
– Run-time Support for Parametric Kernels Targeting Graphics Processing Units
Masoud Ataei, Xiaohui Chen, Marc Moreno Maza, Jeeva Paudel, Ettore Tiotto, Lin-Xiao Wang, Ning Xie, Haoze Yuan

Parametric Kernels

High-level models for accelerator programming, like OpenMP and OpenACC, have
become an important research direction. With these models, programmers only need to
annotate their C/C++ code to indicate which portion of code is to be executed on the
device (typically a GPU) and how data is mapped between host and device. The division
of the work between thread blocks within a grid, or between threads within a thread
block, can be expressed in a loose manner, or even ignored. This implies that code opti-
mization techniques must be applied in order to derive efficient CUDA code. Existing
software packages for generating CUDA code from annotated C/C++ programs, either
let the user choose, or make assumptions on, the characteristics of the targeted hard-
ware, and on how the work is divided among the processors of that device. These choices
and assumptions may limit code portability as well as opportunities for code optimization.

assert(B0 <= ub1 * s);

int dim0 = n / B0, dim1 = n / (ub1 * s);

meta_schedule {

meta_for (int i = 0; i < dim0; i++)

meta_for (int j = 0; j < dim1; j++)

for (int k = 0; k < n / B0; k++)

meta_for (int v = 0; v < B0; v++)

meta_for (int u = 0; u < ub1; u++) {
int p = i * B0 + v;

int q = j * ub1 * s + u;

for (int z = 0; z < B0; z++)

for (int w = 0; w < s; w++) {
int x = w * ub1;

c[p][q+x] +=

a[p][B0*k+z] * b[B0*k+z][q+x];

}

}
}

Figure 1: MetaFork matrix multiplication with 3 program parameters.

__global__ void kernel0(int *a, int *b, int *c, int

n, int dim0, int dim1, int B0, int ub1, int s) {

int b0 = blockIdx.y, b1 = blockIdx.x;

int t0 = threadIdx.y, t1 = threadIdx.x;

int private p, private q;

assert(B_0 == B0); assert(B_1 == ub1 * s);

shared int shared a[B 0][B 0];

shared int shared b[B 0][B 1];

int private c[1][S]; assert(S == s);

for (int c0 = b0; c0 < dim0; c0 += 256)

for (int c1 = b1; c1 < dim1; c1 += 256) {

private p = ((c0) * (B0)) + (t0);

private_q = ((c1) * (ub1 * s)) + (t1);

for (int c5 = 0; c5 < S; c5 += 1)

if (n >= private p + 1 &&

n >= private_q + (c5) * (ub1) + 1)

private c[0][c5] = c[(private p) * n +

(private_q + (c5) * (ub1))];

for (int c2 = 0; c2 < n / B0; c2 += 1) {
if (t1 < B0 && n >= private p + 1)

shared a[t0][t1] =

a[(private p) * n + (t1 + B0 * c2)];

for (int c5 = 0; c5 < S; c5 += 1)

if (t0 < B0 &&

n >= private q + (c5) * (ub1) + 1)

shared b[t0][(c5) * (ub1) + t1] =

b[(t0 + B0 * c2) * n +

(private q + (c5) * (ub1))];

syncthreads();

for (int c6 = 0; c6 < B0; c6 += 1)

for (int c5 = 0; c5 < S; c5 += 1)

private c[0][c5] +=

(shared a[t0][c6] *

shared b[c6][c5 * ub1 + t1]);

syncthreads();

}
for (int c5 = 0; c5 < S; c5 += 1)

if (n >= private p + 1 &&

n >= private_q + (c5) * (ub1) + 1)

c[(private p) * n +

(private_q + (c5) * (ub1))] =

private c[0][c5];

syncthreads();

}
}

Figure 2: generated CUDA kernel with the same program parameters.

To deal with these challenges in translating annotated C/C++ programs to CUDA,
we propose in a CASCON 2015 paper to generate parametric CUDA kernels, that is,
CUDA kernels for which program parameters (e.g. number of threads per thread block)
and machine parameters (e.g. shared memory size) are symbolic entities instead of nu-
merical values. Hence, the values of these parameters need not to be known during code
generation: machine parameters can be looked up when the generated code is loaded
on the target machine, while program parameters can be deduced, for instance, by auto-
tuning. A proof-of-concept implementation, presented in the same paper and publicly at
www.metafork.org, uses another high-level model for accelerator programming, called
MetaFork, that we introduced in an IWOMP 2014 paper. The experimentation shows

that the generation of parametric CUDA kernels can lead to significant performance
improvement with respect to approaches based on the generation of CUDA kernels that
are not parametric. Moreover, for certain test-cases, our experimental results show that
the optimal choice for program parameters may depend on the input data size.
Figure 1 shows a code snippet, expressed in the MetaFork language, performing a
blocking strategy. Each iteration of the parallel for-loop nest (i.e. the 4 meta for nested
loops) computes s coefficients of the product matrix. The blocks in a, b, c have format
B0 × B0, B0 × (ub1 ⋅ s), B0 × (ub1 ⋅ s). Hence, s, B0 and ub1 are program parameters.
Figure 2 shows a CUDA kernel code generated from the MetaFork code of Figure 1.
Observe that kernel0 takes the program parameters B0 and ub1 as arguments, whereas
non-parametric CUDA kernels only take data parameters (here a, b, c, n).

Comprehensive Optimization

In broad terms, a comprehensive optimization of parametric CUDA program is a deci-
sion tree where: each internal node is a Boolean condition on the machine and program
parameters, and, each leaf is a CUDA program P , optimized w.r.t. prescribed criteria
and optimization techniques, under the conjunction of the conditions along the path from
the root of the tree to P . Both source and optimized MetaFork programs for the 1D
Jacobi stencil are shown below.

Source code

int T, N, s, B,

int dim = (N-2)/(s*B);

int a[2*N];

for (int t = 0; t<T; ++t)

meta_schedule {
meta_for (int i = 0;

i<dim; i++)

meta_for (int j = 0;

j<B; j++)

for (int k = 0; k<s;

++k) {
int p = i*s*B+k*B+j;

int p1 = p + 1;

int p2 = p + 2;

int np = N + p;

int np1 = N + p + 1;

int np2 = N + p + 2;

if (t % 2)

a[p1] = (a[np]+

a[np1]+a[np2])/3;

else

a[np1] = (a[p]+

a[p1]+a[p2])/3;

}
}

First case

⎧⎪⎪
⎨
⎪⎪⎩

2sB + 2 ≤ ZB

9 ≤ RB

(1) (4a) (3a) (2) (2)

for (int t = 0; t<T; ++t)

meta_schedule cache(a) {
meta_for (int i = 0;

i< dim; i++)

meta_for (int j = 0;

j<B; j++)

for (int k = 0; k<s;

++k) {
int p = j+(i*s+k)*B;

int t16 = p+1;

int t15 = p+2;

int p1 = t16;

int p2 = t15;

int np = N+p;

int np1 = N+t16;

int np2 = N+t15;

if (t % 2)

a[p1] = (a[np]+

a[np1]+a[np2])/3;

else

a[np1] = (a[p]+

a[p1]+a[p2])/3;

}
}

Second case

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

2B + 2 ≤ ZB

ZB < 2sB + 2

9 ≤ RB

(1) (3b) (4a) (3a) (2) (2)

for (int t = 0; t<T; ++t)

meta_schedule cache(a) {

meta_for (int i = 0;

i<dim; i++)

meta_for (int j = 0;

j<B; j++) {

int p = i*B+j;

int t20 = p+1;

int t19 = p+2;

int p1 = t20;

int p2 = t19;

int np = N+p;

int np2 = N+t19;

int np1 = N+t20;

if (t % 2)

a[p1] = (a[np]+

a[np1]+a[np2])/3;

else

a[np1] = (a[p]+

a[p1]+a[p2])/3;

}

}

Third case

⎧⎪⎪
⎨
⎪⎪⎩

ZB < 2B + 2

9 ≤ RB

(1) (3b) (2) (2) (4b)

for (int t = 0; t<T; ++t)

meta_schedule {
meta_for (int i = 0;

i<dim; i++)

meta_for (int j = 0;

j<B; j++) {
int p = j+i*B;

int t16 = p+1;

int t15 = p+2;

int p1 = t16;

int p2 = t15;

int np = N+p;

int np1 = N+t16;

int np2 = N+t15;

if (t % 2)

a[p1] = (a[np]+

a[np1]+a[np2])/3;

else

a[np1] = (a[p]+

a[p1]+a[p2])/3;

}
}

The intention, with this concept, is to automatically generate optimized CUDA kernels
from annotated C/C++ code without knowing the numerical values of some or even
any of the machine and program parameters. This naturally leads to a case distinction
depending on the values of those parameters, which materializes into a disjunction of
conjunctive non-linear polynomial constraints. Symbolic computation, aka computer al-
gebra, is the natural framework for manipulating such systems of constraints; our BPAS
library (see the related poster) is meant to provide the appropriate algorithmic tools for
that task. An algorithm for such comprehensive optimizations and a proof-of-concept
implementation are presented in https://arxiv.org/abs/1801.04348.

Run-time Support

In the PhD theses of Xiaohui Chen and Ning Xie, the determination of optimal parameter
values of our parametric GPU kernels were done by an exhaustive search. In a new proto-
type, presented at CASCON 2017, optimal parameter values are computed by solving a
mathematical optimization problem at run-time. Experimentally, this strategy produces
parameter values instantaneously and shows that parametric GPU kernels not only im-
prove performance significantly but also satisfy the exigence of real time computation.
The table shows that this approach recovers the results of Xiaohui Chen and Ning Xie.
We sketch how this run-time parameter determination. We start by specifying what is
computed off-line, that is, at compile time.

⊳ Off-line phase ⊲

Step 1:Optimization (with case discussion) of parametric kernels (with machine and
program parameters). Each case in the discussion consists of

• a system S semi-algebraic constraints on the parameters

• an objective function T̂

• an optimized kernel in the form of a pair (MetaFork, LLVM IR) of equivalent
codes; of course LLVM IR should be replaced by PTX (planed for 2018).

Step 2:Each pair (S, T̂ ) is turned into a highly-optimized C program (SLP techniques).

Step 3:Each MetaFork code is converted into parametric CUDA code, then com-
piled to a binary B.

⊳ At run-time ⊲

Step 4:Each pair (S, T̂ ) is specialized at the machine parameters of the targeted device,
say to (S0, T̂0)

Step 5: Inconsistent S0’s are discarded and for the remaining pairs (S0, T̂0), the program
parameters are determined using optimization techniques (e.g. ILP executed on GPU).

Step 6:B is executed with program and machine parameters passed as arguments.

Example N program parameters

Reversal 16384 s = 1,B = 512

MVM 2048 s = 4,B = 512

MMM 1024 s = 8,B0 = 16,B = 8

Transpose 2048 s = 1,B0 = 16,B1 = 32

Jacobi 32768 s = 1,B = 32

GaussElim 1024 s = 8,B = 32

The parameter s gives how many coefficients each thread computes while B,B0,B1 are thread-block dimension sizes.

www.metafork.org
https://arxiv.org/abs/1801.04348

