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Abstract. Let K be a polyhedron in Rd, given by a system of m linear
inequalities, with rational number coefficients bounded over in absolute
value by L. In this series of two papers, we propose an algorithm for
computing an irredundant representation of the integer points of K, in
terms of “simpler” polyhedra, each of them having at least one integer
point. Using the terminology of W. Pugh: for any such polyhedron P ,
no integer point of its grey shadow extends to an integer point of P . We
show that, under mild assumptions, our algorithm runs in exponential
time w.r.t. d and in polynomial w.r.t m and L. We report on a software
experimentation. In this series of two papers, the first one presents our
algorithm and the second one discusses our complexity estimates.

1 Introduction

In the first paper of that series of two, we have presented an algorithm, called
IntegerSolve, for decomposing the set of integer points of a polyhedron. See Sec-
tion 4 of the first paper. This second paper is dedicated to complexity estimates
considering both running time and output size. Our main result is Theorem 1,
which states an exponential time complexity3 for IntegerSolve, under Hypoth-
esis 1, that we call Pugh’s assumption. Before discussing this hypothesis and
stating the theorem, we set up some notations.

Notation 1 Recall that we consider a polyhedral set K ⊆ Rd given by an irre-
dundant intersection K = ∩i=m

i=1 Hi of closed half-spaces H1, . . . ,Hm such that,

for each i = 1, . . . ,m, the half-space Hi is defined by aT
i x ≤ bi, with ai ∈ Zd and

bi ∈ Z. The conjunction of those inequalities forms a system of linear inequalities
that we denote by Ax ≤ b. Let L (resp. h) be the maximum absolute value (resp.
maximum bit size) of a coefficient in either A or b. Thus h = ⌊log2(L)⌋ + 2.

Hypothesis 1 We assume that during the execution of the function call Integer-
Solve(K), for any polyhedral set K ′, input of a recursive call, each facet of the
dark shadow4 of K ′ is parallel to a facet of the real shadow of K ′.
3 To be precise, in the EXP complexity class.
4 The notions of real shadow, dark shadow and grey shadow are presented in Section

3 of the first paper.
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The figure in the introduction of the first paper shows a polyhedron for which
each facet of its dark shadow is parallel to a facet of its real shadow. This property
is commonly observed in practice, see Sect. 5. In [9], W. Pugh observes that it
is possible to build polyhedra K that challenge the Omega Test by generating
many recursive calls when searching for integer points of K that extend integer
points of its grey shadow. But he notices that, in practice, this combinatorial
explosion is rare, due to the fact that the grey shadow of K is often empty (or at
least for most of the recursive calls of the Omega test, when searching for integer
points in K). This experimental observation leads us to Hypothesis 1 which is
less strong than the property observed by W. Pugh, while being sufficient to
guarantee that our algorithm runs in exponential time.

We believe that this running estimate could still hold with the following even
weaker hypothesis: during the execution of the function call IntegerSolve(K),
for any polyhedral set K ′, input of a recursive call, the number of facets of the
dark shadow of K ′ is in “big-O” of the the number of facets of its real shadow.
Investigating this question is left for future work.

To state our main result, we need a notation for the running time of solving
a linear program. Indeed, linear programming is an essential tool for removing
redundant inequalities generated by Fourier-Motzkin elimination, see [7].

Notation 2 For an input linear program with total bit size H and with d vari-
ables, we denote by LP(d,H) an upper bound for the number of bit operations
required for solving this linear program. For instance, in the case of Karmarkar’s
algorithm [6], we have LP(d,H) ∈ O(d3.5H2 ⋅ logH ⋅ log logH).

Theorem 1. Under Hypothesis 1, the call function IntegerSolve(K) runs within

O(m2d2

d4d
3

L4d3

LP(d,mdd4(log d + logL))) bit operations.

The running time estimate in Theorem 1 is exponential w.r.t. d but poly-
nomial w.r.t m and L. Since our algorithm transforms the Omega Test from a
decision procedure into a system solving algorithm, our result also holds for the
original Omega Test. To our knowledge, this is the first complexity estimate for
the whole Omega Test procedure.

The proof follows from a series of results established in Sect. 2, 3 and 4. We
believe that some of them are interesting on their own.

Sect. 2 deals with the following problem. Let F be a k-dimensional face of
K, for 0 ≤ k < d. What is the computational cost of projecting F onto a k-
dimensional linear subspace of Rd?

Sect. 3 gives complexity estimates for Fourier-Motzkin elimination (FME).
While it is known that FME can run in single exponential time [5, 7], we are not
aware of running time estimates for FME in the literature. Thanks to Hypothe-
sis 1, our FME estimates applies to the DarkShadow sub-routine of IntegerSolve.

Sect. 4 gathers results for completing the proof of Theorem 1. The recursive
nature of this algorithm leads us to give upper bound for three quantities: the
number nodes in the tree of the recursive calls, the number of facets of each
polyhedron input of a recursive call, the maximum absolute value of a coefficient
in a linear system defining such a polyhedron.
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2 Properties of the projection of faces of a polyhedron

This section gathers preliminary results towards the complexity analysis of the
IntegerSolve algorithm. Some of these results are probably not new, but we could
not find a reference for them in the literature.

Definition 1. Let I be a subset of {1, . . . ,m} and denote by BI the affine space
{x ∈ Rd

∣ aT
i x = bi for i ∈ I}. If BI ∩K is not empty, then BI ∩K is a face of

K. We call such an index set I a defining index set of the face BI ∩K.

Let F be a k-dimensional face of K for an integer 0 ≤ k < d and let I be a
defining index set of F with maximum cardinality. Consider the set OI given by:

OI = BI ∩ {x ∣aT
i x < bi, i /∈ I}. (1)

Proposition 1. The set OI is not empty.

Proof. The assumption on I implies that for all i /∈ I the equality aT
i x = bi is not

an implicit equation of F . Indeed, if aT
i x = bi would be an implicit equation of

F , then the set {i}∪I would be a defining index set of F as well, a contradiction.
From Section 8.1 of [10] and since no equation aT

i x = bi for i /∈ I is an implicit
equation of F defined by I, we deduce that the set OI is not empty. ⊓⊔

Using Gaussian elimination, we can compute a parametric representation of
OI where dim(BI) variables are treated as parameters; we denote by x′ those
parameters. The other d − dim(BI) variables are referred as main variables or
leading variables, following the terminology of the theory of regular chains [2].
Once we substitute the main variables by their linear forms in the parameters
(solved from BI) into the system {x ∣aT

i x < bi, i /∈ I}, we obtain a consistent
strict inequality system in the parameters, whose solution set, that we call Oo,
is of dimension dim(BI) in the parameter space.

Proposition 2. We have dim(BI) = dim(OI) = dim(Oo) = dim(F ) = k

Proof. Note that the set Oo is the image of OI in the standard projection onto
the parameter space and that Oo is open in that space (equipped with the
Euclidean topology). Hence, we have dim(BI) = dim(OI) = dim(Oo). In fact,
this elimination-and-substitution process shows that OI is the solution set of a
so-called regular semi-algebraic system [4] where the regular chain part is given by
a regular chain of height d−dim(BI). Meanwhile, we have dim(BI) ≥ dim(F ) ≥

dim(OI), since BI ⊇ F ⊇ OI holds by definition. Moreover, we have dim(OI) ≥

dim(Oo) = dim(BI) since Oo is the image of OI . Finally, since dim(F ) = k holds
by assumption, we deduce dim(BI) = dim(F ) = k. ⊓⊔

The following lemma was found by the authors independently of the work of
Imbert [5] but it is likely that our result could be derived from that paper.

Lemma 1. Let F be a k-dimensional face of K for some integer 0 ≤ k < d.
Then, the face F admits a defining index set with cardinality d − k.
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Proof. First, we shall prove that there exists a defining index set with cardinal-
ity at least d − k. Assume that I is a defining index set of F with maximum
cardinality. From Proposition 2, we have dim(BI) = k, hence I has at least d−k
elements. Assume I = {i1, i2, . . . , it}, with t ≥ d−k. Since dim(BI) = k holds, one
can easily deduce that the rank of the matrix

(aT
i1 ,a

T
i2 , . . . ,a

T
it)

and the rank of the matrix

(aT
i1 ,a

T
i2 , . . . ,a

T
it , (bi1 , bi2 , . . . , bit)

T
)

are both d − k. Thus, we can further assume w.l.o.g. that

(aT
i1 ,a

T
i2 , . . . ,a

T
id−k

)

has rank d−k. Then clearly, the set I∗ = {i1, i2, . . . , id−k} is also a defining index
set of F . That is, the k-dimensional face F admits a defining index set with
cardinality d − k. ⊓⊔

Corollary 1 follows immediately from Lemma 1.

Corollary 1. Let 0 ≤ k < d be an integer. Let fd,m,k be the number of k-
dimensional face of K. Then, we have

fd,m,k ≤ (
m

d − k
) .

Therefore, we have

fd,m,0 + fd,m,1 +⋯ + fd,m,d−1 ≤ md .

Note that, from now on, when we say a defining index set of a k-dimensional
face of K, we shall always refer to one with cardinality d − k. Let FP be the
closure of Oo in the Euclidean topology. Then, FP is the projection of F on the
coordinates x′, where x′ stand for the parameters introduced above. Thus, FP is
a polyhedron and Corollary 2 gives upper-bound estimates on a representation
of FP with a system of linear inequalities.

Corollary 2. One can compute a matrix C over Z and a vector d over Z such
that the integer points of FP are given by Cx′ ≤ d and the maximum absolute
value of a coefficient in either C or d is no more than (d − k + 1)

d−k+1
2 Ld−k+1,

where L is the maximum absolute value of a coefficient in either A or b.

Proof. Without loss of generality, assume I = {1, . . . , d−k}. From Proposition 2,
we have dim(FP ) = k. From the proof of Lemma 1, the rank of the matrix
(aT

1 ,a
T
2 , . . . ,a

T
d−k) and the rank of matrix (aT

1 ,a
T
2 , . . . ,a

T
d−k, (b1, b2, . . . , bd−k)

T )

are both equal to d − k. Without loss of generality, assume that the first d − k
rows of each of the above two matrices are linearly independent. Therefore, we
have x′ = [xd−k+1, . . . , xd]T . It follows that FP can be defined by the inequality
system Cx′ ≤ d obtained by Fraction-Free Gaussian Elimination, where C and
d are given by:



5

C = (ci,j)d−k<i,j≤d, where ci,j is the determinant of

⎛
⎜
⎜
⎜
⎝

a11 ⋯ a1,d−k a1,j
⋮ ⋮ ⋮ ⋮

ad−k,1 ⋯ ad−k,d−k ad−k,j
ai,1 ⋯ ai,d−k ai,j

⎞
⎟
⎟
⎟
⎠

,

d = [dd−k+1, . . . , dd]T , where di is the determinant of

⎛
⎜
⎜
⎜
⎝

a11 ⋯ a1,d−k b1
⋮ ⋮ ⋮ ⋮

ad−k,1 ⋯ ad−k,d−k bd−k
ai,1 ⋯ ai,d−k bi

⎞
⎟
⎟
⎟
⎠

.

Using Hadamard’s inequality, the absolute value of any ci,j and dj can be

bounded by (d − k + 1)
d−k+1

2 Ld−k+1. ⊓⊔

3 Complexity estimates for Fourier-Motzkin elimination

Proposition 4 states a running time estimate for computing the linear inequality
system proj(K;x1, . . . , xd) defined in Section 2 of the first paper. Note that the
article [7] states that Fourier-Motzkin elimination can be run in single exponen-
tial time but without giving a running time estimate. Let k < d be a positive
integer. Following the notations of Section 2 of the first paper, we denote by
Πxk+1,...,xd the standard projection from Rd to Rd−k mapping (x1, . . . , xd) to
(xk+1, . . . , xd).

Proposition 3. Assume that K is full-dimensional. Then, we have:
(i) The projected polyhedron Πxk+1,...,xdK admits at most (

m
d−k−1) facets.

(ii) Any facet of Πxk+1,...,xdK can be given by a system consisting of one linear
equation and m−k − 1 linear inequalities, all in Rd−k, such that the absolute
value of any coefficient in those constraints is at most (k + 1)

k+1
2 Lk+1.

Proof. Let G be a facet of Πxk+1,...,xdK. There exists a face F of K such that G
is the projection of F . Since K is full-dimensional, it is clear that Πxk+1,...,xdK
is full-dimensional as well. Hence, we have dim(G) = d−k − 1 ≤ dim(F ). Clearly,
choosing F with minimum dimension implies d−k−1 = dim(F ). With Corollary 1,
we deduce (i). Now we prove (ii). It follows from Lemma 1 that one can choose
a defining index set I of F with cardinality d − (d − k − 1) = k + 1. Thus, we
have BI ∩K = F , with BI given in Definition 1. Consider, then, the set OI given
by (1). We know from Proposition 1 that OI is not empty and from Proposition 2
that dim(BI) = d − k − 1. Consider now the system of linear equations given by:

GI = BI ∩ {x ∣aT
i x = bi, i /∈ I}. (2)

Using Fraction-Free Gaussian Elimination on GI and since dim(BI) = d − k − 1
holds, one can use the k+1 equations defining BI to eliminate x1, . . . , xk from the
inequalities {x ∣aT

i x < bi, i /∈ I} and, in addition, obtain one equation involving
the variables xk+1, . . . , xd only. Clearly, the resulting inequalities and equation
exactly define G. Using Hadamard’s inequality as in the proof of Corollary 2, we
deduce (ii). ⊓⊔
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Definition 2. Let θ be an inequality in the irredundant representation of the
projected polyhedron Πxk+1,...,xdK. Let G be the facet of Πxk+1,...,xdK associated
with θ. There exists a (k+1)-dimensional face G′ of K such that Πxk+1,...,xdG′ =
G holds. We call defining index set of θ any defining index set of G′.

Lemma 2. Let v ∈ Rd and s ∈ R such that h is also the maximum bit size of any
coefficient in v and s. Hence, the total bit size of the linear program sup{−(vx−
s) ∣ Ax ≤ b} is H ∈ O(hmd). Moreover, deciding whether the inequality vx ≤ s
is implied by Ax ≤ b or not can be done within O(LP(d,H)) bit operations.

Proof. The estimate H ∈ O(hmd) clearly holds. On the other hand, the inequal-
ity vx ≤ s is implied by Ax ≤ b if only if sup{−(vx − s) ∣ Ax ≤ b} is zero. ⊓⊔

Proposition 4. Within O(d2m2d LP(d,2dhd2md)) bit operations, the projected
representation proj(K;x1, . . . , xd) of K can be computed.

Proof. Following the notations of Section 2 of the first paper, the process of elim-

inating x1 in Ax ≤ b generates at most m2

4
new inequalities. Augmenting A<x1

with all these new inequalities and, making this augmented system irredundant,
we obtain a total number of inequalities that we denote by c2. We define c1 ∶=m,
m1 ∶= c1 and m2 ∶= c1 + c2. We observe that:
1. generating all the new inequalities (irredundant or not) amounts to at most

O(
m2

1

4
dh21) bit operations, and

2. removing the redundant ones amounts to at most to O(
m2

1

4
LP(d, h1 dm1))

bit operations, thanks to Lemma 2.
Similarly, during the process of eliminating x2, we observe that:
1. generating all the new inequalities (irredundant or not) amounts to at most

O(
c22
4
dh22) bit operations, and

2. removing the redundant ones amounts to at most to O(
c22
4

LP(d, h2 dm2))

bit operations and yields a total number of c3 inequalities in x3.
Continuing in this manner, we deduce that for successively eliminating x1, . . . , xd−1,
1. generating all the new inequalities (irredundant or not) amounts to at most

O(
c21
4
dh21 +⋯ +

c2d−1
4

dh2d−1) , (3)

2. removing the redundant ones amounts to at most to

O(
c21
4
LP(d, h1 dm1) +⋯ +

c2d−1
4

LP(d, hd−1 dmd−1)), (4)

where mi ∶= c1 + ⋯ + ci, for 1 ≤ i < d, as well as h0 ∶= h and hi+1 ≤ 2hi + 1,
for 0 ≤ i < d. We observe that ci is bounded over by the number of facets of
Πxi,...,xdK, for 1 ≤ i < d. Observe also that, for 1 < i < d, each facet of Πxi,...,xdK
is the projection of a face of Πxi−1,...,xdK. Using Lemma 1, we deduce that, for all
1 ≤ i < d, we have: ci ≤m

d. Therefore, the running time estimates of (3) and (4)
can be bounded over by O(d2m2d d (2dh)2) and O(d2m2d LP(d, (2dh)d(dmd))).
The latter dominates the former; the conclusion follows. ⊓⊔
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4 Proof of Theorem 1

We use Fig. 1 and Notation 3 to provide further explanation on Algorithm
IntegerSolve0, presented in the first paper.

S

D

D

⋮

D G

⋮

G

⋮ ⋮

G

D

⋮ ⋮

G

⋮ ⋮

D G d − 1

⋮

2

1

0

Fig. 1: Diagram

Notation 3 Fig. 1 illustrates the tree of recursive calls for the IntegerSolve0
procedure. The root of the tree is labelled with S, which stands for the input
system. The left (resp. right) child of a node, other than a leaf, is labelled by
D (resp. G) which stands for the output of the DarkShadow procedure (resp.
the GreyShadow procedure). Since the DarkShadow procedure generates one input
system for IntegerSolve, we use a simple → arrow as an edge to a D-node. How-
ever, the GreyShadow procedure may generate several linear inequality systems,
leading to several recursive calls to IntegerSolve0. Thus, we use a ⇒ arrow as an
edge to a G-node. The numbers on the right-hand side of Fig. 1 stand for the
levels in the tree.

Let Ax ≤ b,m, d be as in Notation 1. let L and h denote the maximum
absolute value and height of any coefficient in either A or b.

Notation 4 Recall that Fig. 1 depicts the tree of recursive calls in Algorithm
IntegerSolve0. Let N denote any node in that tree, whether it is labelled S, D or
G. If N is labelled with S or D, it is associated with a single linear system denoted
by MNtN ≤ vN. If N is labelled with G, it is associated with a sequence of linear
systems produced by the GreyShadow procedure and we denote by MNtN ≤ vN

any of those systems. For any linear system MNtN ≤ vN (whether N is labelled
S, D or G), we denote by mN and dN the number of rows and columns of MN.
We denote by LN (resp. `N) be the maximum absolute value of any coefficient in
MN (resp. in either MN or vN). We denote by hN = ⌊log2 `N⌋+1 the maximum
bit size of a coefficient in either MN or vN. The system MNtN ≤ vN encodes
a polyhedron KN in RdN and we denote by FN an arbitrary facet of KN. Every
path from the root to a leaf Nr in the tree depicted in Fig. 1 can be labelled
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S → N1 → ⋯ → Nr for some r ≤ d − 1. Note that a leaf (that is, a node with
no children) may have level less than d − 1. For simplicity, for the node Nr, we
write dr, Lr, `r, hr, tr, Mr, vr, Kr, Fr instead of dNr , LNr , `Nr , hNr , tNr ,
MNr , vNr , KNr , FNr respectively, when there is no ambiguity.

In particular, let d0, L0, `0, h0, t0, M0, v0, K0, F0 denote the corresponding
values of node S.

Without loss of generality, we assume the polyhedron K is full-dimensional,
that is, dim(K) = d and, thus, that the input system S has no implicit equa-
tions. Then, each call to the DarkShadow or GreyShadow procedures at level 1
reduces the dimension of the ambient space by one. Similarly, at every level, we
assume that the input system of inequalities of IntegerSolve0 (that is, the fourth
argument of this procedure) is full-dimensional. Hence at Line 23 of Algorithm
IntegerSolve0, the output of IntegerNormalize(Ax ≤ b) is (∅,∅, Ax ≤ b).

This full-dimensionality assumption has two consequences. First, along any
path S → N1 → ⋯ → Nr we have dk+1 = dk − 1, for 1 ≤ k < r, and thus, we have
dk = d − k. Second, at node Nk, the input system is Mk−1tk−1 ≤ vk−1 (while the
output is Mktk ≤ vk).

It is easy to see that this full-dimensionality assumption is a worst case
scenario as far as running time is concerned. Indeed, when this assumption does
not hold, for at least one path S → N1 → ⋯ → Nr, implicit equations will be
discovered at Line 23 of Algorithm IntegerSolve0 in the first paper, and dimension
will drop by more than one at one node of that path.

To prove Theorem 1 we shall establish a series of intermediate results. Lemma 5,
7, 8 provide upper bounds for the absolute values of any coefficient in the systems
MNtN ≤ vN while Lemma 3, 4 9, 10 deal with running time estimates. We start
with Lemma 3 and 4, which give running time estimates for the DarkShadow
and GreyShadow procedures at level k. The proof of Lemma 3 follows that of
Proposition 4.

Lemma 3. For any non-negative integer k < d−1, the DarkShadow procedure at

level k + 1 runs within O(
m2

k

4
LP(dk, dkhkmk)) bit operations.

Proof. The input system of Dk+1 is Mktk ≤ vk, which has mk inequalities and
hk as maximum coefficient size in either Mk or vk. The process of
(E) eliminating the first variable of tk in Mktk ≤ vk,

(A) adding the at most
m2

k

4
resulting inequalities to those of Mktk ≤ vk where

the first variable of tk does not appear, and
(R) removing all redundant inequalities,
yields Mktk ≤ vk, see Algorithm DarkShadow. Observe that Steps (E) and (R)

amounts to at most O(
m2

k

4
dk h

2
k) and O(

m2
k

4
LP(dk, hk dkmk)) bit operations,

respectively. The latter dominates the former. The conclusion follows. ⊓⊔

Lemma 4. For any non-negative integer k < d−1, the GreyShadow procedure at
level k + 1 runs within O(m2

kd
3+ε
k h3k).
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Proof. For the GreyShadow procedure at level k + 1, we need to call at most mk

times the IntegerNormalize procedure. Then, the lemma follows from Proposition
1 in the first paper. ⊓⊔

Lemma 5. Consider a path of the form

S→D1 → ⋯→Dr, (5)

where all nodes, except the first one, are labelled by D. Then, for all 1 ≤ k ≤ r,
we have mk ≤ mk+1 and the maximum absolute value Lk of any coefficient in
Mk is no more than (k + 1)

k+1
2 Lk+1.

Proof. Let 1 ≤ k ≤ r. Under Hypothesis 1, each facet of Kk is parallel to a
facet of the real shadow of Kk−1. Inductively, each facet of Kk is parallel to a
facet of the projection Πxk+1,...,xdK. By Proposition 3, we have mk ≤m

k+1 and
Lk ≤ (k + 1)

k+1
2 Lk+1. ⊓⊔

Next, we will consider an arbitrary path:

S→D1 → ⋯→Dj1−1 →Gj1 → ⋯→Gjs →Djs+1 → ⋯→Dr . (6)

In the path (6), only the subscripts j1, j2, . . . , js correspond to the GreyShadow
procedures.

To make things simpler, instead of setting Θ2 ∶= Υ ∪ Mt ≤ v ∪ {cα − aγ >

−(c − 1)(a − 1)} in Line 8 of Algorithm GreyShadow in the first paper, we let
Θ2 ∶= Mt ≤ v. This simplification can not guarantee that VZ(t = Pkuk + qk ∪

Mkuk ≤ vk, t) for k = 1, . . . , s form a disjoint union. However, it will endow
Mk with good structural properties, as we will see later. Actually, since all the
inequalities in Υ and the negation of cα − aγ > −(c − 1)(a − 1) can be obtained
by the DarkShadow procedure and since we are doing the worst case complexity
analysis, all the coming conclusions apply to our algorithm as it was originally
stated in the first paper.

First, we consider the sub-path of (6): S → D1 → ⋯ → Dj1−1 → Gj1 . We
assume the variable order is x1 > x2 > ⋯ > xd. Thus, we can denote the variable
set tj1−1 for the input system of node Dj1−1 as : tj1−1 = [xj1 , xj1+1, . . . , xd]

T since
tj1−1 ⊂ x. For the node Gj1 , we need to add one equation based on the output
system Mj1−1tj1−1 ≤ vj1−1 of node Dj1−1. Without loss of generality, we assume
the new equation is mtj1−1 = v+ i for some non-negative integer i ≤ Lj1−1, where
mtj1−1 ≤ v is the first inequality in the system Mj1−1tj1−1 ≤ vj1−1. Let I be the
defining index set of mtj1−1 ≤ v, which has cardinality j1.

Recall that M0t0 ≤ v0 is the input system of node D1. Let M
(1)
0 and M

(2)
0 be

the sub-matrix of M0 consisting of the first j1 −1 columns and the last d− j1 +1
columns respectively. Denote by (v0)I (resp. (M0)I) the sub-vector (resp. sub-
matrix) of v0 (reps. M0) with index (resp. row index) I. Let Qj1−1 be a matrix
whose columns consisting of a Z-basis of space {x ∶ (M0)I x = 0}. We have
assumed that the input polyhedron K is full-dimentional, which implies that
the rank of M0 is d. By the definition of defining index set I, we can easily
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deduce that the rank of (M0)I is j1, that is, Qj1−1 is an integer matrix with
d rows and d − j1 columns. Let Q′

j1−1 be the sub-matrix consisting of the last

d − j1 + 1 rows of Qj1−1. Let V1 ∶= [e1, . . . ,ej1−1, (
0

Q′

j1−1
)] ∈ Zd×(d−1). Let S1 be a

node associated with the system M
(1)
0 [x1, . . . , xj1−1] +M

(2)
0 Q′

j1−1tj1+1 ≤ v′0, i.e.

M0V1[x1, . . . , xj1−1, tj1+1]
T ≤ v′0. For j1 ≤ k < j2, let M′

kt′k ≤ v′k be the output
system of the node Dk−1 in the path: S1 →D1 → ⋯→Dk−1.

Lemma 6. With the above notations, we have Mj1 = M′
j1

. Consequently, Mk =

M′
k for j1 ≤ k < j2.

Proof. The second statement will follow once the first lemma is valid.
Following the Algorithm Darkshadow in the first paper, there exists a ma-

trix U ∈ Zmj1−1
×m0 , such that UM

(1)
0 = 0 and Mj1−1 = UdUM

(2)
0 , where Ud =

DiagonalMatrix( 1
gcd1

, . . . , 1
gcdmj1−1

) and gcdi is the gcd of all the coefficients in

the i-th row of UM
(2)
0 for 1 ≤ i ≤mj1−1. Let u ∈ Zm0 be the first row of U . Then,

m = 1
gcd1

uM
(2)
0 since mtj1−1 ≤ v is the first inequality of Mj1−1tj1−1 ≤ vj1 . Then,

m = 1
gcd1

uI(M
(2)
0 )I . Solve the equation mtj1−1 = v + i by Lemma 2 in the first

paper, we have tj1−1 = Pj1−1 tj1 + qj1−1, where Pj1−1 ∈ Z(d−j1+1)×(d−j1) whose

columns consisting of a Z-basis for {y ∶ my = 0} = {y ∶ uI(M
(2)
0 )Iy = 0}.

Therefore, Mj1tj1 ≤ vj1 comes from Mj1−1Pj1−1tj1 ≤ vj1−1 − Mj1−1qj1−1, i.e.

UdUM
(2)
0 Pj1−1tj1 ≤ vj1−1 − Mj1−1qj1−1.

Next, we will show that Pj1−1 can be replaced by Q′
j1−1 introduced above.

Since uI(M
(1)
0 )I = 0, we have any y ∈ Zd satisfying uI(M0)Iy = 0 is equiva-

lent to uI(M
(2)
0 )Iy

(2) = 0, where y(2) is the last d − j1 + 1 elements of y. Thus,
[e1, . . . ,ej1−1, (

0
Pj1−1

)] is a Z-basis for the space {y ∶ u(M0)Iy = 0}. For any row

vector y ∈ Zd such that uI(M0)Iy = 0, either 0 ≠ (M0)Iy ∈ {z ∶ uIz = 0}

or (M0)Iy = 0. For the first case, e1, . . . ,ej1−1 is a Z-basis for the solutions

of y, where ek ∈ Zd is the k-th standard basis for 1 ≤ k ≤ j1 − 1. For the
second case, columns of Qj1−1 consisting of a Z-basis for the solutions of y.
Thus, [e1, . . . ,ej1−1,Qj1−1] is a Z-basis for the space {y ∶ uI(M0)Iy = 0}.
Consequently, Pj1−1 is equivalent to Q′

j1−1, which is the last d − j1 + 1 rows
of Qj1−1. That is, the integer solutions to mtj1−1 = v + i can be represented

by tj1−1 = Q′
j1−1 tj1 + qj1−1, where ∣Q′

j1−1∣ ≤ j
j1+1
1 L2j1 . Therefore, we can make

Mj1 = UdUM
(2)
0 Q′

j1−1.

Remember that S1 is associated with the system M0V1[x1, . . . , xj1−1, tj1+1]
T ≤

v0, where V1 ∶= [e1, . . . ,ej1−1, (
0

Q′

j1−1
)], and M′

kt′k ≤ v′k is the output system of

the node Dk−1 in the path: S1 →D1 → ⋯→Dk−1. We have M′
j1
= UdUM

(2)
0 Q′

j1
.

Consequently, M′
k = Mk for any integer k ∶ j1 ≤ k < j2. ⊓⊔

Then, we have the following lemma:

Lemma 7. For j1 ≤ k < j2, the maximum absolute value of any coefficient in

Mk can be bounded over by dkk2k
2

L3k2

. Moreover, we have mk ≤m
k+1.
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Proof. By Lemma 5, the maximum absolute value of any coefficient in M′
k = Mk

can be bounded over by ∣Mk ∣ ≤ k
k
2 (d − j1 + 1)kjkj1+k1 L2kj1+k ≤ dkk2k

2

L3k2

.
Moreover, mk ≤m

k+1 follows from the equivalent path S1 →D1 → ⋯→Dk−1
for integer k ∶ j1 ≤ k < j2. ⊓⊔

For any 1 ≤ t ≤ s, we assume that the new equation is mttjt−1 = vt + it
for some non-negative integer it ≤ Ljt−1, where mttjt−1 ≤ vt comes from the
input system Mjt−1tjt−1 ≤ vjt−1 of the node Gjt . Let It be the defining in-

dex set of the inequality mttjt−1 ≤ vt, with cardinality jt. Let Qt ∈ Zd×(d−jt)

consist of the columns of a Z-basis of space {y ∶ (M0)Ity = 0}. For any 1 ≤

t ≤ s, we define Vt = [e1, . . . ,ej1−1,Q
(1)
1 , . . . ,Q

(t−1)
t−1 ,Q

(t)
t ] ∈ Zd×(d−t) and tt ∶=

[x1, . . . , xj1 , t
(1)
j1−1, . . . , t

(t)
jt−1]

T as follows:
1. When k < t, we let Q′

k be the sub-matrix consisting of the last d−jk +1 rows

and (jk+1 − jk − 1) columns of Qk. Let Q
(k)
k ∈ Zd×(jk+1−jk−1) be the matrix

(
0
Q′

k

), where 0 is a zero matrix which has jk−1 rows and jk+1−jk−1 columns.

2. When k = t, we let Q′
t be the sub-matrix consisting of the last d − jt + 1

rows of Qt. Let Q
(t)
t ∈ Zd×(d−jt) be the matrix (

0
Q′

t
), where 0 is a zero matrix

which has jt − 1 rows and d − jt columns.

3. Denote by t
(k)
jk−1 (resp. tjt−1) the set of jk+1 − jk − 1 (resp. d − jt) variables.

and the variables in tt are independent variables.
Let St be the system represented by M0Vttt ≤ v0 for 1 ≤ t ≤ s.

Lemma 8. The maximum absolute value of any coefficient in ∣Mk ∣ (resp. ∣vk ∣)

can be bounded by dkk2k
2

L3k2

(resp. d3k
2

k4k
3

L6k3

) for 1 ≤ k ≤ r. Moreover, we
have mk ≤m

k+1.

Proof. Similar to the notations defined before the Lemma 6, for 1 ≤ t ≤ s and
jt ≤ k < jt+1, let M′

kt′k ≤ v′k be the output system of the path: St → D1 → ⋯ →

Dk−t, where js+1 is defined as r + 1.
We claim Mjt = M′

jt
for any 1 ≤ t ≤ s, where Mjttjt ≤ vjt is the output

system of the path: S→D1 → ⋯→Dj1−1 →Gj1 → ⋯→Gjt . This claim is valid
if t = 1 by Lemma 6. We suppose it is valid for t = 1, . . . , s − 1. Then, we have
Mjs−1 = M′

js−1, where M′
js−1t

′
js−1 ≤ v′js−1 is the output system of the node Djs−s

in the path: Ss−1 → D1 → ⋯ → Djs−s. Let M′′
js

t′′js ≤ v′′js be the output system
of of node Gjs−s+1 in the path: Ss−1 → D1 → ⋯ → Djs−s → Gjs−s+1. Note that
Ss−1 is associated with M0Vs−1ts−1 ≤ v0 and the input system of node Gjs−s+1
is M′

js−1t
′
js−1 ≤ v′js−1, i.e. Mjs−1t

′
js−1 ≤ v′js−1. We have M′′

js
= Mjs immediately,

since both of them come from the output system of node Gjs−s+1 of the path:
Ss−1 → D1 → ⋯ → Djs−s → Gjs−s+1. By the proof of Lemma 6, M′′

js
can be

obtained from the output system of the path: S′s →D1 → ⋯ →Djs−s, where S′s
is associated with M0[Vs−1[e1, . . . ,ejs−s],Qs]ts ≤ v0, i.e. M0Vsts ≤ v0, which
associates to the label Ss. Then, we have M′′

js
= M′

js
. The claim is valid. That is,

Mjs can be obtained from the output system of the path: Ss →D1 → ⋯→Djs−s.
By Proposition 1 of the first paper, we know that the maximum absolute value

of any coefficient in M0Vt can be bounded by djjt+1t L2jt+1. Thus, by Lemma 5,
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for any 1 ≤ t ≤ s and jt ≤ k < jt+1, we have the maximum absolute value of any

coefficient in Mk can be bounded by (k − t)
k−t
2 (djjt+1t L2jt+1)k−t ≤ dkk2k

2

L3k2

.
The first statement is valid.

Let 1 ≤ k ≤ r. For the node Dk, we have ∣vk ∣ ≤ L2
k−1 + 2Lk−1∣vk−1∣. For

the node Gk, we have ∣vk ∣ ≤ 2dkL
2
k−1∣vk−1∣ since we only need to solve one

equation. That is, for any node Nk, we will have ∣vk ∣ ≤ 2dkL
2
k−1∣vk−1∣. Thus,

∣vk ∣ ≤ 2kdkL2
k−1⋯L

2
1∣v0∣

2 ≤ d3k
2

k4k
3

L6k3

for any 1 ≤ k ≤ r. ⊓⊔

Until now, we can safely say that any coefficient in Mr (resp.vr) produced

by each path in Fig. 1 can be bounded over by Lr ≤ drr2r
2

L3r2 (resp. `r ≤

d3r
2

r4r
3

L6r3). That is, the coefficient size associated with the node Nr can be
bounded over by hr ≤ 6r3(log d + logL). Moreover, we can have at most mr

inequalities in Mrtr ≤ vr. The following lemma shows the complexity estimates
for implementing each path of the tree in Fig. 1:

Lemma 9. The path (6) can be implemented within O(m2r+2d3+εr10(log d +
logL)3) +O(rm2r+2LP(d, dmrr3(log d + logL))) bit operations.

Proof. By Lemma 3 (resp. Lemma 4), each node Dk (resp. Gk) can be imple-

mented with O(
m2

k

4
LP(dk, dkhkmk)) (resp. O(m2

kd
3+ε
k h3k)) bit operations. Thus,

the path (6) can be implemented within

r ⋅O(m2
rd

3+ε
r h3r) + r ⋅O(

m2
r

4
LP(d, dhrmr))

≤ O(m2r+2d3+εr10(log d + logL)3) +O(rm2r+2LP(d, dm2r+2r3(log d + logL)))

bit operations. ⊓⊔

Let Tr be the total number of nodes in the r-th level. In particular, we have
T0 = 1, T1 ≤mL. We have the following lemma:

Lemma 10. We have: Tr+1 ≤ mr+1drr2r
2

L3r2Tr for r = 0, . . . , d − 2. Thus, we

have Td−1 ≤md2

d3d
3

L3d3

.

Proof. By Lemma 8, each node can have at most mr+1 inequalities as the
input and each inequality has coefficient bound Lr. Following the Algorithm
IntegerSolve0 and Fig. 1, each node can give out at most mr+1Lr branches.
Considering we have Tr nodes in the r-th level, we can easily deduce that

Tr+1 ≤mr+1LrTr ≤m
r+1drr2r

2

L3r2Tr. The second statement follows easily. ⊓⊔

Now we give the proof for Theorem 1:

Proof. Under Hypothesis 1, by Lemma 9 and Lemma 10, the complexity esti-
mates for IntegerSolve(K) can be bounded over

Td−1O(m2r+2d3+εr10(log d + logL)3) + Td−1O(m2r+2rLP(d, dmr+1r3(log d + logL)))

≤O(m2d2

d4d
3

L4d3

LP(d,mdd4(log d + logL))) bit operations, since r < d.

The theorem is valid. ⊓⊔
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5 Experimentation

We have implemented the algorithm presented in the first paper within the
Polyhedra library in Maple. This library is publicly available in source on the
download page of the RegularChains library at www.regularchains.org

We have used test-cases coming from various application areas: regular poly-
topes (first 5 examples in Table 1), examples from Presburger arithmetic (next
5 examples in Table 1), random polytopes (next 5 examples in Table 1), random
unbounded polyhedra (next 5 examples in Table 1), examples from text-books
(next 3 examples in Table 1) and examples from research articles on automatic
parallelization of for-loop nests (last 4 examples in Table 1).

For each example, Table 1 gives the number of defining inequalities (Column
m), the number of variables (Column d), the maximum absolute value of an
input coefficient (Column L), the number of polyhedra returned by IntegerSolve
(Column mo), the maximum absolute value of an output coefficient (Column
Lo) and whether Hypothesis 1 holds or not (Column ?Hyp).

Recall from Section 4.1 of the first paper, that Step (S4) of the IntegerNor-
malize procedure, can use either the HNF method introduced in Lemma 2 of the
first paper, or the method introduced by W. Pugh in [9]. We implemented both
of them. It is important to observe that Pugh’s method does not solve system
of linear equations according to our prescribed variable order, on the contrary
of the HNF method. In fact, Pugh’s method determines a variable order dynam-
ically, based on coefficient size considerations, In Table 1, the columns tH and
tP correspond to the timings for the HNF and Pugh’s method, respectively.

From Table 1, we make a few observations:
1. Hypothesis 1 holds for most examples while it ussually does not hold for

random ones.
2. For 16 out of 27 examples, IntegerSolve produces a single component, which

means that each such input polyhedron has no integer points in its grey
shadow; this is, in particular the case for regular polytopes and for examples
from automatic parallelization.

3. When a decomposition consists of more than one components, most of those
components are points; for example, the decomposition of Unbounded 2 has
61 components and 46 of them are points.

4. Coefficients of the output polyhedra are usually not much larger than the
coefficients of the corresponding input polyhedron.

5. Among the challnging problems, some of them are solved faster when Inte-
gerNormalize is based on HNF (e.g. Bounded 7) while others are solved faster
when IntegerNormalize is based on Pugh’s method (e.g. Bounded 9) which
suggests that having both approaches at hand is useful.
To the best of our knowledge, there are two other published software libraries

which are capable of describing the integer points of a polyhedron: one is 4ti2 [1]
and the other is Normaliz [3]. Both softwares rely on Motzkin’s theorem [8] which
expresses any rational polyhedron as the Minkowski sum of a rational polytope
and a rational cone. Hence, they do not decompose a polyhedron in the sense of
our algorithm IntegerSolve.

www.regularchains.org
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Table 1: Implementation

Example m d L mo Lo ?Hyp tH tP

Tetrahedron 4 3 1 1 1 yes 0.695 0.697
Cuboctahedron 14 3 2 1 2 yes 1.855 1.846
Octahedron 8 3 1 1 1 yes 1.357 1.357
TruncatedOctahedron 14 3 3 1 1 yes 1.995 1.977
TruncatedTetrahedron 8 3 1 1 1 yes 1.461 1.468
Presburger 1 3 2 2 1 1 yes 0.083 0.082
Presburger 2 3 2 20 1 20 yes 0.184 0.182
Presburger 3 3 2 18 3 4 yes 0.287 0.260
Presburger 4 3 4 5 2 12 yes 0.706 0.871
Presburger 6 4 5 89 6 35 yes 0.893 0.746
Bounded 5 6 3 19 4 224 yes 16.433 15.091
Bounded 7 8 3 19 3 190 no 138.448 239.637
Bounded 8 4 3 25 5 67 yes 6.462 3.821
Bounded 9 6 3 18 6 74 no 23.574 16.763
Bounded 10 4 3 15 1 176 yes 0.559 0.558
Unbounded 2 3 4 10 61 2255 no 0.547 0.600
Unbounded 3 4 4 20 1 20 no 0.981 0.987
Unbounded 4 6 5 2 1 2 no 0.722 0.510
Unbounded 5 5 4 8 1 8 no 1.321 1.319
Unbounded 6 10 4 8 1 8 no 1.494 1.479
P91 12 3 96 5 96 no 19.318 15.458
Sys1 6 3 15 2 67 yes 2.413 1.915
Sys3 8 3 1 1 1 yes 1.481 1.479
Automatic 8 2 999 1 999 yes 0.552 0.549
Automatic2 6 4 1 1 2 yes 1.115 1.113
Automatic3 3 4 1 1 1 yes 0.130 0.135
Automatic4 3 5 1 1 1 yes 0.227 0.232
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