
Cache Complexity and Multicore Implementation for Univariate Real
Root Isolation

Changbo Chen, Marc Moreno Maza and Yuzhen Xie
Ontario Research Centre for Computer Algebra, University of Western Ontario, London, Canada

Overview

Isolating the real roots of a univariate polynomial is a driving

subject in computer algebra. Many researchers have studied

this problem under various angles from algebraic algorithms

to implementation techniques [1, 2, 7, 3, 5]. Today, mul-

ticores have become the most popular parallel hardware ar-

chitectures. Besides, understanding the implications of hi-

erarchical memory on performance software engineering has

become essential. These observations motivate the work pre-

sented in this poster. First, we analyze the cache complexity

of the core routine of many real root isolation algorithms,

namely, the Taylor shift. Secondly, we present efficient mul-

tithreaded implementation targeting multicores.

Taylor shift and Real Root Isolation

For a squarefree univariate polynomial f (x) ∈ Q[x] the

Vincent-Collins-Akritas Algorithm reduces the problem of

isolating the real roots of p to that of computing the coef-

ficients of f (x + 1), the Taylor shift of f . If f (x) writes

anx
n + · · · + a1x + a0, the Pascal Triangle relation fi(x) :=

fi+1(x)∗ (x+1)+ai for i successively equal to n−1, . . . , 1, 0

with fn(x) := an produces f0(x) = f (x + 1).

Example. Let f (x) = a3x
3+a2x

2+a1x+a0. The diagram

of the computation is illustrated as follows.

0 0 0 0

a3 + + + + → c3
a2 + + + → c2
a1 + + → c1 ց

a0 + → c0

Proceeding the addition in diagonal direction is exactly the

same as one computes f (x + 1) in Horner’s rule.

Divide-and-conquer Taylor shift

The elements of the Pascal Triangle and thus the coefficients

of f (x+1) can be computed in a divide-and-conquer manner

sketched by the figures below. In this process, each triangular

or square region is divided into smaller regions until a base

case is reached. One observes that in both the triangular and

square division, opportunities for concurrent execution and

improved data locality are created.

The work and span of this algorithm are respectively Θ(n2)

and Θ(nlog2 3), In addition, this algorithm can be run in-place,

in space Θ(n). Using the ideal cache model [4] , for a cache of

Z words with cache line size L, we have shown that this algo-

rithm incurs Θ(n2/ZL) cache misses. Using the Hong-Kung

lower bounds, we deduce that this latter result is optimal.

A Blocking Strategy

One can observe that, in the above triangle division, parts of

the small triangle regions can be evaluated before complet-

ing region I. One can partition the entire Pascal Triangle into

B×B blocks, whereB should be tuned in order for a block to

fit in cache. Then, the blocks are traversed one anti-diagonal

band after another starting from the top left corner. Both

span and parallelism are now Θ(Bn) and Θ(n/B) respec-

tively. Moreover, our algorithm runs in place in space Θ(n).

In addition, if B is well chosen, the above cache complexity

estimate is preserved.

Experimentation

In Cilk++ targeting multicores, relying on the GMP library,

we have implemented these two approaches, that we denote

d-n-c (for divide-and-conquer) and blocking (for the blocking

strategy). We provide experimental data on a 8-core machine

for both approaches and both problems of Taylor Shift and

Real Root Isolation. For real root isolation, we also explore

the parallelism of the binary tree for searching the roots. The

machine has 8 GB memory, 6144 KB of L2 cache and each

processor is Intel Xeon X5460 @3.16 GHz.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 5000 10000 15000 20000 25000

S
pe

ed
up

 u
si

ng
 8

 c
or

es

The degree and coefficient size (number of bits)

Taylor shift of random polynomial on 8-core machine

d-n-c, Base=8
blocking, Base=50

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 2 4 6 8 10 12 14 16

S
pe

ed
up

Number of cores

Real root isolation of Chebychev polynomial (degree=599) on 16-core machine

d-n-c, Base=8
blocking, Base=50

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 2 4 6 8 10 12 14 16

S
pe

ed
up

Number of cores

Real root isolation of Mignotte polynomial (degree=399) on 16-core machine

d-n-c, Base=8
blocking, Base=50

On one core (data not reported here) the blocking strategy

and divide-and-conquer approach outperform all other data

traversals that we have tried. Between the two, the winner

varies from one architecture to another. On a given multi-

core architecture, for the problem of real root isolation, the

winner varies from one test example to another, with, may

be, a slight advantage on average to the blocking strategy.

References

[1] G. E. Collins and A. G. Akritas. Polynomial real root isolation using Descarte’s rule of signs. In

SYMSAC’76, pages 272–275.

[2] G. E. Collins, J. R. Johnson and W. Küchlin. Parallel real root isolation using the coefficient sign
variation method. Number 584 in Lecture Notes in Computer Science, pages 71-87, 1992.

[3] T. Decker and W. Krandick. Parallel Real Root Isolation Using the Descartes Method. In HiPC’

99, pages 261–268.

[4] M. Frigo, C. E. Leiserson, H. Prokop and S. Ramachandran. Cache-Oblivious Algorithms. In FOCS

’99, 1999.

[5] J. R. Johnson, W. Krandick, A. D. Ruslanov. Architecture-aware classical Taylor shift by 1. In

ISSAC ’05, pages 200–207.

[6] Jia-Wei Hong and H. T. Kung. I/O complexity: the red-blue pebbling game. In STOC’81, pages
326–333.

[7] J. Von zur Gathen and J. Gerhard. Fast algorithms for Taylor shifts and certain difference equations.
In ISSAC ’97, pages 40–47.

