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Overview

Isolating the real roots of a univariate polynomial is a driving

subject in computer algebra. Many researchers have studied

this problem under various angles from algebraic algorithms

to implementation techniques [1, 2, 7, 3, 5]. Today, mul-

ticores have become the most popular parallel hardware ar-

chitectures. Besides, understanding the implications of hi-

erarchical memory on performance software engineering has

become essential. These observations motivate the work pre-

sented in this poster. First, we analyze the cache complexity

of the core routine of many real root isolation algorithms,

namely, the Taylor shift. Secondly, we present efficient mul-

tithreaded implementation targeting multicores.

Taylor shift and Real Root Isolation

For a squarefree univariate polynomial f (x) ∈ Q[x] the

Vincent-Collins-Akritas Algorithm reduces the problem of

isolating the real roots of p to that of computing the coef-

ficients of f (x + 1), the Taylor shift of f . If f (x) writes

anx
n + · · · + a1x + a0, the Pascal Triangle relation fi(x) :=

fi+1(x)∗ (x+1)+ai for i successively equal to n−1, . . . , 1, 0

with fn(x) := an produces f0(x) = f (x + 1).

Example. Let f (x) = a3x
3+a2x

2+a1x+a0. The diagram

of the computation is illustrated as follows.

0 0 0 0

a3 + + + + → c3
a2 + + + → c2
a1 + + → c1 ց

a0 + → c0

Proceeding the addition in diagonal direction is exactly the

same as one computes f (x + 1) in Horner’s rule.

Divide-and-conquer Taylor shift

The elements of the Pascal Triangle and thus the coefficients

of f (x+1) can be computed in a divide-and-conquer manner

sketched by the figures below. In this process, each triangular

or square region is divided into smaller regions until a base

case is reached. One observes that in both the triangular and

square division, opportunities for concurrent execution and

improved data locality are created.

The work and span of this algorithm are respectively Θ(n2)

and Θ(nlog2 3), In addition, this algorithm can be run in-place,

in space Θ(n). Using the ideal cache model [4] , for a cache of

Z words with cache line size L, we have shown that this algo-

rithm incurs Θ(n2/ZL) cache misses. Using the Hong-Kung

lower bounds, we deduce that this latter result is optimal.

A Blocking Strategy

One can observe that, in the above triangle division, parts of

the small triangle regions can be evaluated before complet-

ing region I. One can partition the entire Pascal Triangle into

B×B blocks, whereB should be tuned in order for a block to

fit in cache. Then, the blocks are traversed one anti-diagonal

band after another starting from the top left corner. Both

span and parallelism are now Θ(Bn) and Θ(n/B) respec-

tively. Moreover, our algorithm runs in place in space Θ(n).

In addition, if B is well chosen, the above cache complexity

estimate is preserved.

Experimentation

In Cilk++ targeting multicores, relying on the GMP library,

we have implemented these two approaches, that we denote

d-n-c (for divide-and-conquer) and blocking (for the blocking

strategy). We provide experimental data on a 8-core machine

for both approaches and both problems of Taylor Shift and

Real Root Isolation. For real root isolation, we also explore

the parallelism of the binary tree for searching the roots. The

machine has 8 GB memory, 6144 KB of L2 cache and each

processor is Intel Xeon X5460 @3.16 GHz.
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On one core (data not reported here) the blocking strategy

and divide-and-conquer approach outperform all other data

traversals that we have tried. Between the two, the winner

varies from one architecture to another. On a given multi-

core architecture, for the problem of real root isolation, the

winner varies from one test example to another, with, may

be, a slight advantage on average to the blocking strategy.
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