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Overview

Many experimentations reported in the literature show that, for

dense univariate polynomials, FFT-based multiplication provides

better running times than other techniques such as the plain algo-

rithm and the ones based on the tricks of Toom-Cook and Karat-

suba. This remains true on the latest hardware architectures. How-

ever, implementation techniques and thus thresholds are certainly

changing. In addition, if coefficient-oblivious algorithms cannot

outperform FFT-based methods for sufficiently large input, these

former algorithms are by nature generic and easier to implement.

Therefore, it is important to understand how to implement them

efficiently on today’s parallel hardware architectures.

In this poster, we focus on two algorithms which are independent

of the coefficient ring: the plain and the Toom-Cook univariate

multiplications (for the latter, 6 is assumned to be a unit in the

base ring). We analyze their cache complexity and report on ex-

perimentation with parallel implementations in Cilk++.

Plain univariate multiplication

void multPoly1(int *A, int n, int *B, int m, int *C) {

for (i=0; i<n+m-1; i++) C[i] = 0;

for (i=0; i<n; i++)

for (j=0; j<m; j++) C[i+j] += A[i] * B[j];

}

void multPoly2(int *A, int i, int j,

int *B, int k, int l, int *C) {

int da = j-i; int db = l-k;

if (da == 0) {

for (int x=k; x<=l; ++x) C[i+x] += A[i] * B[x];

} else if (db == 0) {

for (int y=i; y<=j; ++y) C[y+k] += A[y] * B[k];

} else if (da >= db) {

int m = (da+1)/2;

multPoly2(A, i, i + m - 1, B, k, l, C);

multPoly2(A, i + m, j, B, k, l, C);

} else {

int m = (da + 1) / 2;

multPoly2(A, i, j, B, k, k + m - 1, C);

multPoly2(A, i, j, B, k + m, l, C);

} }

The above multPoly1 is a naive pseudo-implementation of the

plain multiplication, where the input coefficient arrays A and B

have size n and m. For an ideal cache with Z words amd cache

line size L, this algorithm incurs O(2mn+m+n−1
L + n(2 + 1

L)) cache

misses. The divide-and-conquer multPoly2 reduces this cache

complexity to Θ(nm/LZ).

In practice, even with a threshold between its iterative and recur-

sive modes in the order of 512, multPoly2 brings a speedup factor

limited to 2, due to the overhead of the recursive calls. The same

algorithm can be parallelized in a natural manner with a span of

Θ(n) (assuming n = m for simplicity) and a space complexity of

Θ(n log n).

Toom-Cook univariate multiplications

Our initial goal was to obtain a parallel version of Toom-Cook

multiplication for which both span and space would be in Θ(n).

The procedure below sketches the principle of a solution for input

polynomials A and B of degree less than n. The other arguments

are three arrays R, tmpr1 and tmpr2 each of size 2n: the first

one is meant for storing the product of A and B whereas tmpr1

and tmpr2 are auxiliary buffers. Therefore, this procedure runs in

space 9n. This result is to the price of slightly increasing the work.

Indeed one needs to performs more linear combinations of the

segments A0, A1, A2, B0, B1, B2 than with a straightforward paral-

lelization of Toom-Cook Algorithm. However, the latter incurs a

space consumption within Θ(nlog53) (in bytes), that is, in the order

of the work.
Algorithm 1 ParaTCMul(A, B, n, R, tmpr1, tmpr2)

Require: 2 polynomials A = A0(x)+A1(x)x
n
3+A2(x)x

2n
3 and B = B0(x)+B1(x)x

n
2+B2(x)x

n
3

Ensure: The product AB
1: if n = 3 then

2: Return AB
3: else

4: A1 = A0 + A1 + A2; B1 = B0 + B1 + B2;
5: ParaTCMul(A0, B0,

n
3 , R, tmpr1, tmpr2)

6: Spawn ParaTCMul(A1, B1,
n
3 , R + 2n

3 , tmpr1 + 2n
3 , tmpr2 + 2n

3 )

7: Spawn ParaTCMul(A2, B2,
n
3 , R + 4n

3 , tmpr1 + 4n
3 , tmpr2 + 4n

3 )
8: Sync;
9: A1 = 2A0 + 2A2 − A1; B1 = 2B0 + 2B2 − B1;

10: A2 = −A0 + 2A1 + 2A2; B2 = −B0 + 2B1 + 2B2
11: ParaTCMul(A1, B1,

n
3 , tmpr1, tmpr1 + 2n

3 , tmpr1 + 4n
3 )

12: Spawn ParaTCMul(A2, B2,
n
3 , tmpr2, tmpr2 + 2n

3 , tmpr2 + 4n
3 ); Sync;

13: Linear algebra to recover the original A0, A1, A2 and B0, B1, B2
14: Return Linear combination of R, tmpr1

, tmpr2

15: end if

Cache complexity and experimentation

The table below reports timings in milliseconds for multiplying two

dense univariate polynomials of degree less than n = 2k. We use a

desktop machine (Intel Core 2 Quad @ 2.66GHz) with a L2 cache

of standard size (3 Mb). The base size is 512 for both serial codes

multPoly2 and multPoly2 p. The speedup of the parallel version

multPoly2 p is around 3 comparing to multPoly2.

log2(n) multPloy1 multPloy2 multPloy2 p

12 38 19 10

14 535 311 104

16 8570 5049 1679

18 145916 83408 26709

20 3333589 1276392 424464

We have benchmarked the above version Toom Cook Algorithm

against a straightforward parallel implementation (span Θ(n) and

space Θ(nlog53)) on a 16 cores (each core is an Intel Xeon @ 2.40GHz

with 4096 KB of cache). In the figure below, the degree of the input

polynomials is given on a logarithmic scale while the vertical coor-

dinate is the speedup factor. Finally, we have proved that the cache

complexity of both implementations is within O
(

(

n
Z

)log5 3(
1 + Z

L

)

)
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In conclusion, coefficient-oblivious univariate multiplication algo-

rithms offer opportunities for improvement in terms of cache and

space complexity. However, turning those improvements into prac-

tical benefits is challenging. In particular, space saving implemen-

tations may reduce parallelism in a dramatic manner.
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