a vector of d − r unknowns.

The maximum absolute value of any coefficient in P (resp. q) can be bounded
over by rr+1L2r (resp. rr+1L2r), where L is the maximum absolute value of any
coefficient in A (resp. in either A or b). Moreover, P and q can be computed
within O(mdr2(log r + logL)2 + r4(log r + logL)3) bit operations.

Proof. Except for the coefficient bound and running time estimates, we refer
to [11] for a proof of this lemma. The running time estimate follows from Theo-
rem 19 of [20] whereas the coefficient bound estimates are taken from [21]. ⊓⊔

Example 1. Let A, H and U be as follows:

A =

⎛
⎜⎜⎜⎜⎜
⎝

3 4 −4 −1
2 −2 8 4
5 2 4 3
3 5 −5 −2
2 −3 9 5

⎞
⎟⎟⎟⎟⎟
⎠

, H =

⎛
⎜⎜⎜⎜⎜
⎝

0 −18 −1 −15
0 18 2 16
0 0 1 1
0 0 1 0
0 0 0 1

⎞
⎟⎟⎟⎟⎟
⎠

, U =
⎛
⎜⎜⎜
⎝

−1 30 −3 −25
1 −37 4 31
0 −19 2 16
1 0 0 0

⎞
⎟⎟⎟
⎠
.

The matrix H is the column HNF of A, with unimodular matrix U and pivot
row set [2,4,5]. We denote by HR the sub-matrix of H whose coefficients are
in bold fonts. Applying Lemma 1, we deduce that for any vector b such that
Ax = b admits one rational solution, we have:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3x1 + 4x2 − 4x3 − x4 = b1
2x1 − 2x2 + 8x3 + 4x4 = b2
5x1 + 2x2 + 4x3 + 3x4 = b3
3x1 + 5x2 − 5x3 − 2x4 = b4
2x1 − 3x2 + 9x3 + 5x4 = b5

⇔
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

2x1 − 2x2 + 8x3 + 4x4 = b2
3x1 + 5x2 − 5x3 − 2x4 = b4
2x1 − 3x2 + 9x3 + 5x4 = b5

. (2)

We apply Lemma 2: if Ax = b is consistent over Q and if H−1
R [b2, b4, b5]T is inte-

gral, then all the integer solutions of the second equation system in Relation (2)
are given by x = Pt +q, where P = [−1,1,0,1]T , q = [5

3
b2 − 19

3
b4 − 155

3
b5,− 37

18
b2 +

73
9
b4 + 575

9
b5,− 19

18
b2 + 37

9
b4 + 296

9
b5]T , t = (t1) and t1 is a new variable.

4 Integer Solutions of Linear Inequality Systems

In this section, we present an algorithm for computing the integer points of a
polyhedron K ⊆ Rd, that is, the set K ∩ Zd. To do so, we adapt the Omega Test
invented by W. Pugh [17] for deciding whether or not a polyhedral set has an
integer point. Our algorithm decomposes the set K ∩ Zd into a disjoint union

9

(K1 ∩Zd) ∪⋯∪ (Ks ∩Zd), where K1, . . . ,Ks are polyhedral sets in Rd, for which
the integer points can be represented in a sense specified in Section 4.2. Sect. 4.3
states the specifications of the main procedure while Sect. 3, 4.1, 4.4 4.5, 4.6.
describe its main subroutines and its proof. We use the same notations as in
Sect. 2. However, from now on, we assume that all matrix and vector coefficients
are integer numbers, that is, elements of Z. To be precise, we have the following.

Notation 2 We consider a polyhedral set K ⊆ Rd given by an irredundant
intersection K = ∩i=mi=1 Hi of closed half-spaces H1, . . . ,Hm such that, for each

i = 1, . . . ,m, the half-space Hi is defined by aTi x ≤ bi, with ai ∈ Zd and bi ∈ Z.
The conjunction of those inequalities forms a system of linear inequalities that we
denote by Ax ≤ b, as well as Σ. We do not assume that K is full-dimensional.

4.1 Normalization of Linear Inequality Systems

The purpose of the procedure IntegerNormalize, presented below, is to solve the
system consisting of the equations of Ax ≤ b and substitute its solutions into
the system consisting of the inequalities of Ax ≤ b. This process is performed
by Steps (S2) to (S6) and relies on Lemmas 1 and 2; this yields Proposition 1,
which provides the output specification of IntegerNormalize. Step (S1) is an op-
timization: performing it is not needed, but improves performance in practice.

When applied to Ax ≤ b, the IntegerNormalize procedure proceeds as follows.
(S1) It computes proj(K;x1, . . . , xd), obtaining a new system of linear inequalities

that we denote again by Σ; if this proves that K has no rational points, then
the procedure stops and returns (∅,∅,∅) implying that K ∩ Zd is empty,

(S2) for every inequality ax ≤ b, let g be the absolute value of the GCD of coeffi-
cients in a: if g > 1, replace ax ≤ b by a

g
x ≤ ⌊ b

g
⌋.

(S3) Every pair of inequalities of the form (aTi x ≤ bi,−aTi x ≤ −bi) is replaced by
the equivalent equation, that is, aTi x = bi; Every pair of inequalities of the
form (aTi x ≤ bi,aTi x ≤ bj) is replaced by aTi x ≤ min(bi, bj).

(S4) Equations and inequalities form, respectively, a system of linear equations
A=x = b= and a system of linear inequalities A≤x ≤ b≤, as specified in
Notation 3, so that the conjunction of these two systems is equivalent to Σ.

(S5) If A=x = b= is empty, that is, if Σ has no equations, then the procedure
stops returning (x,∅,A≤x ≤ b≤).

(S6) Proposition 1 is applied to A=x = b=; if this proves that this latter system has
no integer solutions, then the procedure stops returning (∅,∅,∅), otherwise
the change of variables given by (3) is applied to A≤x ≤ b≤; as a result, the
output of the IntegerNormalize procedure is the triple (t,x = Pt+q,Mt ≤ v),
where t,P,q,M,v are defined in Proposition 1.

Notation 3 From now we consider an equation system A=x = b= and an in-
equality system A≤x ≤ b≤. The matrices A=,A≤ as well as the vectors b=,b≤

have integer coefficients. The total number of rows in both A= and A≤ is m,
each of A=,A≤ has d columns, and A≤ has e rows. We denote by L and h the
maximum absolute value and maximal bit size of any coefficient in the matrix in
either [A= b=] or [A≤ b≤] respectively. We define r ∶= rank(A=).

10

Proposition 1. One can decide whether or not A=x = b= has integer solutions.
If this system has integer solutions, then, for any ε > 0, one can compute
1. a matrix P ∈ Zd×(d−r) within O(mdr2+ε h3) bit operations,
2. a vector q ∈ Zd within O(mdr2+ε h3) bit operations,

3. a matrix M ∈ Ze×(d−r), whose coefficients can be bounded over by drr+1L2r+1,
within O(md2 r1+εh3) bit operations,

4. a vector v ∈ Ze, whose coefficients can be bounded over by 2drr+1L2r+1, within
O(md2 r1+εh3) bit operations,

such that an integer point (x1, . . . , xd) ∈ Zd solves A=x = b= and A≤x ≤ b≤ if
and only if there exists an integer point (t1, . . . , td−r) ∈ Zd−r such that we have

{ (x1, . . . , xd)T = P(t1, . . . , td−r)T + (q1, . . . , qd)T
M(t1, . . . , td−r)T ≤ (v1, . . . , ve)T

. (3)

That is, one can perform the IntegerNormalize procedure within O(md2 r1+ε h3)
bit operations.

Proof. We first observe that one can decide whether or not A=x = b= has solu-
tions in Rd, using standard techniques, say Gaussian elimination. If A= is not full
row-rank, this observation allows us to apply Lemma 1 and thus to reduce to the
case where A= is full row-rank, via the computation of the column HNF of A=.
Hence, from now on, we assume that A= is full row-rank. We apply Lemma 2
which yields the matrix P and the vector q. Next, we compute M and v as
follows: M ∶= A≤P and v ∶= −A≤q+b. The coefficient bounds and cost estimates
for M and v follow easily from Lemma 2 and the inequality r ≤ d. ⊓⊔

4.2 Representing the Integer Points

Applying IntegerNormalize to Ax ≤ b, produces a triple (t,x = Pt + q,Mt ≤ v),
with P,q,M,v as in Proposition 1. Assume t ≠ ∅. Since the system x = Pt + q
solves the x-variables as functions of the t-variables, we turn our attention to
Mt ≤ v. Definition 2 states conditions on M under which we view (x = Pt +
q,Mt ≤ v) as a “solved system”, that is, a system describing its integer solutions.

Definition 2. Let K̂ be the polyhedron of Z2d−r defined by the system of linear
equations and inequalities given by x = Pt+q and Mt ≤ v, in Relation (3). We
say that this system is a representation of the integer points of the polyhedron
K̂ whenever M has the following form:

⎛
⎜⎜⎜⎜⎜
⎝

M11 M12 ⋯ M1,`−1 M1,`

M22 ⋯ M2,`−1 M2,`

⋱ ⋮ ⋮
M`−1,`−1 M`−1,`

M`,`

⎞
⎟⎟⎟⎟⎟
⎠

, (4)

where for each i, j with 1 ≤ i, j ≤ `, the block Mi,j has mi rows and kj columns
such that the following six assertions hold:

11

(i) k1, . . . , k`−1 ≥ 1, k` ≥ 0 and k1 +⋯ + k` = d − r;
(ii) m1, . . . ,m`−1 ≥ 2 and m` ≥ 0;
(iii) for 1 ≤ i < `, each column in Mi,i has both positive coefficients and negative

coefficients, but no null coefficients;
(iv) if m` > 0 holds, then in each column of M`,`, all coefficients are non-zero

and have the same sign;
(v) (Consistency) the system Mt ≤ v admits at least one integer point in Zd−r;
(vi) (Extensibility) for all 1 < i < d − r, every integer point of Rd−r−i solving all

the inequalities of Mt ≤ v involving ti+1, . . . , td−r only extends to an integer
point of Rd−r−i+1 solving all the inequalities of Mt ≤ v involving ti, . . . , td−r.

More generally, we say that x = Pt+q and Mt ≤ v form a representation of the
integer points of K̂ if M satisfies (i) to (vi) up to a permutation of its columns.

Remark 2. Assume that the above matrix M satisfies the properties (i) to (vi)
of Definition 2. Then, the values of the first k1+⋯+k`−1 (resp. last k`) variables
of t are bounded (resp. unbounded) in the polyhedron given by Mt ≤ v. For these
reasons, we call those variables bounded and unbounded in Mt ≤ v, respectively.
Clearly, the original polyhedron Ax ≤ b is bounded if and only if m` = k` = 0.

4.3 The IntegerSolve Procedure: Specifications

We are ready to specify the main algorithm presented in this paper. This pro-
cedure, called IntegerSolve will be formally stated in Sect. 4.6. When applied to
Ax ≤ b, with the assumptions of Notation 2, IntegerSolve produces a decompo-
sition of the integer points of the polyhedron K in the sense of the following.

Definition 3. Let A,x,b,K be as in Notation 2. A sequence of pairs (y1,Σ1),
. . ., (ys,Σs) is called a decomposition of the integer points of the polyhedron K
whenever the following conditions hold:

(i) yi is a sequence of di ≥ d independent variables x1, . . . , xd, xd+1, . . . , xdi thus
starting with x,

(ii) Σi is a system of linear inequalities with yi as unknown,
(iii) Σi is a representation of the integer points of a polyhedral set Ki,

and we have VZ(Σ) = VZ(Σ1,x) ∪ ⋯ ∪ VZ(Σs,x), where VZ(Σ) denotes the
set of the integer points of Σ and where VZ(Σi,x) is defined as the set of the

points (x1, . . . , xd) ∈ Zd such that there exists a point (xd+1, . . . , xdi) ∈ Zdi−d such
that (x1, . . . , xd, xd+1, . . . , xdi) solves Σi.

In the sequel of Sect. 4, we shall propose and prove an algorithm satisfying
the above specifications. The construction is by induction on d ≥ 1. We observe
that the case d = 1 is trivial. Indeed, in this case, K is necessarily an interval of
the real line. Then, either K ∩ Z is empty and IntegerSolve(Σ) returns the empty
set, or K ∩ Z is not empty and the system Σ is clearly a representation of the
integer points of K in the sense of Definition 2. The case d > 1 will be treated in
Sect. 4.6, after presenting the main subroutines of the IntegerSolve procedure.

12

4.4 The DarkShadow Procedure

Let M,v be as in Proposition 1. Recall that we write t = (t1, . . . , td−r) and
assume 0 ≤ r < d. The system Mt ≤ v represents a polyhedral set that we denote
by Kt. We order the variables as t1 > ⋯ > td−r. We call DarkShadow the procedure
stated by Algorithm 1, for which Proposition 2 serves as output specification.
In Algorithm 1, the polyhedral set represented by M<t1t ≤ v<t1 (resp. Θ) is
called the dark shadow of Kt, denoted as Dt1 when case 1 (resp. case 2) holds.

Algorithm 1 DarkShadow(Mt ≤ v)
1: case 1: for all 1 ≤ i ≤ d − r, the inequalities in ti are either all lower bounds of ti

or all upper bounds of ti
2: return ((t2, . . . , td−r),M<t1t ≤ v<t1).

3: case 2: otherwise
4: re-order the variables, such that t1 has both lower bounds and upper bounds.
5: initialize ∆ to the empty set.
6: for each upper bound c t1 ≤ γ of t1, where c > 0, γ ∈ Z[t2, . . . , td−r] do
7: for each lower bound −a t1 ≤ −α of t1, where a > 0, α ∈ Z[t2, . . . , td−r] do
8: let ∆ ∶=∆ ∪ {cα − aγ ≤ −(c − 1)(a − 1)}.
9: end for

10: end for
11: Let Θ0 ∶=∆ ∪ M<t1t ≤ v<t1

12: Let Θ be the system obtained by removing from Θ0 all redundant inequalities.
13: return ((t2, . . . , td−r),Θ).

For the inequalities in the set ∆ in Algorithm 1, we have the following.

Lemma 3 (Pugh [17]). Let c t1 ≤ γ be an upper bound of t1 and −a t1 ≤ −α be
an lower bound of t1, where c > 0, a > 0, γ ∈ Z[t2, . . . , td−r] and α ∈ Z[t2, . . . , td−r]
hold. Then, every integer point (t2, . . . , td−r) satisfying cα− aγ ≤ −(c− 1)(a− 1)
extends to an integer point (t1, t2, . . . , td−r) satisfying both c t1 ≤ γ and −a t1 ≤ α.

Proposition 2. Let ((t2, . . . , td−r),Θ) be the output of the DarkShadow proce-
dure. Then, every integer point of VZ(Θ, (t2, . . . , td−r)) extends to an integer
point solving Ax ≤ b.

Proof. If the DarkShadow procedure returns at Line 2 of Algorithm 1, the claim
holds easily. Lemma 3 shows that any integer point (t2, . . . , td−r) solving ∆ can
be extended to an integer point solving Mt ≤ v, thus with Proposition 1, to an
integer point solving Ax ≤ b. Therefore, if the DarkShadow procedure returns
at Line 13, the claim also holds.

4.5 The GreyShadow Procedure

Let M, t, v,Kt,Dt1 be as in Sect. 4.4. We call grey shadow of Kt, denoted
by Gt1 , the set-theoretic difference (Πt2,...,td−rKt)∖Dt1 . Algorithm 2 states the
GreyShadow procedure, for which Lemma 4 serves as output specification.

13

Lemma 4. Let G = {(u1, t = P1u1+q1,M1u1 ≤ v1), . . . , (us, t = Psus+qs,Msus ≤
vs)} be the output of Algorithm 2. Then, the disjoint union ⊍

1≤i≤s
VZ(t = Piui +

qi ∪Miui ≤ vi, t) forms the set of the integer points of the grey shadow Gt1 .

Proof. The correctness of case 1 follows from the fact that Gt1 is empty when
all t-variables are unbounded. From now on, we consider case 2. At Line 12,
all the t-variables are solved by IntegerNormalize as functions of new variables
ui. The fact that ⋃

1≤i≤s
VZ(t = Piui + qi ∪Miui ≤ vi, t) equals Gt1 follows from

Section 2.3.1. of [17]. Now, at Line 8 of Algorithm 2, we add the constraint
cα− aγ > −(c− 1)(a− 1) to Θ2, while at Line 14, we use cα− aγ ≤ −(c− 1)(a− 1)
to construct Υ in the next loop iteration. From that construction of Θ2 and Υ ,
we easily deduce that the above union is disjoint.

Algorithm 2 GreyShadow(Mt ≤ v)
1: case 1: for all 1 ≤ i ≤ d − r, the inequalities in ti are either all lower bounds of ti

or all upper bounds of ti
2: return (∅,∅,∅)
3: case 2: otherwise
4: Re-order the variables, such that t1 has both lower bounds and upper bounds.
5: Initialize both Υ and G to the empty set; the former set will be a set of linear

inequalities while the latter will form the result of the procedure.
6: for each upper bound c t1 ≤ γ of t1, where c > 0, γ ∈ Z[t2, . . . , th] do
7: for each lower bound −a t1 ≤ −α of t1, where a > 0, α ∈ Z[t2, . . . , th] do
8: let Θ2 ∶= Υ ∪ Mt ≤ v ∪ {cα − aγ > −(c − 1)(a − 1)},
9: for each non-negative integer i ≤ ca−c−a

c
do

10: check whether at1 = α + i is consistent over Z using Lemma 2,
11: case no: move to the next iteration,

12: case yes: let G ∶= G ∪ IntegerNormalize({at1 = α + i} ∪ Θ2),
13: end for
14: let Υ ∶= Υ ∪ {cα − aγ ≤ −(c − 1)(a − 1)}.
15: end for
16: return G.
17: end for

4.6 The IntegerSolve Procedure: Algorithm

We are ready to state an algorithm satisfying the specifications of IntegerSolve
introduced in Sect. 4.3. The recursive nature of this algorithm leads us to define
an “inner procedure”, called IntegerSolve0, of which IntegerSolve is a wrapper
function. The procedure IntegerSolve0 takes as input the system to be solved,
namely Ax ≤ b, together with another system of linear equations and inequal-
ities, denoted by E, see Notation 4. This second system E keeps track of the

14

relations between those variables that have already been solved and those that
remain to be solved. To be more precise, the procedure IntegerSolve0, see Al-
gorithm 3, relies on IntegerNormalize and thus introduces new variables when
solving systems of linear equations over Z. For this reason, variables appearing
in E may not be present in x and we need another vector of variables, namely
y = (y1, . . . , yd′), to denote the unknowns of E that are regarded as “solved”.

Notation 4 We denote by E a second system of linear equations and inequal-
ities, with coefficients in Z and with y ⊕ x as “unknown” vector, where y ⊕ x
denotes the concatenated vector (y1, . . . , yd′ , x1, . . . , xd). In fact, the variables of
y are regarded as solved by the equations and inequalities of E, meanwhile those
of x remain to be solved. Hence, we can view the conjunction of the systems
Ax ≤ b and E as a system of linear equations and inequalities with y ⊕ x as

unknown vector, defining a polyhedron KE in Rd
′+d.

Theorem 1 states, that Algorithm 3 returns a decomposition (in the sense of
Definition 3) of the integer points of the polyhedron KE , defined in Notation 4.
From Algorithm 3, we easily implement the IntegerSolve procedure (as specified
in Sect. 4.3) with the call IntegerSolve0({ },{ },x,Ax ≤ b).

Theorem 1. Algorithm 3 terminates and returns a decomposition of the integer
points of the polyhedron KE.

Proof. We first prove termination. Lines 1 to 21 in Algorithm 3 handle the case
where Ax ≤ b has a single unknown. This is simply done by case inspection.
Consider now the case where Ax ≤ b has more than one variable. The calls to
the procedures DarkShadow and Greyshadow at Lines 29 and 32 generate the
input to the recursive calls. From Lines 2 and 13 of Algorithm 1, and Lines
2 and 12 of Algorithm 2, we deduce that the number of unknowns decreases at
least by one after each recursive call. Therefore, Algorithm 3 terminates.

Next we prove that Algorithm 3 is correct. Let (y1,Σ1), . . ., (ys,Σs) be the
output of Algorithm 3 where each Σi is a system of linear inequalities with yi
as unknown. The fact that each Σi is a representation of the integer points of
the polyhedron it defines, can be established by induction on the length of yi.
To give more details, the properties required by Definition 2 are easy to check in
the case d = 1. For the cases d > 1, these properties, in particular the consistency
and the extensibility, follow from the way the set E is incremented at Lines 27
and 33, as well as from Proposition 2. Finally, the fact that the integer points
of the input system of the initial call to Algorithm 3 are given by the integer
points of Σ1, . . . ,Σs can be established by induction on the length of yi, thanks
to Lemma 4.

15

Algorithm 3 IntegerSolve0(y, E, x, Ax ≤ b)
1: Let d be the cardinality of x;
2: case d = 1
3: let x = {x}, solve Ax ≤ b over R,
4: case only lower bounds of x exist in Ax ≤ b
5: the solution to Ax ≤ b over R is {x ∶ −x ≤ q1} for some q1 ∈ R,
6: y ∶= y ⊕ x and E ∶= E ∪ {−x ≤ ⌊q1⌋};
7: return {(y, E)}
8: case only upper bounds of x exist in Ax ≤ b
9: the solution to Ax ≤ b over R is {x ∶ x ≤ q2} for some q2 ∈ R,

10: y ∶= y ⊕ x and E ∶= E ∪ {x ≤ ⌊q2⌋};
11: return {(y, E)}
12: case both lower bounds and upper bounds of x exist in Ax ≤ b
13: the solution to Ax ≤ b over R is {x ∶ x ≤ q3 and −x ≤ q4} for some q3, q4 ∈ R,
14: case ⌊q3⌋ > −⌊q4⌋
15: y ∶= y ⊕ x and E ∶= E ∪ {x ≤ ⌊q3⌋, −x ≤ ⌊q4⌋};
16: return {(y, E)}
17: case ⌊q3⌋ = −⌊q4⌋
18: y ∶= y ⊕ x, E ∶= eval(E,x = ⌊q3⌋) ∪ {x = ⌊q3⌋},
19: return {(y, E)}
20: case ⌊q3⌋ < −⌊q4⌋
21: return {(∅,∅)}
22: case d > 1
23: (t,x = Pt + q, Mt ≤ v) ∶= IntegerNormalize(Ax ≤ b),
24: case (t,x = Pt + q, Mt ≤ v) = (∅,∅,∅)
25: return {(∅,∅)}
26: case (t,x = Pt + q, Mt ≤ v) ≠ (∅,∅,∅)
27: y ∶= y ⊕ x, E ∶= eval(E, x = Pt + q) ∪ x = Pt + q ∪ Mt1t ≤ vt1 ,
28: G ∶= ∅,
29: (t′,Θ) ∶= DarkShadow(Mt ≤ v),
30: y ∶= y ⊕ {t1},
31: G ∶= G ∪ IntegerSolve0(y,E, t′,Θ);
32: for (u,Eu,Muu ≤ vu) ∈ Greyshadow(Mt ≤ v) do
33: G ∶= G ∪ IntegerSolve0(y ∪ t,E ∪Eu,u,Muu ≤ vu)
34: end for
35: return G

Bibliography

[1] Philippe Aubry, Daniel Lazard, and Marc Moreno Maza. On the theories of tri-
angular sets. J. Symb. Comput., 28:105–124, July 1999.

[2] Alexander I. Barvinok. A polynomial time algorithm for counting integral points
in polyhedra when the dimension is fixed. Math. Oper. Res., 19(4):769–779, 1994.

[3] Alexander I. Barvinok. Integer Points in Polyhedra. Contemporary mathematics.
European Mathematical Society, 2008.

[4] Matthias Beck. Integer Points in Polyhedra–Geometry, Number Theory, Represen-
tation Theory, Algebra, Optimization, Statistics: AMS-IMS-SIAM Joint Summer
Research Conference, June 11-15, 2006, Snowbird, Utah. Contemporary mathe-
matics - American Mathematical Society. American Mathematical Society, 2008.

[5] Changbo Chen, Xiaohui Chen, Abdoul-Kader Keita, Marc Moreno Maza, and
Ning Xie. MetaFork: A compilation framework for concurrency models targeting
hardware accelerators and its application to the generation of parametric CUDA
kernels. In Proceedings of CASCON 2015, pages 70–79, 2015.

[6] Henri Cohen. A course in computational algebraic number theory, volume 138.
Springer Science & Business Media, 2013.

[7] Paul Feautrier. Parametric integer programming. RAIRO Recherche
Opérationnelle, 22, 1988. http://citeseerx.ist.psu.edu/viewdoc/download?

doi=10.1.1.30.9957&rep=rep1&type=pdf.

[8] Paul Feautrier. Automatic parallelization in the polytope model. In The Data
Parallel Programming Model: Foundations, HPF Realization, and Scientific Ap-
plications, pages 79–103, London, UK, UK, 1996. Springer-Verlag. http://dl.

acm.org/citation.cfm?id=647429.723579.

[9] Michael Jo Fischer, Michael J Fischer, and Michael O Rabin. Super-exponential
complexity of presburger arithmetic. Technical report, Cambridge, MA, USA,
1974.

[10] Branko Grünbaum. Convex Polytops. Springer, New York, NY, USA, 2003.

[11] Ming S. Hung and Walter O. Rom. An application of the hermite normal form in
integer programming. Linear Algebra and its Applications, 140:163 – 179, 1990.

[12] Rui-Juan Jing, Chun-Ming Yuan, and Xiao-Shan Gao. A polynomial-time algo-
rithm to compute generalized hermite normal form of matrices over Z[x]. CoRR,
abs/1601.01067, 2016.

[13] C.N. Jones, E.C. Kerrigan, and J.M. Maciejowski. On polyhedral projection
and parametric programming. Journal of Optimization Theory and Applications,
138(2):207–220, 2008.

[14] Ravindran Kannan and Achim Bachem. Polynomial algorithms for computing the
smith and hermite normal forms of an integer matrix. siam Journal on Computing,
8(4):499–507, 1979.

[15] Leonid Khachiyan. Fourier-motzkin elimination method. In Christodoulos A.
Floudas and Panos M. Pardalos, editors, Encyclopedia of Optimization, Second
Edition, pages 1074–1077. Springer, 2009.

[16] Matthias Köppe and Sven Verdoolaege. Computing parametric rational generating
functions with a primal barvinok algorithm. Electr. J. Comb., 15(1), 2008.

[17] William Pugh. The omega test: a fast and practical integer programming algo-
rithm for dependence analysis. In Joanne L. Martin, editor, Proceedings Super-

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.30.9957&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.30.9957&rep=rep1&type=pdf
http://dl.acm.org/citation.cfm?id=647429.723579
http://dl.acm.org/citation.cfm?id=647429.723579

17

computing ’91, Albuquerque, NM, USA, November 18-22, 1991, pages 4–13. ACM,
1991.

[18] William Pugh. Counting solutions to presburger formulas: How and why. In Vivek
Sarkar, Barbara G. Ryder, and Mary Lou Soffa, editors, Proceedings of the ACM
SIGPLAN’94 Conference on Programming Language Design and Implementation
(PLDI), Orlando, Florida, USA, June 20-24, 1994, pages 121–134. ACM, 1994.

[19] Alexander Schrijver. Theory of linear and integer programming. John Wiley &
Sons, Inc., New York, NY, USA, 1986.

[20] Arne Storjohann. A fast practical deterministic algorithm for triangularizing in-
teger matrices. Citeseer, 1996.

[21] Arne Storjohann. Algorithms for matrix canonical forms. PhD thesis, Swiss Fed-
eral Institute of Technology Zurich, 2000.

[22] David Wonnacott. Omega test. In Encyclopedia of Parallel Computing, pages
1355–1365. 2011.

Software

We have implemented the algorithm presented in the first paper with in the
Polyhedra library in Maple. This library is publicly available in source on the
download page of the RegularChains library at www.regularchains.org

Acknowledgements

The authors would like to thank IBM Canada Ltd (CAS project 880) and NSERC
of Canada (CRD grant CRDPJ500717-16), as well as the University of Chinese
Academy of Sciences, UCAS Joint PhD Training Program, for supporting their
work.

www.regularchains.org

	Computing the Integer Points of a Polyhedron, I: Algorithm
	Introduction
	Polyhedral Sets
	Integer Solutions of Linear Equation Systems
	Integer Solutions of Linear Inequality Systems
	Normalization of Linear Inequality Systems
	Representing the Integer Points
	The IntegerSolve Procedure: Specifications
	The DarkShadow Procedure
	The GreyShadow Procedure
	The IntegerSolve Procedure: Algorithm

