
Journal of Symbolic Computation 47 (2012) 610–642

Contents lists available at SciVerse ScienceDirect

Journal of Symbolic Computation

journal homepage: www.elsevier.com/locate/jsc

Algorithms for computing triangular decomposition of
polynomial systems✩

Changbo Chen, Marc Moreno Maza
The University of Western Ontario, London, Ontario, Canada N6A 5B7

a r t i c l e i n f o

Article history:
Received 12 September 2011
Accepted 15 October 2011
Available online 22 December 2011

In dedication to Professor Wen Tsün Wu

Keywords:
Characteristic set
Triangular decomposition
Regular chain
Resultant
GCD

a b s t r a c t

We discuss algorithmic advances which have extended the pio-
neer work of Wu on triangular decompositions. We start with an
overview of the key ideas which have led to either better imple-
mentation techniques or a better understanding of the underlying
theory. We then present new techniques that we regard as essen-
tial to the recent success and for future research directions in the
development of triangular decomposition methods.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The characteristic set method ofWu has freed Ritt’s decomposition from polynomial factorization,
opening the door to a variety of discoveries in polynomial and differential algebra. The landmark paper
A Zero Structure Theorem for Polynomial Equations Solving (Wu, 1987) where the method is proposed,
and subsequent articles, among them (Wu, 1989a,c,d,e, 1992), already suggest important directions
for further development.

During the past 25 years, the work of Wu has been extended to allow for more powerful
decomposition algorithms and applied to different types of polynomial systems or decompositions:
parametric algebraic systems (Chou andGao, 1991), differential systems (Gao and Chou, 1993; Boulier
et al., 1995;Hubert, 2000), difference systems (Gao et al., 2009), unmixeddecompositions (Kalkbrener,
1998) and primary decomposition (Shimoyama and Yokoyama, 1996) of polynomial ideals, cylindrical
algebraic decomposition (Chen et al., 2009), parametric (Yang et al., 2001) and non-parametric (Chen
et al., 2010) semi-algebraic systems. Today, triangular decomposition algorithms are available in

✩ This research was partly supported by the NSERC, Maplesoft and the MITACS of Canada.
E-mail addresses: cchen252@csd.uwo.ca (C. Chen), moreno@csd.uwo.ca (M. Moreno Maza).

0747-7171/$ – see front matter© 2011 Elsevier Ltd. All rights reserved.
doi:10.1016/j.jsc.2011.12.023

http://dx.doi.org/10.1016/j.jsc.2011.12.023
http://www.elsevier.com/locate/jsc
http://www.elsevier.com/locate/jsc
mailto:cchen252@csd.uwo.ca
mailto:moreno@csd.uwo.ca
http://dx.doi.org/10.1016/j.jsc.2011.12.023


C. Chen, M. Moreno Maza / Journal of Symbolic Computation 47 (2012) 610–642 611

several software packages (Chen et al., 2011; Lemaire et al., 2005; Wang, Wsolve; Wang, Epsilon
0.618). Moreover, they provide back-engines for computer algebra system front-end solvers, such as
Maple’s solve command Maplesoft Incorporation.

A first part of this paper, presented in Section 2, is an overview of the algorithmic advances which
have extended the pioneer work of Wu on triangular decompositions. Our aim is to highlight those
key ideas which have led to either better implementation techniques and practical performance, or
a better understanding of the relations between the computed algebraic objects and the represented
geometrical entities.

Algorithms for computing triangular decompositions of polynomial systems can be classified in
several ways. One can first consider the relation between the input system S and the output triangular
systems, say S1, . . . , Se. From that perspective, two types of decomposition are essentially different:
those for which S1, . . . , Se encode all the points of the zero set of S (over the algebraic closure of
the coefficient field of S) and those for which S1, . . . , Se represent only the ‘‘generic zeros’’ of the
irreducible components of S.

One can also classify triangular decomposition algorithms by the algorithmic principles on which
they rely: those which proceed by variable elimination, that is, by reducing the solving of a system in
n unknowns to that of a system in n− 1 unknowns and those which proceed incrementally, that is, by
reducing the solving of a system inm equations to that of a system inm − 1 equations.

The characteristic set method and most of the decomposition algorithms proposed by Wu’s
students (see the book of Wang (2000) and the references therein) belong to the first type in
each classification. Kalkbrener’s algorithm (Kalkbrener, 1993), which is an elimination method
representing the ‘‘generic zeros’’ (as defined in van der Waerden (1991)), has brought efficient
techniques, based on the concept of a regular chain, introduced independently by Kalkbrener in his
Ph.D. thesis and, by Yang and Zhang (1991). Other works on triangular decomposition algorithms
focus on incremental solving, following an idea proposed by Lazard (1991).

In a second part of this paper, from Section 4 to Section 6, we discuss algorithmic techniques that
we regard as essential to the recent success and for future research directions in the development
of triangular decomposition methods. Though we present these ideas in the context of incremental
solving, we believe that they could also apply to other triangular decomposition schemes. These ideas
can be summarized as follows.

First, we believe that a decomposition scheme should rely on a routine which is geometrically
meaningful while allowing efficient algebraic calculations (computing by homomorphic images as
in Dahan et al. (2005) and taking advantage of fast polynomial arithmetic as in Li et al. (2007)).
The notion of a regular GCD introduced in Moreno Maza (1999) was a first step in that direction for
incremental triangular decomposition algorithms. Recently, we observed in Chen and Moreno Maza
(2011) that this notion and the related algorithms could be greatly simplified, leading to significant
practical improvements as reflected in the experimental results therein. One key to this progress is
a specialization property of subresultants repurposed to compute regular GCDs, namely Theorems 4
and 6 in Section 4. While this property extends known results, it provides corner cases for which we
could not find a reference in the literature and which helps us greatly simplifying our decomposition
algorithms.

Secondly, we believe that a decomposition scheme should prevent from the recomputation of
costly intermediate objects, at least on generic examples. By recomputation of objects, we mean not
only identical objects but also objects which are the homomorphic images of another one. Thus the
use of hash tables at the implementation level to record intermediate results cannot cope with this
requirement. For the incremental algorithm proposed in Chen andMoreno Maza (2011), we observe,
with Theorem 7 in Section 5, that the intersection of a hypersurface V (p) and the quasi-component
W (T ) of a regular chain T reduces to computing regular GCDs of p and a polynomial t ∈ T . Moreover,
all those regular GCDs can be derived from the subresultant chain of p and t (with respect to the main
variable of t) thanks to the aforementioned specialization property of subresultants. The effectiveness
of this recycling strategy is, again, illustrated by the experimental results of Chen and Moreno Maza
(2011), some of which appear in Appendix B, and also by the fact that the Triangularize command
of the RegularChains library is one of the back engines of Maple’s solve command. This was



612 C. Chen, M. Moreno Maza / Journal of Symbolic Computation 47 (2012) 610–642

implemented after benchmarking Triangularize against other Maple’s polynomial system solvers on
more than 3300 test problems coming from the literature andMaple’s users.

Thirdly, we believe that a decomposition scheme should control expression swell in the sense that
intermediate objects which do not contribute to the final result should not be computed, at least on
generic examples. Expression swell is a traditional challenge of symbolic computation. Fraction-free
elimination methods such as subresultant algorithms (Ducos, 2000) are already used by Wu (1987)
as an optimization technique. Their use became more systematic in the 90’s with Moreno Maza and
Rioboo (1995),MorenoMaza (1999) andWang (1998). However, subresultant-based regularGCDs still
calculate intermediate objectswhich do not contribute anything to the solving process. To understand
why, suppose that the Intersect operation of Chen and Moreno Maza (2011) is given a regular chain
T and a polynomial f which is regular modulo the saturated ideal of T . In addition, suppose that Wu’s
CHARSET procedure Wu (1987) is given F = T ∪ {f } as input. Among other objects, both procedures
will compute the iterated resultant of f w.r.t. T , denotedby res(T , f ). If the initials of the polynomials in
T are not all equal to 1, somepotentially large factors of res(T , f ) are likely to be superfluous. As argued
in Section 6, this will be the case generically if the saturated ideal of T has dimension 1. Theorem 8
highlights this expression swell explicitly. The remainder of Section 6 explains how to deal with this
problem, that is, how to compute only the factors of res(T , f ) that are of interest. Examples illustrate
the proposed techniques. For some test problems, reported in Section 6.5, these techniques reduce
the size of the computed iterated resultants by a factor of 50, leading to a running time speedup of
three orders of magnitude.

2. The characteristic set method and related works

The characteristic set method is the first factorization-free algorithm for decomposing an algebraic
variety into equidimensional components. The author, Wu Wen Tsün, realized an implementation of
this method and reported experimental data in Wu (1987), following a series of preliminary works,
among them are the papers (Wu, 1984a,b, 1986). To put this work into context, let us recall what the
common idea of an algebraic set decomposition was at the time the article (Wu, 1987) was written.

LetK be an algebraically closed field and k be a subfield ofK. A subset V ⊂ Kn is an (affine) algebraic
variety over k if there exists a polynomial set F ⊂ k[x1, . . . , xn] such that the zero set V (F) ⊂ Kn of
F equals V . Recall that V is called irreducible if for all algebraic varieties V1, V2 ⊂ Kn the relation
V = V1 ∪ V2 implies either V = V1 or V = V2. A first algebraic variety decomposition result is the
famous Lasker–Nöther Theorem (Lasker, 1905; Nöther, 1921) which states the following.

Theorem 1 (Lasker–Nöther). For each algebraic variety V ⊂ Kn there exist finitely many irreducible
algebraic varieties V1, . . . , Ve ⊂ Kn such that we have

V = V1 ∪ · · · ∪ Ve. (1)

Moreover, if Vi ⊈ Vj holds for 1 ≤ i < j ≤ e then the set {V1, . . . , Ve} is unique and forms the irreducible
decomposition of V .

The varieties V1, . . . , Ve in Theorem 1 are called the irreducible components of V and can be
regarded as anatural output for a decomposition algorithm, or, in otherwords, for an algorithmsolving
a systemof equations given by polynomials ink[x1, . . . , xn]. In order to be implemented as a computer
program, this algorithm specification should stipulate how irreducible components are represented.
One such encoding is introduced by Ritt (1932) through the following result, that we present here as
Wu does it in Wu (1984a) p. 215.

Theorem 2 (Ritt). If V (F) ⊂ Kn is a non-empty and irreducible variety then one can compute a reduced
triangular set C contained in the ideal ⟨F⟩ generated by F in k[x1, . . . , xn] and such that each polynomial
g ∈ ⟨F⟩ reduces to zero by pseudo-division w.r.t. C .

We call the set C in Theorem 2 a Ritt characteristic set of the ideal ⟨F⟩. The notions of triangular set
and pseudo-division are reviewed in Section 3. Ritt (1950) describes a method for solving polynomial
systems, which is based on polynomial factorization over field extensions and computation of
characteristic sets of prime ideals. Deriving a practical implementation from this method, however,



C. Chen, M. Moreno Maza / Journal of Symbolic Computation 47 (2012) 610–642 613

was and remains a difficult problem. In the 80’s, when the characteristic set method was introduced,
polynomial factorization was an active research area and certain fundamental questions on this
subject were only solved recently (Steel, 2005). Nowadays, decomposing an algebraic variety into
irreducible components is not essential for most application problems, since weaker notions of
decompositions, less costly to compute, are sufficient.

The characteristic set method relies on the following variant of Theorem 2.

Theorem 3 (Wu). For any finite polynomial set F ⊂ k[x1, . . . , xn], one can compute a reduced triangular
set C ⊂ ⟨F⟩ such that each polynomial g ∈ F reduces to zero by pseudo-division w.r.t. C .

We call the set C in Theorem 3 a Wu characteristic set of the polynomial set F . From now
on, we shall assume that variables are ordered as x1 < · · · < xn. Then, Algorithm 1, called
CHARSET in Wu (1987), computes a Wu characteristic set of F . In this pseudo-code, the function call
MinimalAutoreducedSubset(F) returns a so-called basic set, that is, a triangular set with minimum
rank (see Section 3 for this term) among the reduced triangular sets contained in F ; the function call
prem(A, B) returns the set of all prem(a, B) for a ∈ A, where prem(a, B) is the pseudo-remainder of
aw.r.t. B.

Algorithm 1: CHARSET
Input: F ⊂ k[x1 < · · · < xn].
Output: C a Wu characteristic set of F .
begin

repeat
(S) B := MinimalAutoreducedSubset(F);
(R) A := F \ B;

R := prem(A, B);
(I) R := R \ {0};

F := F ∪ R;
until R = ∅ ;
return B;

end

Algorithm 2: Buchberger’s Algorithm
Input: F ⊂ k[x1, . . . , xn] and an admissible term order ≤.
Output: G a reduced Gröbner basis w.r.t. ≤ of the ideal ⟨F⟩ generated by F .
begin

repeat
(S) B := MinimalAutoreducedSubset(F , ≤);
(R) A := S_Polynomials(B, ≤) ∪ F ;

R := Reduce(A, B, ≤);
(I) R := R \ {0};

F := F ∪ R;
until R = ∅ ;
return B;

end

After reformulating Buchberger’s Algorithm for computing Gröbner bases into Algorithm 2, its
structure appears to be similar to that of the CHARSET procedure, as observed by Golubitsky (2005).
In this pseudo-code, the function call S_Polynomials(B) computes the S-polynomials of all pairs of
elements in B w.r.t. ≤ while Reduce(A, B, ≤) returns the remainders of all elements in A w.r.t. B and
≤. The specification of MinimalAutoreducedSubset(F , ≤) is an adaptation to the term order ≤ of
the specification of MinimalAutoreducedSubset(F) in Wu’s CHARSET procedure; more precisely, this



614 C. Chen, M. Moreno Maza / Journal of Symbolic Computation 47 (2012) 610–642

adaptation is obtained by computing the rank of a polynomial f as its leading monomial (instead of
vd where v is the leading variable of v and d the degree of f w.r.t. v).

In the early developments of the CHARSET procedure and Buchberger’s Algorithm, the selection
step (S), the reduction step (R), and the incremental step (I) have been studied intensively and variants
have been proposed in order to improve the practical efficiency of these algorithms. Such crucial tricks
already appear in Wu’s pioneer article (Wu, 1987) and in his note (Wu, 1989b). A nice survey of these
aspects is given in Wang (1991).

During themid 80’s another important factorization-free decomposition technique was introduced
by J. Della Dora, C. Dicrescenzo, and D. Duval: the D5 Principle. This permits one to compute
over a simple algebraic extension of the field k, say k[x]/⟨m(x)⟩, as if the univariate polynomial
m(x) was irreducible, while assuming only that m(x) is squarefree. M. Kalkbrener, in his Ph.D.
thesis (Kalkbrener, 1991), combined the characteristic set method and the D5 Principle into a novel
triangular decomposition method. This approach outperforms the characteristic set method, on
examples for which a Wu characteristic set C of the input system F can be ‘‘split’’ into several
Wu characteristic sets of the same dimension as that of C . Without using the D5 Principle, Wang’s
Algorithm inWang (1993) is also motivated by the same type of examples. These examples, however,
were not generic in the applications studied by Wu (1984a, 1989e).

Another important idea was introduced independently by Kalkbrener (1991) and by Yang and
Zhang in Yang and Zhang (1991): the notion of a regular chain. Its main purpose is to cope with the
fact that the CHARSET proceduremay not detect, in some cases, that an input polynomial system F has
no solutions. For instance,with x1 < x2 < x3 < x4 and F = {x22−x1, x1x23−2x2x3+1, (x2x3−1)x4+x1},
the CHARSET procedure applied to F returns F , although F is inconsistent. However, F is not a regular
chain since the initial of (x2x3 − 1)x4 + x1 is a zero-divisor modulo the (saturated) ideal generated by
the other two polynomials. Again, this situation was not generic in the applications studied by Wu.

In Kalkbrener’s decomposition algorithm, applied to an input polynomial system F , the output
regular chains represent generic zeros (in the sense of van der Waerden (1991)) of the irreducible
components of V (F). The relation between characteristic sets and generic zeros were also studied by
Wu (1989c, 2006).

Further algorithmic improvements are based on the principle of incremental solving. This principle
is quite attractive, since it allows one to control the properties and the size (Dahan et al., in press) of
the intermediate computed objects. This is crucial in view of designing modular methods such as that
presented in Dahan et al. (2005).

Lazard (1991) proposed incremental solving for computing triangular decompositions. His work
was extended by the authors inMorenoMaza (1999) and Chen andMorenoMaza (2011). This solving
principle is used in other areas of polynomial system solving such as the probabilistic algorithm of
Lecerf (2003) (based on lifting fibers) and the numerical method of Sommese et al. (2008), (based on
diagonal homotopy).

Each of those incremental triangular decompositions algorithms rely on a procedure for computing
the intersection of a hypersurface and the quasi-component of a regular chain. Thus, the input of this
operation can be regarded as well-behaved geometrical objects. However, known algorithms, namely
the one of Lazard (1991) and the one of the second author (Moreno Maza, 1999) are quite involved,
thus difficult to analyze and optimize. In the rest of the present paper, we revisit this intersection
operation, defined below, and extend our preliminary study reported in Chen and Moreno Maza
(2011).

Let R = k[x1, . . . , xn] be the ring of multivariate polynomials with coefficients in k and variables
x = x1 < · · · < xn. For a polynomial p ∈ R and a regular chain T ⊂ R, the function call Intersect(p, T )
returns regular chains T1, . . . , Te ⊂ R such that we have:

V (p) ∩ W (T ) ⊆ W (T1) ∪ · · · ∪ W (Te) ⊆ V (p) ∩ W (T ).

We refer the reader to Section 3 for the notion of a regular chain and related concepts. In Section 4,
we discussed how the notion of regular GCD is used to perform the intersection operation. We also
discuss its relation with the specialization property of subresultants.

One practical challenge with the intersection operation is that many cases may need to be handled
while computing Intersect(p, T ). These special cases often lead to recompute the same thing, namely



C. Chen, M. Moreno Maza / Journal of Symbolic Computation 47 (2012) 610–642 615

the subresultant chain of p and one polynomial of T . This difficulty was not dealt with in Lazard (1991)
and Moreno Maza (1999) and a solution was only first proposed in Chen and Moreno Maza (2011).
In Section 5, we propose a new result which formally explains how the algorithm of Chen andMoreno
Maza (2011) recycles intermediate results, thus preventing potentially expensive recomputations of
subresultant chains.

Another practical challenge with the intersection operation is that, when computing the
subresultant chain of a p and one polynomial of T , the initials of the polynomials in T are ‘‘propagated’’
into the subresultants and create a potentially dramatic expression swell, as stated by Theorem 8.
Dealing with this problem necessitates the reduction of the computations to a case where the initials
of T are equal to 1. In Section 6, for the sake of simplicity, we explain how to do so for iterated
resultant computation. The handling of the whole intersection operation through this technique will
be reported in a future paper.

3. Regular chains

We review hereafter the notion of a regular chain and its related concepts. Then we state basic
properties of regular chains (Propositions 1–5, and Corollaries 1 and 2) which will be used in the rest
of this paper. Recall that k, K, k[x] denote respectively a field, its algebraic closure and the ring of
polynomials over k, with ordered variables x = x1 < · · · < xn. Let p ∈ k[x].
Notations for polynomials. If p is not constant, then the greatest variable appearing in p is called the
main variable of p, denoted by mvar(p). Furthermore, the leading coefficient, the degree, the leading
monomial, the leading term and the reductum of p, regarded as a univariate polynomial in mvar(p),
are called respectively the initial, themain degree, the rank, the head and the tail of p; they are denoted
by init(p), mdeg(p), rank(p), head(p) and tail(p) respectively. Let q be another polynomial of k[x]. If q
is not constant, then we denote by prem(p, q) and pquo(p, q) the pseudo-remainder and the pseudo-
quotient of p by q as univariate polynomials in mvar(q). We say that p is less than q and write p ≺ q if
either p ∈ k and q /∈ k or both are non-constant polynomials such that mvar(p) < mvar(q) holds, or
mvar(p) = mvar(q) and mdeg(p) < mdeg(q) both hold. We write p ∼ q if neither p ≺ q nor q ≺ p
hold.
Notations for polynomial sets. Let F ⊂ k[x]. We denote by ⟨F⟩ the ideal generated by F in k[x]. For an
ideal I ⊂ k[x], we denote by dim(I) its dimension. A polynomial is regular modulo I if it is neither
zero, nor a zerodivisor modulo I. Denote by V (F) the zero set (or algebraic variety) of F in Kn. Let h ∈

k[x]. The saturated ideal of I w.r.t. h, denoted by I : h∞, is the ideal {q ∈ k[x] | ∃m ∈ N s.t. hmq ∈ I}.
Triangular set. Let T ⊂ k[x] be a triangular set, that is, a set of non-constant polynomials with pairwise
distinct main variables. The set of main variables and the set of ranks of the polynomials in T are
denoted bymvar(T ) and rank(T ), respectively. A variable in x is called algebraicw.r.t. T if it belongs to
mvar(T ), otherwise it is said freew.r.t. T . For v ∈ mvar(T ), denote by Tv the polynomial in T withmain
variable v. For v ∈ x, we denote by T<v (resp. T≥v) the set of polynomials t ∈ T such that mvar(t) < v
(resp. mvar(t) ≥ v) holds. Let hT be the product of the initials of the polynomials in T . We denote
by sat(T ) the saturated ideal of T defined as follows: if T is empty then sat(T ) is the trivial ideal ⟨0⟩,
otherwise it is the ideal ⟨T ⟩ : h∞

T . The quasi-component W (T ) of T is defined as V (T ) \ V (hT ). Denote
W (T ) = V (sat(T )) as the Zariski closure ofW (T ). For F ⊂ k[x], we write Z(F , T ) := V (F) ∩ W (T ).
Rank of a triangular set. Let S ⊂ k[x] be another triangular set. We say that T has smaller rank than S
and we write T ≺ S if there exists v ∈ mvar(T ) such that rank(T<v) = rank(S<v) holds and: (i) either
v /∈ mvar(S); (ii) or v ∈ mvar(S) and Tv ≺ Sv . We write T ∼ S if rank(T ) = rank(S).
Iterated resultant. Let again p, q ∈ k[x] and v ∈ x. If either p or q is not constant and has main variable
v, then we define res(p, q, v) as the resultant of p and q w.r.t. v. Let T ⊂ k[x] be a triangular set.
We define res(p, T ) (resp. res(T , p)) inductively: if T = ∅, then res(p, T ) = p (resp. res(T , p) = p);
otherwise let v be greatest variable appearing in T , then res(p, T ) = res(res(p, Tv, v), T<v) (resp.
res(T , p) = res(res(Tv, p, v), T<v)).
Regular chain. A triangular set T ⊂ k[x] is a regular chain if: (i) either T is empty; (ii) or T \ {Tmax} is a
regular chain, where Tmax is the polynomial in T with maximum rank, and the initial of Tmax is regular
w.r.t. sat(T \ {Tmax}).



616 C. Chen, M. Moreno Maza / Journal of Symbolic Computation 47 (2012) 610–642

Good specialization. Let T ⊂ k[x] be a regular chain. Let x1, . . . , xd be the free variables of T . Let
z = (z1, . . . , zd) be a point of Kd. We say that T specializes well at z if (i) none of the initials of the
polynomials in T vanishes modulo the ideal ⟨x1 − z1, . . . , xd − zd⟩ of K[x]; (ii) the image of T modulo
⟨x1 − z1, . . . , xd − zd⟩ is a regular chain of K[x].

Triangular decomposition. Let F ⊂ k[x] be finite. Let T := {T1, . . . , Te} be a finite set of regular chains
of k[x]. We call T a Kalkbrener triangular decomposition of V (F) if we have V (F) = ∪

e
i=1W (Ti). We call

T a Lazard–Wu triangular decomposition of V (F) if we have V (F) = ∪
e
i=1W (Ti).

Proposition 1 (Th. 6.1. in Aubry et al., 1999). Let p and T be respectively a polynomial and a regular
chain of k[x]. Then, prem(p, T ) = 0 holds if and only if p ∈ sat(T ) holds.

Proposition 2 (Prop. 5 in Moreno Maza, 1999). Let T and T ′ be two regular chains of k[x] such that
√
sat(T ) ⊆


sat(T ′) and dim (sat(T )) = dim (sat(T ′)) hold. Let p ∈ k[x] such that p is regular w.r.t.

sat(T ). Then p is also regular w.r.t. sat(T ′).

Proposition 3. Let p ∈ k[x]\k and T ⊂ k[x] be a regular chain. Let v = mvar(p) and r = prem(p, T≥v)

such that r ∈
√
sat(T<v) holds. Then, we have p ∈

√
sat(T ).

Proof. Since r = prem(p, T≥v), there exists an integer e0 ≥ 0 and a polynomial f ∈ ⟨T≥v⟩ such that
init(T≥v)

e0p = f + r . On the other hand, r ∈
√
sat(T<v), therefore there exists an integer e1 ≥ 0 such

that init(T<v)
e1(init(T≥v)

e0p − f )e1 ∈ ⟨T<v⟩, which implies that p ∈
√
sat(T ). �

Corollary 1. Let T and T ′ be two regular chains of k[x1, . . . , xk], where 1 ≤ k < n. Let p ∈ k[x] with
mvar(p) = xk+1 such that init(p) is regular w.r.t. both sat(T ) and sat(T ′). Assume that

√
sat(T ) ⊆

sat(T ′) holds. Then we also have
√
sat(T ∪ p) ⊆


sat(T ′

∪ p).

Proof. This follows easily from Proposition 1. �

Proposition 4 (Lemma 4 in Chen et al., 2007). Let p ∈ k[x]. Let T ⊂ k[x] be a regular chain. Then the
following statements are equivalent:

(i) the polynomial p is regular w.r.t. sat(T ),
(ii) for each prime ideal p associated with sat(T ), we have p ∉ p,
(iii) the iterated resultant res(p, T ) is not zero.

Corollary 2. Let p ∈ k[x] \ k and T ⊂ k[x] be a regular chain. Let v := mvar(p) and r := res(p, T≥v).
We have:

(1) the polynomial p is regular w.r.t. sat(T ) if and only if r is regular w.r.t. sat(T<v);
(2) if v /∈ mvar(T ) and init(p) is regular w.r.t. sat(T ), then p is regular w.r.t. sat(T ).

Proof. By Proposition 4, p is regular w.r.t. sat(T ) if and only if res(p, T ) ≠ 0, which is equivalent to
res(r, T<v) ≠ 0, that is r is regular w.r.t. sat(T<v). So (1) holds. Claim (2) is a consequence of the
McCoy Theorem. We can also prove (2) directly. Since res(init(p), T ) = res(init(p), T<v), if init(p) is
regularw.r.t. sat(T ), then init(p) is also regularw.r.t. sat(T<v).We claim that p is regularw.r.t. sat(T<v).
Otherwise by Proposition 4, there is an associated prime ideal p of sat(T<v) such that p ∈ p, which
implies that init(p) ∈ p, a contradiction. Therefore p is regular w.r.t. sat(T<v). On the other hand,
v /∈ mvar(T ), which implies that p = r and therefore p is regular w.r.t. sat(T ). �

Proposition 5 (Theorem 1.6 Boulier et al., 2006). Let T ⊂ k[x] be a regular chain. Let x1, . . . , xd be all
the free variables of T . Then sat(T ) is unmixed of dimension d. Moreover we have sat(T ) ∩ k[x1, . . . , xd]
= ⟨0⟩.



C. Chen, M. Moreno Maza / Journal of Symbolic Computation 47 (2012) 610–642 617

4. Subresultants and regular GCDs

Algorithms for triangular decomposition make use implicitly or explicitly of a notion of GCD for
univariate polynomials over coefficient rings that are not necessarily fields. A formal definition for
those GCDs was proposed in MorenoMaza (1999) (see Definition 1) and applied to residue class rings
of the form A = k[x]/sat(T ) where sat(T ) is the saturated ideal of a regular chain T . In Chen and
Moreno Maza (2011), we propose to consider rings A of the form k[x]/

√
sat(T ) instead and we show

how to adapt, and improve, the algorithms of Moreno Maza (1999) without computing a basis nor a
characteristic set of

√
sat(T ).

For the purpose of polynomial system solving (when retaining the multiplicities of zeros is not
required) this weaker notion of a polynomial GCD is clearly sufficient. In addition, this yields a very
simple procedure for computing such GCDs, see Theorem 6. To this end, we rely on two specialization
properties of subresultants, namely Theorems 4 and 5. These technical results require the following
brief review of subresultant theory.

4.1. Definition of subresultants

Throughout this section, we denote by A a commutative ring with unit elements. Let f = amxm +

· · · + a0 and g = bnxn + · · · + b0 be two polynomials of A[x] with positive degrees m and n. We call
the following matrix the Sylvester matrix of f and g w.r.t. x.

L =



am am−1 · · · a0
am am−1 · · · a0

. . .
. . .

. . .

am am−1 · · · a0
bn bn−1 · · · b0

bn bn−1 · · · b0
. . .

. . .
. . .

bn bn−1 · · · b0



 n

 m

Its determinant is called the (Sylvester) resultant of f and g w.r.t. x, denoted by res(f , g, x).

Let λ = min(m, n). For any 0 ≤ i < λ, let Li be the submatrix of L formed by removing the
bottom i rows that include the coefficients of f and the bottom i rows that include the coefficients
of g . Thus the j-th row of Li is the j-th row of L for j = 1 · · · n − i and the (i + j)-th row of L for
j = n − i + 1 · · ·m + n − 2i. Note that Li is an (m + n − 2i) × (m + n) matrix. For j = 0, . . . , i, let
Li,j be the submatrix of Li consisting of the first m + n − 2i − 1 columns and the (m + n − 2i + j)-
th column. We call the polynomial Si(f , g) =

i
j=0 det(Li,j)x

i−j the i-th subresultant of f and g . Let
si(f , g) = coeff(Si(f , g), xi) and call it the principal subresultant coefficient of Si.

The previous construction can be described in the following more abstract way. Let k ≤ ℓ be two
positive integers. Let M be an k × ℓ matrix with coefficients in A. Let Mj be the square submatrix



618 C. Chen, M. Moreno Maza / Journal of Symbolic Computation 47 (2012) 610–642

of M consisting of the first k − 1 columns of M and the jth column of M , for j = k · · · ℓ. Let
dpol(M) :=

ℓ
j=k det(Mj)xℓ−j; we call it the determinant polynomial of M .

Let f1(x), . . . , fk(x) ∈ A[x]. Let ℓ = 1+max(deg(f1(x)), . . . , deg(fk(x))). The matrixM of f1, . . . , fk
is a k × ℓ matrix defined by Mij = coeff(fi, xℓ−j), for 1 ≤ i ≤ k and 1 ≤ j ≤ ℓ. We then define
dpol(f1, . . . , fk) = dpol(M) and mat(f1, . . . , fk) = M .

Proposition 6. Let f = amxm + · · · + a0 and g = bnxn + · · · + b0 be two polynomials of A[x] with
positive degrees m and n. Let λ = min(m, n). For i = 0, . . . , λ − 1, we have

Si(f , g) = dpol(xn−1−if , . . . , xf , f , xm−1−ig, . . . , xg, g).

Proof. It follows directly from the definition of subresultants. �

Weextend the definition of subresultants and principal subresultant coefficients in such away that
f and g are themselves subresultants. Ifm ≥ n, we define Sλ+1 = f , Sλ = g , sλ+1 = am and sλ = bn. If
m < n, we define Sλ+1 = g , Sλ = f , sλ+1 = bn and sλ = am.

4.2. Specialization properties of subresultants

In this section, we investigate the specialization property of subresultants. Although it is a well-
known property, we did not find in the literature any result covering all the corner cases that we need
to handle in the computation of regular GCDs. Therefore, we provide here such results together with
self-contained proofs.

Let B be a field and let φ be a ring homomorphism from A to B, which induces naturally also a ring
homomorphism from A[x] to B[x]. Definem′

= deg(φ(f )), n′
= deg(φ(g)) and λ′

= min(m′, n′).

Lemma 1. Let k be an integer such that 0 ≤ k < λ. Assume that φ(sk) ≠ 0 holds. Then either φ(am) ≠ 0
or φ(bn) ≠ 0 holds. Moreover, we have both deg(φ(f )) ≥ k and deg(φ(g)) ≥ k.

Proof. Observe that

sk =



am am−1 · · · a0
· · · · · ·

am am−1 · · · ak
bn bn−1 · · · b0

· · · · · ·

bn bn−1 · · · bk


.

Therefore there exists i ≥ k, j ≥ k such that φ(ai) ≠ 0 and φ(bj) ≠ 0. The conclusion follows. �

Lemma 2. Assume that φ(s0) = · · · = φ(sλ−1) = 0 hold. Then, if m ≤ n, we have

(1) If φ(am) ≠ 0 and φ(bn) = · · · = φ(bm) = 0 hold, then φ(g) = 0,
(2) If φ(am) = 0 and φ(bn) ≠ 0 hold, then φ(f ) = 0.

Symmetrically, if m > n, we have

(3) If φ(bn) ≠ 0 and φ(am) = · · · = φ(an) = 0 hold, then φ(f ) = 0,
(4) If φ(bn) = 0 and φ(am) ≠ 0 hold, then φ(g) = 0.

Proof. We prove only (1) and (2). The correctness of (3) and (4) follow by symmetry. We assume
that m ≤ n holds. To prove (1) and (2), it is clearly sufficient to prove respectively the following two
statements.

(1∗) If φ(am) ≠ 0 and φ(bn) = · · · = φ(bm) = 0 hold, then φ(bm−i) = 0, for i = 1, . . . ,m.
(2∗) If φ(am) = 0 and φ(bn) ≠ 0 hold, then φ(am−i) = 0, for i = 1, . . . ,m.



C. Chen, M. Moreno Maza / Journal of Symbolic Computation 47 (2012) 610–642 619

Next we prove (1∗) and (2∗) simultaneously by induction on i. Firstly, for the base case i = 1, we have
Sm−i = Sm−1 = dpol(xn−mf , . . . , xf , f , g), which implies that we have

sm−1 =


am am−1 · · ·

. . .
. . .

am am−1
bn · · · bm bm−1

 . (2)

Ifφ(am) ≠ 0 andφ(bn) = · · · = φ(bm) = 0, thenwehaveφ(sm−1) = φ(am)(n−m+1)φ(bm−1) by Eq. (2).
Since φ(sm−1) = 0, we deduce that φ(bm−1) = 0, that is (1∗) for i = 1. Similarly, if φ(am) = 0 and
φ(bn) ≠ 0, then we have φ(sm−1) = (−1)n−m+3φ(bn)φ(am−1)

(n−m+1) by Eq. (2). Thus φ(am−1) = 0
must hold, that is (2∗) for i = 1. Now we assume that (1∗) and (2∗) hold for < i. By

Si(f , g) = dpol(xn−1−if , . . . , xf , f , xm−1−ig, . . . , xg, g),

we have

sm−i =



am am−1 · · · am−(i−1) am−i · · ·

. . .
. . .

. . .

am am−1 · · · am−(i−1) am−i
bn bn−1 · · · bm−(i−1) bm−i · · ·

. . .
. . .

. . .

bn bn−1 · · · bm−(i−1) bm−i




n − m + i


i

(3)

By induction, if φ(am) ≠ 0 and φ(bn) = · · · = φ(bm) = 0 hold, then we have φ(bn) =

· · · = φ(bm−(i−1)) = 0. By Eq. (3), we deduce that φ(sm−i) = φ(am)(n−m+i)φ(bm−i) holds. Since
φ(sm−i) = 0, we deduce φ(bm−i) = 0, that is (1∗) for i. Similarly, if φ(am) = 0 and φ(bn) ≠ 0
hold, then by induction, we have φ(am) = · · · = φ(am−(i−1)) = 0. By Eq. (3), we deduce that
φ(sm−i) = (−1)n−m+i+2φ(bn)iφ(am−i)

(n−m+i) holds. Since φ(sm−i) = 0, we deduce φ(am−i) = 0,
that is (2∗) for i. Finally, both (1) and (2) hold. �

Lemma 3. Let i be an integer such that 0 ≤ i < λ.

(1) If m′
= m and n′

≥ i, then we have

φ(Si) = φ(am)n−n′

dpol(xn
′
−1−iφ(f ), . . . , xφ(f ), φ(f ), xm−1−iφ(g), . . . , xφ(g), φ(g)).

(2) If n′
= n and m′

≥ i, then we have

φ(Si) = (−1)(m−m′)(n−i+2)dpol(xn−1−iφ(f ), . . . , xφ(f ), φ(f ),
xm

′
−1−iφ(g), . . . , xφ(g), φ(g)).

Proof. The matrixM = mat(xn−1−if , . . . , xf , f , xm−1−ig, . . . , xg, g) is as follows

M =



am am−1 · · · a0
am am−1 · · · a0

. . .
. . .

. . .

am am−1 · · · a0
bn bn−1 · · · b0

bn bn−1 · · · b0
. . .

. . .
. . .

bn bn−1 · · · b0



 n − i

 m − i



620 C. Chen, M. Moreno Maza / Journal of Symbolic Computation 47 (2012) 610–642

We know that Si = dpol(M). We first prove (1). We assume that m′
= m and n′

≥ i both hold. Thus,
we have n − n′

≤ n − i, which yields

φ(Si) = φ(dpol(xn−1−if , . . . , xf , f , xm−1−ig, . . . , xg, g))
= dpol(xn−1−iφ(f ), . . . , xφ(f ), φ(f ), xm−1−iφ(g), . . . , xφ(g), φ(g))

= φ(am)n−n′

dpol(xn
′
−1−iφ(f ), . . . , xφ(f ), φ(f ), xm−1−iφ(g), . . . , xφ(g), φ(g)).

This proves (1). Now, we prove (2). We assume that n′
= n and m′

≥ i hold. Thus, we have
m − m′

≤ m − i, which yields

φ(Si) = φ(dpol(xn−1−if , . . . , xf , f , xm−1−ig, . . . , xg, g))
= dpol(xn−1−iφ(f ), . . . , xφ(f ), φ(f ), xm−1−iφ(g), . . . , xφ(g), φ(g))

= (−1)(m−m′)(n−i+2)dpol(xn−1−iφ(f ), . . . , xφ(f ), φ(f ),

xm
′
−1−iφ(g), . . . , xφ(g), φ(g)).

This proves (2). �

Theorem 4 (Specialization Property of Subresultants). Let i be an integer such that 0 ≤ i < λ.

(1) If m′
= m and n′ > i, then we have φ(Si(f , g)) = φ(am)n−n′

Si(φ(f ), φ(g)),
(2) If m′

= m and n′
= i, then we have φ(Si(f , g)) = φ(am)n−n′

φ(bn′)m−1−iφ(g),
(3) If n′

= n and m′ > i, then we have

φ(Si(f , g)) = (−1)(m−m′)(n−i+2)Si(φ(f ), φ(g)),

(4) If n′
= n and m′

= i, then we have

φ(Si(f , g)) = (−1)(m−m′)(n−i+2)φ(am′)n−1−iφ(f ).

Proof. It directly follows from Lemma 3. �

Remark 1. Theorem 4 provides corner cases which are not covered by other papers or textbooks in
the literature, such as Mishra’s book Algorithmic Algebra (Mishra, 1993). For example, the case where
m = n = m′

= n′ and i = n′
−1 both hold is not covered by Lemma 7.8.1 nor Corollary 7.8.2 inMishra

(1993). The case where m = n = m′
= n′

+ 1 and i = n′ hold is not covered either. As we shall see
with Theorem 5, these corner cases are needed in polynomial GCD computation.

Theorem 5. We have the following relations between the subresultants of f and g and, the GCDs of φ(f )
and φ(g):

(1) Let 0 ≤ k < λ be an integer such that φ(sk) ≠ 0 and φ(si) = 0 for any 0 ≤ i < k. Then φ(Sk) is a
GCD of φ(f ) and φ(g).

(2) Assume that φ(si) = 0 for all 0 ≤ i < λ. We have the following cases.
(2a) If m ≤ n and φ(am) ≠ 0, then φ(f ) is a GCD of φ(f ) and φ(g); symmetrically, if m > n and

φ(bn) ≠ 0, then φ(g) is a GCD of φ(f ) and φ(g).
(2b) If m ≤ n and φ(am) = 0 but φ(bn) ≠ 0, then φ(g) is a GCD of φ(f ) and φ(g); if m ≥ n and

φ(bn) = 0 but φ(am) ≠ 0, then φ(f ) is a GCD of φ(f ) and φ(g).
(2c) If φ(am) = φ(bn) = 0, then a GCD of φ(f ) and φ(g) is also a GCD of φ(red(f )) and φ(red(g))

and vice versa, where red(f ) and red(g) are the reductums of f and g respectively.

Proof. Let us first prove (1). Since φ(sk) ≠ 0, by Lemma 1, we know that either φ(am) ≠ 0 or
φ(bn) ≠ 0 holds; moreover, we have k ≤ m′ and k ≤ n′. W.l.o.g, we assume that φ(am) ≠ 0, that
is m = m′. Since k ≤ n′, for all i < k, we have i < n′. Applying (1) of Theorem 4, we deduce that
φ(si(f , g)) = φ(am)n−n′

si(φ(f ), φ(g)) holds. Since φ(si) = 0 for any 0 ≤ i < k, we deduce that

si(φ(f ), φ(g)) = 0, i = 0, . . . , k − 1. (4)



C. Chen, M. Moreno Maza / Journal of Symbolic Computation 47 (2012) 610–642 621

Similarly, if k < n′, applying (1) of Theorem 4, we deduce that

φ(sk(f , g)) = φ(am)n−n′

sk(φ(f ), φ(g)).

Since φ(sk) ≠ 0, we have

sk(φ(f ), φ(g)) ≠ 0. (5)

If k = n′, we have sk(φ(f ), φ(g)) = φ(bn′). Since φ(bn′) ≠ 0, Eq. (5) still holds. By the Subresultant
Chain Theorem (Theorem 7.10.5 of Mishra (1993), p. 279), we know that Sk(φ(f ), φ(g)) is a GCD of
φ(f ) and φ(g). Applying (1) and (2) of Theorem 4, we conclude that φ(Sk) is a GCD of φ(f ) and φ(g).

Next we prove (2a). By symmetry, we prove it for m ≤ n. If φ(bn) = · · · = φ(bm) = 0, it follows
directly from Lemma 2. Otherwise, we have n′

≥ m. Thus for all i < m, we have i < n′. By (1) of
Theorem 4, we have φ(Si) = φ(am)n−n′

Si(φ(f ), φ(g)), i = 0, . . . ,m − 1. Thus φ(si) = 0 implies
that si(φ(f ), φ(g)) = 0 holds, for i = 0, . . . ,m − 1. Since φ(am) ≠ 0 holds, the Subresultant Chain
Theorem implies that φ(f ) is a GCD of φ(f ) and φ(g).

Finally (2b) follows directly from Lemma 2 and (2c) is obviously true. �

4.3. Regular GCDs

Definition 1. Let A be a commutative ring with unit elements. Let p, t, g ∈ A[y] with t ≠ 0 and
g ≠ 0. We say that g ∈ A[y] is a regular GCD of p, t if:

(R1) the leading coefficient of g in y is a regular element of A;
(R2) g belongs to the ideal generated by p and t in A[y];
(R3) if deg(g, y) > 0, then g pseudo-divides both p and t , that is, we have prem(p, g) = prem(t,

g) = 0.

Definition 1 was introduced in Moreno Maza (1999) as part of a formal framework for algorithms
manipulating regular chains (Della Dora et al., 1985; Lazard, 1991; Chou and Gao, 1992; Kalkbrener,
1993; Yang and Zhang, 1991). In this section, the ringAwill always be of the form k[x]/

√
sat(T ). Thus,

a regular GCD of p, t in A[y] is also called a regular GCD of p, t modulo
√
sat(T ).

Proposition 7. For 1 ≤ k ≤ n, let T ⊂ k[x1, . . . , xk−1] be a regular chain, possibly empty. Let
p, t, g ∈ k[x1, . . . , xk] be non-constant polynomials with main variable xk. Let hg be the initial of g.
Assume T ∪ {t} is a regular chain and g is a regular GCD of p and t modulo

√
sat(T ). Then, we have:

(i) if mdeg(g) = mdeg(t), then W (T ∪ t) ⊆ Z(hg , T ∪ t) ∪ W (T ∪ g) ⊆ W (T ∪ t) and
√
sat(T ∪ t) =

√
sat(T ∪ g) both hold,

(ii) if mdeg(g) < mdeg(t), let q = pquo(t, g), then T ∪ q is a regular chain and the following two
relations hold:
(ii.a)

√
sat(T ∪ t) =

√
sat(T ∪ g) ∩

√
sat(T ∪ q),

(ii.b)W (T ∪ t) ⊆ Z(hg , T ∪ t) ∪ W (T ∪ g) ∪ W (T ∪ q) ⊆ W (T ∪ t),
(iii)W (T ∪ g) ⊆ V (p),
(iv) V (p) ∩ W (T ∪ t) ⊆ W (T ∪ g) ∪ V (p, hg) ∩ W (T ∪ t) ⊆ V (p) ∩ W (T ∪ t).

Proof. We first establish a relation between p, t and g . By definition of pseudo-division, there exist
polynomials q, r and a nonnegative integer e0 such that

he0
g t = qg + r and r ∈


sat(T ) (6)

both hold. Hence, there exists an integer e1 ≥ 0 such that:

(hT )
e1(he0

g t − qg)e1 ∈ ⟨T ⟩ (7)

holds, which implies: t ∈
√
sat(T ∪ g). We first prove (i). Since mdeg(t) = mdeg(g) holds, we

have q ∈ k[x1, . . . , xk−1], and thus we have he0
g ht = q hg . Since ht and hg are regular modulo



622 C. Chen, M. Moreno Maza / Journal of Symbolic Computation 47 (2012) 610–642

sat(T ), the same property holds for q. Together with (7), we obtain g ∈
√
sat(T ∪ t). Therefore√

sat(T ∪ t) =
√
sat(T ∪ g). The inclusion relation in (i) follows from (6).

We prove (ii). Assumemdeg(t) > mdeg(g). With (6) and (7), this hypothesis implies that T ∪q is a
regular chain and t ∈

√
sat(T ∪ q) holds. Since t ∈

√
sat(T ∪ g) also holds,

√
sat(T ∪ t) is contained

in
√
sat(T ∪ g) ∩

√
sat(T ∪ q). Conversely, for any f ∈

√
sat(T ∪ g) ∩

√
sat(T ∪ q), there exists an

integer e2 ≥ 0 and a ∈ k[x] such that (hghq)
e2 f e2 − aqg ∈ sat(T ) holds. With (6) we deduce that

f ∈
√
sat(T ∪ t) holds and so does (ii.a). From (6), we also derive (ii.b).

We prove (iii) and (iv). Definition 1 implies: prem(p, g) ∈
√
sat(T ). Thus p ∈

√
sat(T ∪ g)

holds, that is, W (T ∪ g) ⊆ V (p), which implies (iii). Moreover, since g ∈ ⟨p, t,
√
sat(T )⟩, we have

Z(p, T ∪ t) ⊆ V (g), so we deduce (iv). �

Let p, t be two polynomials of k[x1, . . . , xk], for k ≥ 1. Let m = deg(p, xk), n = mdeg(t, xk).
Assume that m, n ≥ 1. Let λ = min(m, n). Let T be a regular chain of k[x1, . . . , xk−1]. Let B =

k[x1, . . . , xk−1] and A = B/
√
sat(T ). Let S0, . . . , Sλ+1 be the subresultant polynomials of p and t

w.r.t. xk in B[xk]. Let si be the principal subresultant coefficient of Si, for 0 ≤ i ≤ λ + 1. The following
theorem provides sufficient conditions for Sj (with 1 ≤ j ≤ λ + 1) to be a regular GCD of p and t in
A[xk].

Theorem 6. Let j be an integer, with 1 ≤ j ≤ λ + 1, such that sj is a regular element of A and such that
for any 0 ≤ i < j, we have si = 0 in A. Then Sj is a regular GCD of p and t in A[xk].

Proof. By Definition 1, it suffices to show that prem(p, Sj, xk) = 0 and prem(t, Sj, xk) = 0 both hold
in A. We prove the former equality, the proof of the latter being similar.

Let p be any prime ideal associated with sat(T ). Define D = k[x1, . . . , xk−1]/p and let L be the
fraction field of the integral domain D. Let φ be the homomorphism from B to L. By Theorem 5,
we know that φ(Sj) is a GCD of φ(p) and φ(t) in L[xk]. Therefore there exists a polynomial q of
L[xk] such that p = qSj in L[xk], which implies that there exists a nonzero element a of D and a
polynomial q′ of D[xk] such that ap = q′Sj in D[xk]. Therefore prem(ap, Sj) = 0 in D[xk], which
implies that prem(p, Sj) = 0 in D[xk]. Therefore prem(p, Sj) belongs to p and thus to

√
sat(T ). So

prem(p, Sj, xk) = 0 in A. �

5. Recycling computations

Consider the intersection operation as defined at the end of Section 2. Up to technical details, if T
consists of a single polynomial t whosemain variable is the same as p, say v, computing Intersect(p, T )
can be achieved by successively calculating:

(s1) the resultant r of p and t w.r.t. v, and,
(s2) a regular GCD of p and t modulo the squarefree part of r .

Observe that Steps (s1) and (s2) reduce essentially to computing the subresultant chain of p and t w.r.t.
v. The algorithms listed in Appendix A and presented in Chen and Moreno Maza (2011) extend this
simple observation for computing Intersect(p, T )with an arbitrary regular chain T . In broad terms, the
intermediate polynomials computed during the ‘‘elimination phases’’ of Intersect(p, T ) are recycled
for performing the ‘‘extension phases’’ at essentially no cost.

In this section, we show that this recycling strategy leads to the following surprising result, which
was unknown to us at the time of writing (Chen and Moreno Maza , 2011). Each regular chain in the
output of Intersect(p, T ) (as computed by the algorithms of Chen and Moreno Maza (2011)) is of the
form Ti ∪ gi where gi is a regular GCD of p and t modulo

√
sat(Ti). Thanks to the results of Section 4,

this implies all those GCDs can be obtained from the same subresultant chain, namely the one of p
and t .

This result is formalized by Theorem 7, which is a property of the incremental algorithm presented
in Chen and Moreno Maza (2011). Proving this property formally requires to follow the proof of the
algorithm. Due to themutual recursion of the algorithm’s subprocedures, this is a non-trivial proof by



C. Chen, M. Moreno Maza / Journal of Symbolic Computation 47 (2012) 610–642 623

induction. (These subprocedures are presented in Appendix A.) It is not our purpose here to enter this
aspect, which would imply to repeat the proof of Theorem 2 in Chen and Moreno Maza (2011). Our
goal hereafter is just to highlight the algebraic construction which allows us to recycle intermediate
computations. For this reason, the justification below is called a sketch of proof.

Theorem 7 (Recycling Theorem). For 1 ≤ k ≤ n, let T ⊂ k[x1, . . . , xk−1] be a regular chain. Let
p, t ∈ k[x1, . . . , xk] be polynomials with main variable xk. Assume T ∪ {t} is a regular chain. Then there
exist finitely many regular chains T1 ∪ g1, . . . , Te ∪ ge such that the following hold:

(i) V (p) ∩ W (T ∪ t) ⊆ ∪
e
i=1W (Ti ∪ gi) ⊆ V (p) ∩ W (T ∪ t),

(ii) each gi is some subresultant polynomial of p and t,
(iii) gi is a regular GCD of p and t modulo

√
sat(Ti).

Sketch of Proof. Let r := res(p, t) be the resultant of p and t . By calling Intersect(r, T ), one computes
a family T0 of regular chains in k[x1, . . . , xk−1] such that V (r)∩W (T ) ⊆ ∪C∈T0W (C) ⊆ V (r)∩W (T ).
Note thatW (C) ⊆ V (r) implies r ∈

√
sat(C).

For each C ∈ T0, by calling Regularize(init(t), C), we can compute another family T1 of regular
chains such that we have

– V (r) ∩ W (T ) \ V (init(t)) ⊆ ∪D∈T1W (D) \ V (init(t)) ⊆ V (r) ∩ W (T ),
– for each D ∈ T1, init(t) is regular modulo sat(D),
– for each D ∈ T1, we have r ∈

√
sat(D).

By Corollary 1, we deduce that

V (p) ∩ W (T ∪ t) ⊆


D∈T1

V (p) ∩ W (D ∪ t) ⊆ V (p) ∩ W (T ∪ t)

holds. Moreover, for each D ∈ T1, we have res(p, t) ∈
√
sat(D).

Let λ = min(mdeg(p),mdeg(t)). Let m, 1 ≤ m ≤ λ + 1 be the integer such that Sm(p, t) = t
and sm(p, t) = init(t). For each D ∈ T1, we call Regularize to split D w.r.t. the principal subresultant
coefficients of p and t and obtain a family LD of regular chains such that

– W (D) \ V (init(t)) ⊆ ∪E∈LDW (E) \ V (init(t)) ⊆ W (D),
– for each E ∈ LD, there exists a jE , 1 ≤ jE ≤ m such that sjE and sm are regular modulo sat(E) and

si ∈
√
sat(E) for all i < jE hold.

By Theorem 6, we know that for each E ∈ LD, SjE is a regular GCD of p and t modulo
√
sat(E).

Let T2 be the union of all LD. The following properties hold:

– V (p) ∩ W (T ∪ t) ⊆ ∪E∈T2V (p) ∩ W (E ∪ t) ⊆ V (p) ∩ W (T ∪ t),
– for each E ∈ T2, there exists a polynomial gE which is some subresultant polynomial of p and t ,
– and gE is a regular GCD of p and t modulo

√
sat(E).

For each E ∈ T2, by (iv) of Proposition 7, we have

V (p) ∩ W (E ∪ t) ⊆ W (E ∪ gE) ∪ V (p, init(gE)) ∩ W (E ∪ t) ⊆ V (p) ∩ W (E ∪ t).

Therefore we deduce that

V (p) ∩ W (T ∪ t) ⊆


E∈T2

W (E ∪ gE) ∪ V (p, init(gE)) ∩ W (E ∪ t) ⊆ V (p) ∩ W (T ∪ t). (8)

Since init(gE) is regular modulo sat(E), by Intersect and Regularize, we can compute a family LE of
regular chains such that

– for each F ∈ LE , the dimension of sat(F) is less than that of sat(E),
– F ∪ t is a regular chain.



624 C. Chen, M. Moreno Maza / Journal of Symbolic Computation 47 (2012) 610–642

By recursion, this theoremholds for p and F∪t . Togetherwith Relation (8),we deduce that the theorem
holds for p and T ∪ t . �

Example 1. Let p := z3 + z2 + w, tz := z3 − z + y and ty := y2 + x be three polynomials in
Q[w < x < y < z]. Let T := {ty}. Note that both T and T ∪ {tz} are regular chains. Moreover, p and tz
have the same main variable z. The subresultants of p and tz are the following three polynomials:

S0(p, tz) = y3 − 3wy2 +

3w2

+ w

y − 2w2

− w3

S1(p, tz) = (y − w) z + w

S2(p, tz) = −z2 − w − z + y.

Let

T1 :=


−3w2

− w + x

y + w3

+ 2w2
− 3 xw

x3 +

3w2

− 2w

x2 +


−6w3

+ 3w4
+ w2


x + w6

+ 4w5
+ 4w4,

T2 := {64 y2 −5, 64 x+5, 8w +1} and T3 := {y, x, w}, which are all regular chains in Q[w < x < y].
Let g1 := S1(p, tz), g2 := S1(p, tz) and g3 := S2(p, tz). Then one can verify that T1 ∪ {g1}, T2 ∪ {g2}
and T3 ∪ {g3} satisfy the three conditions (i)–(iii) in Theorem 7. In other words, the regular chains
T1 ∪{g1}, T2 ∪{g2} and T3 ∪{g3} form a valid output for the Intersect operation. Therefore, the function
call Intersect(p, {ty, tz}) can be achieved essentially at the cost of computing the subresultants of p and
tz once!

6. Controlling expression swell

It is a well known fact that the iterated resultant of a polynomial f w.r.t. a regular chain T may
contain factors whose roots cannot be extended to points in the intersection of the hypersurface V (f )
and the quasi-component W (T ). Let us consider a simple example with two bivariate polynomials
t = ux2 + (u + 1)x + 1 and f = x + u + 1. The ‘‘iterated’’ resultant res({t}, f ) is u3

+ u2
− u. Since u

is the initial of t , this factor of res({t}, f ) does not lead to a common point of V (f ) andW (T ).
More generally, a root of a common factor of res(T , f ) and res(T , hT ) may not lead to a common

point of V (f ) andW (T ). Indeed, recall that res(T , hT ) = 0 defines the locus of the values at which the
regular chain T does not specialize well. Consider a simple example with three trivariate polynomials
t2 = x1x2 +u, t1 = x21 +u, f = x2 +u+1 for the variable ordering u < x1 < x2. Note that T = {t2, t1}
is a regular chain and that the iterated resultant res(T , f ) is u3

+ 3u2
+ u, while the resultant of t1 and

the initial of t2 is u. One can easily check that the projection of V (f ) ∩ W (T ) on the u-space is given
by u2

+ 3u + 1 = 0, thus u = 0 does not lead to any points in this intersection.
However, some roots of a common factor of res(T , f ) and res(T , hT ) may lead to a common point

of V (f ) andW (T ). Consider now an examplewith three polynomials in four variables u1 < u2 < x1 <
x2:

t2 = x1x22 + x2 + u1, t1 = x1(x1 − 1) + u1u2, and f = x2 + x1 − 1.

The polynomials t2, t1 form a regular chain T and we have res(T , hT ) = u1u2. Moreover, the iterated
resultant res(T , f ) is given by

res(T , f ) = u1

u2

3u1
2
+ 2 u1 u2

2
+ u1 u2 + u1 + u2 + 1


,

and one can check that the point of coordinates (u1, u2, x1, x2) = (0, −1, 1, 0) belongs to V (f ) ∩

W (T ). Thus, the ‘‘bad specialization condition’’ u1 = 0 leads in this case to a point of V (f ) ∩ W (T ).
Another feature of the common factors of res(T , f ) and res(T , hT ) is that they may appear as large

powers in the irreducible factorization of res(T , f ), as we shall see with Theorem 8. In fact, they are
the cause of expression swell in iterated resultant computations. In practice, roots of res(T , hT ) will
often not extend to points of V (f ) ∩ W (T ) in situations where expression swell is a bottleneck. To be
more precise, and giving a generic example, consider a regular sequence f1, . . . , fn of polynomials
in k[x1, . . . , xn]. Assume that a triangular decomposition of the polynomial system f1 = · · · =

fn = 0 is being computed incrementally by one of the algorithms described in Lazard (1991),



C. Chen, M. Moreno Maza / Journal of Symbolic Computation 47 (2012) 610–642 625

MorenoMaza (1999) and Chen andMorenoMaza (2011). Let T be any one-dimensional regular chain
obtained after solving f1 = · · · = fn−1 = 0. Since fn is regular w.r.t. the ideal ⟨f1, . . . , fn−1⟩, it is also
regular w.r.t. the saturated ideal of T . Since hT is also regular w.r.t. sat(T ), roots of r = res(T , hT ) will
not extend to points of V (fn) ∩ W (T ) unless the hypersurfaces r = 0 and fn = 0 intersect on the
quasi-componentW (T ), which will not happen ‘‘generically’’. Unfortunately, in the process of solving
f1 = · · · = fn = 0, computing V (fn) ∩ W (T ) (for any one-dimensional regular chain T obtained
after solving f1 = · · · = fn−1 = 0) is the most challenging step due to intermediate expression
swell, in particular considering the degree of the polynomials in T w.r.t. the free variable of T . These
observations lead us to the following problem.

Problem 1. Let T be a one-dimensional regular chain and a polynomial f regular w.r.t. sat(T ). Assume
that no zeros of res(T , hT ) extend to a point of V (f ) ∩ W (T ). Let us call useful part of res(T , f ) its
irreducible factors that are not factors of res(T , hT ). Then, the problem is how to compute the useful
part of res(T , f ) without computing the whole res(T , f ), since this latter may have a much larger
degree than the former.

To address this problem, we proceed in three steps. In Section 6.1, we start by establishing a
Poisson Product Formula for the iterated resultant res(T , f ), assuming that T is a zero-dimensional
regular chain of k[x] where x stands for n ordered variables x1 < x2 < · · · < xn. Two equivalent
product formulas are, in fact, stated in Theorem 8. Similar formulas are well-known in the context
of multipolynomial resultants of homogeneous polynomials, see Chapter 3 in the landmark textbook
Using Algebraic Geometry by Cox et al. (1998). Our proofs are, however, based on repeated use of the
elementary version of Poisson’s Product Formula, that is, the one for the resultant of two univariate
polynomials.

In Section 6.2, we move to the positive dimensional case by assuming that k is a field of rational
functions. We associate T with two remarkable regular chains denoted byT andT . Proposition 10
implies that, under the assumption of Problem 1 the three regular chains T ,T andT play an equivalent
role for the purpose of computing V (f ) ∩ W (T ). Applying toT andT the results of Section 6.1 brings
a better insight on the expression swell issue. Moreover, this suggests that working withT instead of
T is the way for reducing useless expression swell and solving Problem 1.

In Section 6.3, we are now under the hypotheses of Problem 1. That is, T is a one-dimensional
regular chain, with a free variable u, and no zeros of res(T , hT ) extend to a point V (f ) ∩ W (T ). We
explain how to take advantage ofT , without computing it, in order to obtain the projection on the
u-space of V (f ) ∩ W (T ) at much better cost than through a direct computation of res(T , f ).

Finally, Section 6.4 contains two detailed illustrative exampleswhile Section 6.5 is an experimental
report on a variety of test examples. As mentioned in the introduction, these show that the proposed
techniques, on sufficiently large test cases, reduce the size of the computed iterated resultants by a
factor of 50, leading to a running time speedup of three orders of magnitude.

6.1. A Poisson product formula for iterated resultants

Let T be a zero-dimensional regular chain of k[x], for x = x1 < · · · < xn. We denote by VM(T ) the
multiset of the zeros of T , where each zero of T appears a number times equal to its local multiplicity
as defined in Chapter 4 of Cox et al. (1998). For i = 1 · · · n, we denote respectively by ti, hi, ri, di

– the polynomial of T whose main variable is xi,
– the initial of ti,
– the iterated resultant res({t1, . . . , ti−1}, hi),
– the total degree of ti.

In particular, we have r1 = h1. The following concept is standard but appears under different names
in the literature.

Definition 2. A zero dimensional regular chain N ⊂ k[x] is called a normalized form of T if N and
T generate the same ideal of k[x] and if for each f ∈ N we have init(f ) = 1. Observe that N is a
lexicographic Gröbner basis, but not necessarily a minimal one.



626 C. Chen, M. Moreno Maza / Journal of Symbolic Computation 47 (2012) 610–642

Example 2. The existence of a normalized formof T follows easily from the fact that the hi is invertible
modulo the ideal ⟨t1, . . . , ti−1⟩, for i = 2 · · · n. Note that h1 ∈ k, so its invertibility is immediate.
Computing the inverse of hi modulo ⟨t1, . . . , ti−1⟩, for i = 2 · · · n, is achieved by computing an
extended resultant of hi and ti−1 modulo ⟨t1, . . . , ti−2⟩, that is, by computing ai, bi ∈ k[x1, . . . , xi−1]

such that we have

aihi + biti−1 ≡ ri mod ⟨t1, . . . , ti−2⟩

where ri = res({t1, . . . , ti−1}, hi). Then, we deduce

ai
ri
hi ≡ 1 mod ⟨t1, . . . , ti−1⟩. (9)

We define t1 = t1/init(t1). Then, for i = 2 · · · n, we denote byti the normal form (in the sense of
Gröbner bases) of ai

ri
ti modulo the ideal ⟨t1, . . . , ti−1⟩. It is easy to check thatT = {t1, . . . ,tn} is a

normal form of T in the sense of Definition 2. Moreover, it is a reducedminimal lexicographic Gröbner
basis of ⟨T ⟩.

From now on, we will denote by T a normal form of T and by NF(f ,T ) the normal form of a
polynomial f w.r.t. T . The following observation is a first version of Poisson’s Product Formula for
iterated resultants.Wegive a direct proof to keepour presentation self-contained.However, this result
could be derived from those of Chapter 2 in Cox et al. (1998).

Proposition 8. For every polynomial f ∈ k[x], we have

res(T , f ) =


α∈VM (T )

f (α). (10)

Proof. If n = 1, this is the elementary Poisson’s Product Formula for univariate polynomials over a
field. Otherwise, we have

r = res(T<xn , res(tn, f , xn))
=


β∈πVM (T )

res(tn, f , xn)(β) By induction

=


β∈πVM (T )

res(tn(β), f (β), xn) By specialization property and init(ti) = 1

=


β∈πVM (T )


γ∈VM (tn(β,xn))

f (β, γ ) By induction

=


α∈VM (T )

f (α).

where π denotes the projection (x1, . . . , xn) −→ (x1, . . . , xn−1) from Kn to Kn−1. �

The next proposition is also not new and is certainly used in all implementations of iterated
resultant computation. The point that we want to make here is that, by replacing f with NF(f ,T )
in computing res(T , f ) one can efficiently control monomial expression swell. More precisely, when
computing res(T , f ), intermediate polynomials can be kept reduced w.r.t.T , in the sense of Gröbner
basis. Of course, when computing res(T , f ), intermediate polynomials can be kept reduced w.r.t. T ,
in the sense of pseudo-division. But this is more tricky to implement and computationally more
expensive to achieve, since the initials of T have to be handled.

Proposition 9. For every polynomial f ∈ k[x], we have

res(T , f ) = res(T ,NF(f ,T )). (11)



C. Chen, M. Moreno Maza / Journal of Symbolic Computation 47 (2012) 610–642 627

Proof. We denote res(T , f ) and res(T ,NF(f ,T )) respectively by r andr . We start with the case n = 1
and denote by rem(f , t1) the remainder in the Euclidean division of f by t1. Then, we have

r = res(t1,NF(f , {t1}), x1)
= res(t1, rem(f ,t1), x1)
=


α∈VM (t1)

rem(f ,t1)(α) By Proposition 8

=


α∈VM (t1)

f (α) By definition oft1
= r. By Proposition 8.

For n > 1, we write g = res(tn,NF(f ,T ), xn). Then, we have

r = res(T ,NF(f ,T ))

= res(t1, . . . , tn−1, g) By definition of res(T , ·)

=


α∈VM (t1,...,tn−1)

g(α) By Proposition 8

=


α∈VM (t1,...,tn−1)

res(tn,NF(f ,T ), xn)(α) By definition of g

=


α∈VM (t1,...,tn−1)

res(tn(α),NF(f ,T )(α), xn) By specialization property and

init(tn) = 1
=


α∈VM (t1,...,tn−1)

res(tn(α), f (α), xn) From the case n = 1

=


(α,β)∈VM (T )

f (α, β) By Proposition 8

= r. �

Theorem 8 is a more general version of Poisson’s Product Formula for iterated resultants. It is stated
for T , which may have non-constant initials, instead ofT whose initials are all 1. This latter product
formula gives more insight on the expression swell occurring when computing res(T , f ). From now
on, we fix a polynomial f ∈ k[x] and we define

– en = deg(f , xn),
– fi = res(ti+1, . . . , tn, f ), for 0 ≤ i ≤ n − 1,
– ei = deg(fi, xi), for 1 ≤ i ≤ n − 1.

Theorem 8. If f ∈ k[x] is a non-constant polynomial whose initial is regular w.r.t. ⟨T ⟩, then we have

res(T , f ) = he1
1

 
α1∈VM (t1)

h2(α1)

e2

· · ·

 
β∈VM (t1,...,tn−1)

hn(β)

en  
α∈VM (T )

f (α)


. (12)

Equivalently, we have

res(T , f ) = he1
1


res({t1}, h2)

e2
· · ·


res({t1, . . . , tn−1}, hn)

en res(T , f ). (13)

Proof. We denote by r the iterated resultant res(T , f ). If n = 1, the relation r = res(T , f , x1) =

hdeg(f )
1


α∈VM (T ) f (α), is the (less) elementary version of Poisson’s Product Formula where the ‘‘left’’



628 C. Chen, M. Moreno Maza / Journal of Symbolic Computation 47 (2012) 610–642

polynomial is not monic. Consider now the case n = 2. Recall that e1 = deg(res(t2, f ), x1) and
e2 = deg(f , x2). Then, we have

r = res(t1, t2, f )

= res(t1, res(t2, f ))

= he1
1


α1∈VM (t1)

res(t2, f )(α1) From n = 1

= he1
1


α1∈VM (t1)

res(t2(α1, x2), f (α1, x2)) Since init(f ) is regular w.r.t. sat(T )

= he1
1


α1∈VM (t1)


h2(α1)

e2


α2∈VM (t2(α1,x2))

f (α1, α2)


From n = 1

= he1
1

 
α1∈VM (t1)

h2(α1)

e2  
α∈VM (t1,t2)

f (α)


. Regrouping factors

More generally, we have

r = res(t1, . . . , tn−1, tn, f )

= res(t1, . . . , tn−1, res(tn, f ))

= he1
1

 
α1∈VM (t1)

h2(α1)

e2

· · ·

 
γ∈VM (t1,...,tn−2)

hn−1(γ )

en−1

·

 
β∈VM (t1,...,tn−1)

res(tn, f )(β)



= he1
1

 
α1∈VM (t1)

h2(α1)

e2

· · ·

 
γ∈VM (t1,...,tn−2)

hn−1(γ )

en−1

·

 
β∈VM (t1,...,tn−1)

hn(β)en


αn∈VM (tn(β,xn))

f (β, αn)



= he1
1

 
α1∈VM (t1)

h2(α1)

e2

· · ·

 
β∈VM (t1,...,tn−1)

hn(β)

en  
α∈VM (T )

f (α)


. �

6.2. Identifying the ‘‘useful’’ part of an iterated resultant

From now on we assume that k is a field c(u) of rational functions in variables u = u1, . . . , ud and
with coefficients in a field c. Let T be a zero-dimensional regular chain in k[x]. We also assume that
T ⊂ c[u][x] holds, that is, all denominators of T are equal to 1. Since sat(T ) ∩ c(u) = ⟨0⟩ holds (see
Proposition 5) the regular chain T can be regarded both as an element of c[u][x] and c(u)[x]. Next we
introduce two regular chainsT andT associated with T . The latter is a normal form of T (regarded as
a regular chain of c(u)[x]) in the sense of Section 6.1 whileT will essentially be obtained fromT by
clearing out denominators. ThusT is a regular chain of c[u][x].

Definition 3. Let T ⊂ c[u][x] be a regular chain. We define T := {t1, . . . ,tn} as follows:
(1)t1 = t1; (2) for i := 2, . . . , n, let ri = res({t1, . . . , ti−1}, hi) and compute ai, b1, . . . , bi−1 such



C. Chen, M. Moreno Maza / Journal of Symbolic Computation 47 (2012) 610–642 629

that ri = aihi + b1t1 + · · · + bi−1ti−1; let

ti = aiti +


i−1
j=1

bjtj


rank(ti)

= ai(hirank(ti) + tail(ti)) +


i−1
j=1

bjtj


rank(ti)

= ri · rank(ti) + aitail(ti).

We defineT := {t1, . . . ,tn} as follows:ti =
ti
ri

= rank(ti) +
ai
ri
tail(ti), for i = 1, . . . , n. Observe thatT

andT are not uniquely defined, making the results below more general.

Lemma 4. We have sat(T ) = sat(T ) andT is a normalized form of T over c(u).

Proof. We first prove sat(T ) = sat(T ) by induction. It obviously holds for n = 1. Assume
that sat(t1, . . . , tn−1) = sat(t1, . . . , tn−1) holds. From Definition 3, we have tn = antn +n−1

j=1 bjtj

rank(tn). Thustn belongs to ⟨T ⟩ and thustn ∈ sat(T ) holds. By induction, we have ⟨T ⟩ ⊆

sat(T ). Saturating both sides by r1 · · · rn, we deduce sat(T ) ⊆ sat(T ). Similarly, we have antn ∈ sat(T ).
From the relation rn = anhn +

n−1
j=1 bjtj, we know that an is regular modulo sat(t1, . . . , tn−1) and thus

regular modulo sat(T ). Thus we have tn ∈ sat(T ). By induction, we have ⟨T ⟩ ⊆ sat(T ). Saturating both
sides by h1 · · · hn, we deduce sat(T ) ⊆ sat(T ). Therefore sat(T ) = sat(T ) holds. By Definitions 2 and
3, we conclude thatT is a normalized form of T over c(u). �

Let C be the algebraic closure of c. In the sequel, algebraic varieties are taken in Cd+n andπu denotes
the projection (u1, . . . , ud, x1, . . . , xn) −→ (u1, . . . , ud) from Cd+n to Cd.

Proposition 10. Let f ∈ c[u, x]. Then, we have

πu(V (res(T , f )) \ V (r1 · · · rn)) = πu(W (T ) ∩ V (f ) \ V (r1 · · · rn)). (14)

Moreover, we have

πu(V (res(T , f )) \ V (r1 · · · rn)) = πu(V (res(T , f )) \ V (r1 · · · rn)). (15)

Furthermore, we have

πu(V (res(T , f )) \ V (r1 · · · rn)) = πu(V (numer(res(T , f ))) \ V (r1 · · · rn)). (16)

Proof. Weprove the first claim, that is, Formula (14).WedenoteV (res(T , f ))\V (r1 · · · rn) andW (T ) ∩

V (f ) \ V (r1 · · · rn) by A and B, respectively. Observe that there exist polynomials an, bn, . . . , b1 ∈

c[u, x] such that we have

anf + bntn + · · · + b1t1 = res(T , f ).

Thus we haveW (T ) ∩ V (f ) ⊆ V (res(T , f )) which implies that πu(B) ⊆ πu(A) holds. The reversed
inclusion follows from the Extension Theorem. Indeed, let (ζ1, . . . , ζd) ∈ Cd be a point of πu(A). Since
(ζ1, . . . , ζd) is a zero of res(f1, t1) which does not cancel r1 = h1, this zero can be extended to a
common zero of f1 and t1, say (ζ1, . . . , ζd, ζd+1) ∈ Cd+1. Similarly, since (ζ1, . . . , ζd, ζd+1) is zero of
res(f2, t2) which does not cancel r2, and thus h2, this zero can be extended to a common zero of f2
and t2, say (ζ1, . . . , ζd, ζd+1, ζd+2) ∈ Cd+1. Continuing in this manner, we prove that πu(A) ⊆ πu(B)
holds.

The second claim, that is, Formula (15), is essentially a consequence of the definition of T
and Lemma 4. Indeed, by Lemma 4, we have sat(T ) = sat(T ). Now, recall that for an arbitrary



630 C. Chen, M. Moreno Maza / Journal of Symbolic Computation 47 (2012) 610–642

regular chain C we have W (C) \ V (hC ) = W (C) \ V (hC ) = V (sat(C)) \ V (hC ). Therefore, we
deduce

W (T ) \ V (r1 · · · rn) = W (T ) \ V (r1 · · · rn),

and the conclusion follows from Formula (14).
The third claim follows from Definition 3. Indeed, in this case, the definition yields

res(T , f ) = rm1
1 · · · rmn

1 numer(res(T , f )), (17)

where m1, . . . ,mn are integers, possibly negative, from which Formula (16) is easily derived. This
completes the proof. �

6.3. Computing the ‘‘useful’’ part of an iterated resultant

We are now under the hypotheses of Problem 1. It follows from Section 6.2 that numer(res(T , f ))
can replace res(T , f ) for the purpose of computing πu(W (T ) ∩ V (f ) \ V (r1 · · · rn)), which, under our
hypotheses, is simply πu(W (T ) ∩ V (f )). Moreover, numer(res(T , f )) is expected to have a smaller
degree than res(T , f ) and res(T , f ).

To compute numer(res(T , f )) we proceed by evaluation and interpolation. Indeed, by specializing
T to a zero-dimensional regular chain, say T (α), we can compute T (α) at a reasonable cost and
then take advantage of Proposition 9 to efficiently compute res(T (α), f (α)). Obtaining images
of numer(res(T , f )) at sufficiently many evaluation points α’s will bring numer(res(T , f )) (by
rational function interpolation) without computingT itself. However, proceeding by evaluation and
interpolation requires

– a ‘‘commutation diagram’’, which is provided by Proposition 11.
– a bound on the number of evaluations.

Let us discuss this second point. One could easily derive a bound for the degree of the numerator and a
bound for the degree of the denominator of res(T , f ) from Formula (17) in the proof of Proposition 10.
But this bound would be very pessimistic.

Instead, we recall thatW (T ) ∩ V (f ) is meant to be part of a triangular decomposition of a regular
sequence with finitely many solutions. For this reason, it is reasonable to use the Bézout bound of the
input system (i.e. the product of the total degrees of the input polynomials) for each of the numerator
and the denominator of res(T , f ).

Proposition 11. Let α ∈ Cd such that
n

i=1 ri(α) ≠ 0. Then we have

res(T , f )(α) = res(T (α), f (α)) = res(T (α), f (α)).

Proof. By Lemma 4,T is a normalized form of T over c(u). ThereforeT (α) is a normalized form of T (α)

over C. By Proposition 8, we deduce that res(T (α), f (α)) = res(T (α), f (α)) holds. Now we prove
by induction on n that res(T , f )(α) = res(T (α), f (α)) holds. If n = 1, its correctness follows from
Theorem 4. Otherwise, we have

res(T , f )(α) = res(t1, . . . , tn−1,tn, f )(α)

= res(t1, . . . , tn−1, res(tn, f ))(α)

= res(t1(α), . . . , tn−1(α), res(tn, f )(α)) By induction

= res(t1(α), . . . , tn−1(α), res(tn(α), f (α))) By specialization property and

init(tn) = 1

= res(T (α), f (α)). �



C. Chen, M. Moreno Maza / Journal of Symbolic Computation 47 (2012) 610–642 631

6.4. Examples

We provide two detailed examples illustrating the effectiveness of the techniques proposed in
Section 6.3. They differ by the fact that, for the first example, but not for the second one, the regular
chain T satisfies T =T .
Example 3. InMaple, we randomly generate three polynomials g1, g2 and g3.

g1 := y2 − 2 z2x − 2 z2x2 − y4 + 1
g2 := 2 z2x2 + 2 z2y − 2 z2 − z + 1
g3 := −y + y3 + 2 z3 − z2x2 + z4 + 1.

For z > y > x, the Triangularize command of RegularChains library in Maple takes {g1, g2} as
input and returns a one-dimensional regular chain T := {tz, ty}, where

tz := (x + x2)z + y5 + (−1 + x2)y4 − y3 + (1 − x2)y2 − y − x − 2 x2 + 1,

and

ty := 2 y10 + (4 x2 − 4)y9 + (−4 x2 − 2 + 2 x4)y8

+ (8 − 8 x2)y7 + (−6 − 4 x4 + 8 x2)y6 + (4 − 4 x − 8 x2)y5

+ (2 + 5 x − 4 x3 − 6 x4 + 9 x2)y4 + (4 x + 12 x2 − 8)y3

+ (−5 x − 13 x2 + 8 x4 + 6 + 4 x3)y2 + (4 x + 8 x2 − 4)y
+ 2 − 7 x2 + 8 x3 − 5 x + 8 x4.

We first compute res(T , g3), which is as follows

res(T , g3) := x36(x + 1)36(160000 x32 − 1996800 x31 + 1865216 x30

+ 39076352 x29 − 13755136 x28 − 292989952 x27 − 492288 x26

+ 1266265600 x25 + 411825152 x24 − 3352744704 x23 − 2254328832 x22

+ 4741870720 x21 + 5431924832 x20 − 805462400 x19 − 5314139328 x18

− 9219790080 x17 − 3910480928 x16 + 14746844160 x15 + 16366917424 x14

− 4208599168 x13 − 10656443328 x12 − 2971537424 x11 − 1632713152 x10

+ 674535336 x9 + 3977359985 x8 + 491023040 x7 − 1666879386 x6

+ 24976342 x5 + 366817077 x4 − 61683960 x3 − 30489670 x2

+ 9251686 x − 661849).

Proposition 11 suggests thatwe can compute res(T , g3) by evaluation and rational interpolation. Since
the Bézout bound of the input system is 64, we evaluate T at 2 × 64 + 1 points α1, . . . , α129 chosen
such that T specializes well at each of them. Let βi := res(T (αi), f (αi)), i = 1, . . . , 129. By applying
rational interpolation to the (αi, βi)’s, we obtain res(T , g3):

res(T , g3) :=
1

1048576 x4(x + 1)4
(160000 x32 − 1996800 x31 + 1865216 x30

+ 39076352 x29 − 13755136 x28 − 292989952 x27 − 492288 x26

+ 1266265600 x25 + 411825152 x24 − 3352744704 x23 − 2254328832 x22

+ 4741870720 x21 + 5431924832 x20 − 805462400 x19 − 5314139328 x18

− 9219790080 x17 − 3910480928 x16 + 14746844160 x15 + 16366917424 x14

− 4208599168 x13 − 10656443328 x12 − 2971537424 x11 − 1632713152 x10

+ 674535336 x9 + 3977359985 x8 + 491023040 x7 − 1666879386 x6

+ 24976342 x5 + 366817077 x4 − 61683960 x3 − 30489670 x2

+ 9251686 x − 661849).



632 C. Chen, M. Moreno Maza / Journal of Symbolic Computation 47 (2012) 610–642

Note that the numerator of res(T , g3) is the ‘‘useful’’ part that we expect.
Next we verify Formula (13) of Theorem 8 for this example. We have h1 = 2, e1 =

deg(res(tz, g3), y) = 20, h2 = x + x2, e2 = deg(g3, z) = 4 and deg(ty, y) = 10, which implies
he1
1 = 1048576 and


res({ty}, h2, y)

e2
= (x + x2)40. Thus Formula (13) is verified.

Example 4. Let g1, g2 and g3 be another group of randomly generated polynomials.

g1 := 2 z2yx − zy3 − 2 yx + 1
g2 := −z2x2 + 2 zyx2 + z2y + 2 zy2 + 1
g3 := 2 x2z + y2 + 3.

For z > y > x, Triangularize takes {g1, g2} as input and returns a one-dimensional regular chain
T := {tz, ty}, where

tz :=

y4 +


−x2 + 4 x


y3 + 4 y2x3


z + 2 y2x +


−2 x3 − 1 + 2 x


y + x2,

and

ty := (4 x − 1) y7 +

−4 x + 17 x2 − 2


y6 +


−4 x5 − 4 x3 + 32 x4 − 8 x


y5

+

16 x6 − 16 x3 − 4 x2 + 2 x4


y4 +


−8 x2 − 8 x5 + 4 x + 8 x4


y3

+

−4 x6 + 4 x − 1 + 8 x4 − 4 x2 − 8 x3


y2 +


4 x5 + 2 x2 − 4 x3


y − x4.

We first compute res(T , g3), which is as follows

res(T , g3) := 4 x14

64 x5 − 8 x4 − 40 x3 + 41 x2 − 12 x + 4

2
(4096 x18 + 2048 x17 − 9216 x16 − 23552 x15 − 47616 x14 − 110912 x13

+ 15136 x12 + 48624 x11 − 71288 x10 + 146328 x9 + 48736 x8 − 122015 x7

+ 82217 x6 − 65270 x5 − 74670 x4 + 49738 x3 − 32183 x2

+ 9476 x − 2718)

x2 − 2


.

Secondly, we compute res(T , hT ), which is

4 x14

64 x5 − 8 x4 − 40 x3 + 41 x2 − 12 x + 4

2
(4 x − 1)7 .

Since the Bézout bound of the input system is 48, we evaluate T at 2 × 48 + 1 points α1, . . . , α97

chosen such that T specializes well at each of them. Let βi := res(T (αi), f (αi)), i = 1, . . . , 97. By
applying rational interpolation to the (αi, βi)’s, we obtain res(T , g3):

res(T , g3) :=
1

(4 x − 1)2
(4096 x18 + 2048 x17 − 9216 x16 − 23552 x15 − 47616 x14

− 110912 x13 + 15136 x12 + 48624 x11 − 71288 x10 + 146328 x9 + 48736 x8

− 122015 x7 + 82217 x6 − 65270 x5 − 74670 x4 + 49738 x3 − 32183 x2

+ 9476 x − 2718)

x2 − 2


.

We observe that the numerator of res(T , g3) is the ‘‘useful’’ part that we expect.

6.5. Experimental results

In this section, we report experimental results for computing the ‘‘useful part’’ of the iterated
resultant when the regular chain has dimension one.

A function for computing the ‘‘useful part’’ of the iterated resultant has been implemented, with
the name IteratedResultantDim1, in the module FastArithmeticTools of the RegularChains
library. The kernel of this function is implemented in C within theModpn library, using the FFT-based



C. Chen, M. Moreno Maza / Journal of Symbolic Computation 47 (2012) 610–642 633

Table 1
Same regular chain but different polynomials.

i Computing time (seconds) Degree of output

res(fi, T ) res(fi,T ) res(fi,T ) res(fi, T ) res(fi,T ) res(fi,T )

(default bound) (Bézout bound) (default bound) (Bézout bound)

2 0.540 0.516 0.044 224 16 16
3 2.328 1.080 0.084 336 24 24
4 7.388 1.576 0.120 448 32 32
5 19.482 3.220 0.244 560 40 40
6 51.415 4.288 0.324 672 48 48
7 121.944 5.816 0.428 784 56 56
8 279.158 7.920 0.584 896 64 64
9 608.082 14.573 1.072 1008 72 72

10 1234.849 19.034 1.392 1120 80 80

polynomial arithmetic together with the evaluation–interpolation method described in Section 6.3.
This function takes as input a one-dimensional regular chain T and a polynomial f , which is regular
modulo sat(T ), and returns the numerator of res(f ,T ). This function can take a bound as an extra
argument. By default, it uses the bound calculated from the product of the degrees of the polynomials
in T and the degree of f . We refer to this bound as the default bound. In this experimentation, T will
be generated from an input set of n − 1 dense polynomials. The product of the degrees of those
polynomials is referred hereafter as the Bézout bound.

We randomly generated two groups of test examples. For both groups, we pick an FFT prime
number p of machine-word size and with large Fourier degree, for instance p = 962592769. Then
we conduct the computations over the finite field Z/pZ.

In the first group, we generate a one-dimensional regular chain T and 9 polynomials fi, for i =

2, . . . , 10, as follows:
(1) we randomly generate three dense polynomials, g1, g2, g3, of Z/pZ[x1, x2, x3, x4], all with total

degree 2;
(2) we call Triangularize(g1, g2, g3) to compute a Kalkbrener triangular decomposition of the system

{g1, g2, g3} and call T the unique one-dimensional regular chain in the output;
(3) for i = 2, . . . , 10, we randomly generate a dense polynomial fi in Z/pZ[x1, x2, x3, x4] with total

degree i.

For each i = 2, . . . , 10, we run the following three different computations on fi and T :
(a) compute res(fi, T ) by successively callingMaple’s Resultant function;
(b) compute res(fi,T ) by calling the function IteratedResultantDim1with the default bound calculated

from T and fi;
(c) compute res(fi,T ) by calling the function IteratedResultantDim1 with Bézout bound calculated

from g1, g2, g3 and fi.

The experimental results of the above computations are reported in Table 1. For all i, i = 2, . . . , 10,
we see that the degree of res(fi,T ) is 14 times smaller than that of res(fi, T ). It is interesting to observe
that the computing time of res(fi,T ) with Bézout bound is also approximately 14 times smaller than
that with the default bound. An explanation for this is that the computing time of the FFT-based
evaluation–interpolationmethod is quasi-linearw.r.t. the bound it uses,while the default bound (resp.
Bézout bound) is linear w.r.t. the degree of res(fi, T ) (resp. res(fi,T )). Finally, we observe that as i
increases, the timing for computing res(fi, T ) grows much faster than computing res(fi,T ). For the
largest example, that is i = 10, the ratio between computing res(fi, T ) and res(fi,T ) (with Bézout
bound) is about 1000.

In the second group, we generate one trivariate polynomial f and 9 one-dimensional trivariate
regular chains Ti, for i = 2, . . . , 10, as follows:
(1) we randomly generate a trivariate dense polynomial f of Z/pZ[x1, x2, x3], with total degree 4;
(2) for i = 2, . . . , 10, we randomly generate a pair of dense polynomials, gi,1, gi,2 in Z/pZ[x1, x2, x3],

with total degree i;



634 C. Chen, M. Moreno Maza / Journal of Symbolic Computation 47 (2012) 610–642

Table 2
Same polynomial but different regular chains.

i Computing time (seconds) Degree of output

res(f , Ti) res(f ,Ti) res(f ,Ti) res(f , Ti) res(f ,Ti) res(f ,Ti)
(default bound) (Bézout bound) (default bound) (Bézout bound)

2 0.020 0.060 0.016 32 16 16
3 0.388 0.460 0.088 180 36 36
4 4.992 2.292 0.212 640 64 64
5 41.623 10.581 0.640 1700 100 100
6 274.997 45.935 1.780 3744 144 144
7 1404.183 119.436 3.232 7252 196 196
8 5734.366 289.658 5.788 12800 256 256
9 - 833.260 12.797 - 324 324

10 - 1738.141 21.101 - 400 400

(3) for i = 2, . . . , 10, we call Triangularize(gi,1, gi,2) to compute a Kalkbrener triangular
decomposition of the system {gi,1, gi,2} and call Ti the unique one-dimensional regular chain in
the output.

For each i = 2, . . . , 10, we run the following three different computations on Ti and f :

(a) compute res(f , Ti) by successively callingMaple’s Resultant function;
(b) compute res(f ,Ti) by calling the function IteratedResultantDim1with the default bound calculated

from f and Ti;
(c) compute res(f ,Ti) by calling the function IteratedResultantDim1 with Bézout bound calculated

from f and gi,1, gi,2.

The experimental results of the above computations are reported in Table 2. In the table, ‘‘-’’ means
that the computation does not finish within 2 h. As we can see, as i increases, the degree of res(f , Ti)
becomes much larger than that of res(f ,Ti). Meanwhile, the time for computing res(f , Ti) also grows
much faster than for computing res(f ,Ti). For i = 8, the ratios for degree and computing time are
respectively 50 and 1000.

7. Conclusion

In this paper, we have presented recent progress in computing triangular decomposition
incrementally. For input polynomial systems forming regular sequences, this approach appear to very
successful, as illustrated by the experimental results reported in Chen and Moreno Maza (2011) and
in Section 6.5. The theoretical results proposed through Section 4 to Section 6 aim at explaining these
empirical observations.

Nevertheless, triangular decomposition methods remain an active research area. For instance,
over-constrained systems put incremental methods at challenge. We believe that revisiting Wu’s
characteristic set method for those systems, integrating techniques such as multipolynomial
resultants as in Kapur (1996) and modular methods as in Li et al. (2009), is a promising direction
for future research.

Appendix A. The algorithms

In this appendix, we present an algorithm to compute Lazard–Wu triangular decompositions in
an incremental manner, see Chen and Moreno Maza (2011) for a proof. We recall the concepts of a
process and a regular (delayed) split, which were introduced as Definition 9 and 11 in Moreno Maza
(1999). To serve our purpose, we modify the original definitions as follows.



C. Chen, M. Moreno Maza / Journal of Symbolic Computation 47 (2012) 610–642 635

Definition 4. A process of k[x] is a pair (p, T ), where p ∈ k[x] is a polynomial and T ⊂ k[x] is a regular
chain. The process (0, T ) is also written as T for short. Given two processes (p, T ) and (p′, T ′), let v
and v′ be respectively the greatest variable appearing in (p, T ) and (p′, T ′). We say (p, T ) ≺ (p′, T ′) if:
(i) either v < v′; (ii) or v = v′ and dim T < dim T ′; (iii) or v = v′, dim T = dim T ′ and T ≺ T ′; (iv) or
v = v′, dim T = dim T ′, T ∼ T ′ and p ≺ p′. We write (p, T ) ∼ (p′, T ′) if neither (p, T ) ≺ (p′, T ′) nor
(p′, T ′) ≺ (p, T ) hold. Clearly any sequence of processes which is strictly decreasing w.r.t. ≺ is finite.

Definition 5. Let Ti, 1 ≤ i ≤ e, be regular chains of k[x]. Let p ∈ k[x]. We call T1, . . . , Te a regular split
of (p, T ) and we write (p, T ) −→ T1, . . . , Te, whenever we have

(L1)
√
sat(T ) ⊆

√
sat(Ti),

(L2) W (Ti) ⊆ V (p) (or equivalently p ∈
√
sat(Ti)),

(L3) V (p) ∩ W (T ) ⊆ ∪
e
i=1W (Ti).

Observe that the above three conditions are equivalent to the following relation:

V (p) ∩ W (T ) ⊆ W (T1) ∪ · · · ∪ W (Te) ⊆ V (p) ∩ W (T ).

Geometrically, this means that W (T1) ∪ · · · ∪ W (Te) is a ‘‘sharp’’ approximation of the intersection
of V (p) and W (T ). When p = 0, we simply write T instead of (p, T ). Therefore the notation T −→

T1, . . . , Te stands for

W (T ) ⊆ W (T1) ∪ · · · ∪ W (Te) ⊆ W (T ).

Next we list the specifications of our triangular decomposition algorithm and its subroutines. We
denote by R the polynomial ring k[x], where x = x1 < · · · < xn.

Triangularize(F)

– Input: F , a finite set of polynomials of R.
– Output: A Lazard–Wu triangular decomposition of V (F).

Intersect(p, T )

– Input: p, a polynomial of R; T , a regular chain of R.
– Output: a set of regular chains {T1, . . . , Te} such that (p, T ) −→ T1, . . . , Te.

Regularize(p, T )

– Input: p, a polynomial of R; T , a regular chain of R.
– Output: a set of pairs {[p1, T1], . . . , [pe, Te]} such that for each i, 1 ≤ i ≤ e: (1) Ti is a regular chain;

(2) p ≡ pi mod
√
sat(Ti); (3) if pi = 0, then pi ∈

√
sat(Ti) otherwise pi is regular modulo

√
sat(Ti);

moreover we have T −→ T1, . . . , Te.

SubresultantChain(p, q, v)

– Input: v, a variable of {x1, . . . , xn}; p and q, polynomials of R, whose main variables are both v.
– Output: a list of polynomials (S0, . . . , Sλ), where λ = min(mdeg(p),mdeg(q)), such that Si is the

i-th subresultant of p and qw.r.t. v.

RegularGcd(p, q, v, S, T )

– Input: v, a variable of {x1, . . . , xn},
. T , a regular chain of R such that mvar(T ) < v,
. p and q, polynomials of R with the same main variable v such that: init(q) is regular modulo√

sat(T ); res(p, q, v) belongs to
√
sat(T ),

– S, the subresultant chain of p and q w.r.t. v.
– Output: a set of pairs {[g1, T1], . . . , [ge, Te]} such that T −→ T1, . . . , Te and for each Ti: if dim T =

dim Ti, then gi is a regular GCD of p and q modulo
√
sat(Ti); otherwise gi = 0, which means

undefined.



636 C. Chen, M. Moreno Maza / Journal of Symbolic Computation 47 (2012) 610–642

Algorithm 3: Intersect(p, T )

begin
if prem(p, T ) = 0 then return {T };
if p ∈ k then return { };
r := p; P := {r}; S := { };
whilemvar(r) ∈ mvar(T ) do

v := mvar(r); src := SubresultantChain(r, T v, v);
S := S ∪ {src}; r := resultant(src);
if r = 0 then break;
if r ∈ k then return { };
P := P ∪ {r}

T := {∅}; T′
:= { }; i := 1;

while i ≤ n do
for C ∈ T do

if xi /∈ mvar(P) and xi /∈ mvar(T ) then
T′

:= T′
∪ CleanChain(C, T , xi+1)

else if xi /∈ mvar(P) then
T′

:= T′
∪ CleanChain(C ∪ Txi , T , xi+1)

else if xi /∈ mvar(T ) then
for D ∈ IntersectFree(Pxi , xi, C) do

T′
:= T′

∪ CleanChain(D, T , xi+1)

else
for D ∈ IntersectAlgebraic(Pxi , T , xi, Sxi , C) do

T′
:= T′

∪ CleanChain(D, T , xi+1)

T := T′; T′
:= { }; i := i + 1

return T
end

Algorithm 4: RegularGcd(p, q, v, S, T )

begin
T := {(T , 1)};
while T ≠ ∅ do

let (C, i) ∈ T; T := T \ {(C, i)};
for [f ,D] ∈ Regularize(si, C) do

if dimD < dim C then
output [0,D]

else if f = 0 then
T := T ∪ {(D, i + 1)}

else
output [Si,D]

end

IntersectFree(p, xi, C)

– Input: xi, a variable of x; p, a polynomial of R with main variable xi; C , a regular chain of
k[x1, . . . , xi−1].

– Output: a set of regular chains {T1, . . . , Te} such that (p, C) −→ T1, . . . , Te.

IntersectAlgebraic(p, T , xi, S, C)

– Input: p, a polynomial of R with main variable xi,



C. Chen, M. Moreno Maza / Journal of Symbolic Computation 47 (2012) 610–642 637

Algorithm 5: IntersectFree(p, xi, C)

begin
for [f ,D] ∈ Regularize(init(p), C) do

if f = 0 then
output Intersect(tail(p),D)

else
output D ∪ p;
for E ∈ Intersect(init(p),D) do

output Intersect(tail(p), E)

end

Algorithm 6: IntersectAlgebraic(p, T , xi, S, C)

begin
for [g,D] ∈ RegularGcd(p, Txi , xi, S, C) do

if dimD < dim C then
for E ∈ CleanChain(D, T , xi) do

output IntersectAlgebraic(p, T , xi, S, E)

else
output D ∪ g;
for E ∈ Intersect(init(g),D) do

for F ∈ CleanChain(E, T , xi) do
output IntersectAlgebraic(p, T , xi, S, F)

end

. T , a regular chain of R, where xi ∈ mvar(T ),

. S, the subresultant chain of p and Txi w.r.t. xi,

. C , a regular chain of k[x1, . . . , xi−1], such that: init(Txi) is regularmodulo
√
sat(C); the resultant

of p and Txi , which is S0, belongs to
√
sat(C).

– Output: a set of regular chains T1, . . . , Te such that (p, C ∪ Txi) −→ T1, . . . , Te.

CleanChain(C, T , xi)

– Input: T , a regular chain of R; C , a regular chain of k[x1, . . . , xi−1] such that

sat(T<xi) ⊆

√
sat(C).

– Output: if xi /∈ mvar(T ), return C; otherwise return a set of regular chains {T1, . . . , Te} such that
init(Txi) is regular modulo each sat(Tj),

√
sat(C) ⊆


sat(Tj) andW (C)\V (init(Txi)) ⊆ ∪

e
j=1W (Tj).

Extend(C, T , xi)

– Input: C , is a regular chain of k[x1, . . . , xi−1]; T , a regular chain of R such that

sat(T<xi) ⊆

√
sat(C).

– Output: a set of regular chains {T1, . . . , Te} of R such thatW (C∪T≥xi) ⊆ ∪
e
j=1W (Tj) and

√
sat(T ) ⊆

sat(Tj).

Algorithm SubresultantChain is standard, see Ducos (2000). The algorithm Triangularize is a
principle algorithm which was first presented in Moreno Maza (1999). We use the following
conventions in our pseudo-code: the keyword return yields a result and terminates the current
function call while the keyword output yields a result and keeps executing the current function call.



638 C. Chen, M. Moreno Maza / Journal of Symbolic Computation 47 (2012) 610–642

Algorithm 7: Regularize(p, T )

begin
if p ∈ k or T = ∅ then return [p, T ];
v := mvar(p);
if v /∈ mvar(T ) then

for [f , C] ∈ Regularize(init(p), T ) do
if f = 0 then

output Regularize(tail(p), C);
else

output [p, C];

else
src := SubresultantChain(p, Tv, v); r := resultant(src);
for [f , C] ∈ Regularize(r, T<v) do

if dim C < dim T<v then
for D ∈ Extend(C, T , v) do

output Regularize(p,D)

else if f ≠ 0 then
output [p, C ∪ T≥v]

else
for [g,D] ∈ RegularGcd(p, Tv, v, src, C) do

if dimD < dim C then
for E ∈ Extend(D, T , v) do

output Regularize(p, E);
else

ifmdeg(g) = mdeg(Tv) then output [0,D ∪ T≥v]; next;
output [0,D ∪ g ∪ T>v];
q := pquo(Tv, g);
output Regularize(p,D ∪ q ∪ T>v);
for E ∈ Intersect(hg ,D) do

for F ∈ Extend(E, T , v) do
output Regularize(p, F)

end

Algorithm 8: Extend(C, T , xi)
begin

if T≥xi = ∅ then return C;
let p ∈ T with greatest main variable; T ′

:= T \ {p};
for D ∈ Extend(C, T ′, xi) do

for [f , E] ∈ Regularize(init(p),D) do
if f ≠ 0 then output E ∪ p;

end

Appendix B. Experimentation

Part of the algorithms presented in this paper are implemented in Maple 15 while all of them are
present in the current development version of Maple. Tables B.1 and B.3 report on our comparison
between Triangularize and otherMaple solvers. The notations used in these tables are defined below.



C. Chen, M. Moreno Maza / Journal of Symbolic Computation 47 (2012) 610–642 639

Algorithm 9: CleanChain(C, T , xi)
begin

if xi /∈ mvar(T ) or dim C = dim T<xi then return C;
for [f ,D] ∈ Regularize(init(Txi), C) do

if f ≠ 0 then output D
end

Algorithm 10: Triangularize(F)

begin
if F = { } then return {∅};
Choose a polynomial p ∈ F with maximal rank;
for T ∈ Triangularize(F \ {p}) do

output Intersect(p, T )

end

Table B.1
The input and output sizes of systems.

sys Input size Output size

#v #e deg dim GL GS GD TL16 TK16

4corps-1parameter-homog 4 3 8 1 – – 21863 – 30738
8-3-config-Li 12 7 2 7 67965 – 72698 7538 1384
Alonso-Li 7 4 4 3 1270 – 614 2050 374
Bezier 5 3 6 2 – – 32054 – 114109
Cheaters-homotopy-1 7 3 7 4 26387452 – 17297 – 285
childDraw-2 10 10 2 0 938846 – 157765 – –
Cinquin-Demongeot-3-3 4 3 4 1 1652062 – 680 2065 895
Cinquin-Demongeot-3-4 4 3 5 1 – – 690 – 2322
collins-jsc02 5 4 3 1 – – 28720 2770 1290
f-744 12 12 3 1 102082 – 83559 4509 4510
Haas5 4 2 10 2 – – 28 – 548
Lichtblau 3 2 11 1 6600095 – 224647 110332 5243
Liu-Lorenz 5 4 2 1 47688 123965 712 2339 938
Mehta2 11 8 3 3 – – 1374931 5347 5097
Mehta3 13 10 3 3 – – – 25951 25537
Mehta4 15 12 3 3 – – – 71675 71239
p3p-isosceles 7 3 3 4 56701 – 1453 9253 840
p3p 8 3 3 5 160567 – 1768 – 1712
Pavelle 8 4 2 4 17990 – 1552 3351 1086
Solotareff-4b 5 4 3 1 2903124 – 14810 2438 872
Wang93 5 4 3 1 2772 56383 1377 1016 391
Xia 6 3 4 3 63083 2711 672 1647 441
xy-5-7-2 6 3 3 3 12750 – 599 – 3267

Notation for Triangularize. We denote by TK16 and TL16 the latest implementation of Triangularize for
computing, respectively, Kalkbrener and Lazard–Wu decompositions, in the current version ofMaple.
Denote by TK13, TL13 the implementation based on the algorithmofMorenoMaza (1999) inMaple13.
Finally, STK16 and STL16 are versions of TK16 and TL16 respectively, enforcing that all computed
regular chains are squarefree.

Notation for the other solvers. Denote by GL, GS, GD, respectively the function Gröebner:-Basis (plex
order), Gröebner:-Solve, Gröebner:-Basis (tdeg order) in the current beta version ofMaple. Denote by
WS the functionwsolve of the package WsolveWang, Wsolve (0000a), which decomposes a variety
as a union of quasi-components of Wu characteristic sets.



640 C. Chen, M. Moreno Maza / Journal of Symbolic Computation 47 (2012) 610–642

Table B.2
Timings of Triangularize of different versions.

sys TK13 TK16 TL13 TL16 STK16 STL16

4corps-1parameter-homog – 36.9 – – 62.8 –
8-3-config-Li 8.7 5.9 29.7 25.8 6.0 26.6
Alonso-Li 0.3 0.4 14.0 2.1 0.4 2.2
Bezier – 88.2 – – – –
Cheaters-homotopy-1 0.4 0.7 – – 451.8 –
childDraw-2 – – – – 1326.8 1437.1
Cinquin-Demongeot-3-3 3.2 0.6 – 7.1 0.7 8.8
Cinquin-Demongeot-3-4 166.1 3.1 – – 3.3 –
collins-jsc02 5.8 0.4 – 1.5 0.4 1.5
f-744 – 12.7 – 14.8 12.9 15.1
Haas5 452.3 0.3 – – 0.3 –
Lichtblau 0.7 0.3 801.7 143.5 0.3 531.3
Liu-Lorenz 0.4 0.4 4.7 2.3 0.4 4.4
Mehta2 – 2.2 – 4.5 2.2 6.2
Mehta3 – 14.4 – 51.1 14.5 63.1
Mehta4 – 859.4 – 1756.3 859.2 1761.8
p3p-isosceles 1.2 0.3 – 352.5 0.3 –
p3p 168.8 0.3 – – 0.3 –
Pavelle 0.8 0.5 – 7.0 0.4 12.6
Solotareff-4b 1.5 0.8 – 1.9 0.9 2.0
Wang93 0.5 0.7 0.6 0.8 0.8 0.9
Xia 0.2 0.4 4.0 1.9 0.5 2.7
xy-5-7-2 3.3 0.6 – – 0.7 –

Table B.3
Timings of Triangularize versus other solvers.

sys GL TK16 GS WS TL16

4corps-1parameter-homog – 36.9 – – –
8-3-config-Li 108.7 5.9 – 27.8 25.8
Alonso-Li 3.4 0.4 – 7.9 2.1
Bezier – 88.2 – – –
Cheaters-homotopy-1 2609.5 0.7 – – –
childDraw-2 19.3 – – – –
Cinquin-Demongeot-3-3 63.6 0.6 – – 7.1
Cinquin-Demongeot-3-4 – 3.1 – – –
collins-jsc02 – 0.4 – 0.8 1.5
f-744 30.8 12.7 – – 14.8
Haas5 – 0.3 – – –
Lichtblau 125.9 0.3 – – 143.5
Liu-Lorenz 3.2 0.4 2160.1 40.2 2.3
Mehta2 – 2.2 – 5.7 4.5
Mehta3 – 14.4 – – 51.1
Mehta4 – 859.4 – – 1756.3
p3p-isosceles 6.2 0.3 – 792.8 352.5
p3p 33.6 0.3 – – –
Pavelle 1.8 0.5 – – 7.0
Solotareff-4b 35.2 0.8 – 9.1 1.9
Wang93 0.2 0.7 1580.0 0.8 0.8
Xia 4.7 0.4 0.1 12.5 1.9
xy-5-7-2 0.3 0.6 – –

The tests were launched on a machine with Intel Core 2 Quad CPU (2.40GHz) and 3.0Gb total
memory. The time-out is set as 3600 s. The memory usage is limited to 60% of total memory, using
the UNIX command ulimit. In both Tables B.1 and B.3, the symbol ‘‘-’’ means either time or memory
exceeds the limit we set.



C. Chen, M. Moreno Maza / Journal of Symbolic Computation 47 (2012) 610–642 641

The examples are mainly in positive dimension since other triangular decomposition algorithms
are specialized to dimension zero (Dahan et al., 2005). All examples are in characteristic zero.

In Table B.1, we provide characteristics of the input systems and the sizes of the output obtained
by different solvers. For each polynomial system F ⊂ Q[x], the number of variables appearing in F ,
the number of polynomials in F , the maximum total degree of a polynomial in F , the dimension of
the algebraic variety V (F) are denoted respectively by #v, #e, deg, dim. For each solver, the size of
its output is measured by the total number of characters in the output. To be precise, let ‘‘dec’’ and
‘‘gb’’ be respectively the output of the Triangularize and Gröebner functions. TheMaple command we
use are length(convert(map(Equations, dec, R), string)) and length(convert(gb, string)). From Table B.1,
it is clear that Triangularize produces much smaller output than commands based on Gröbner basis
computations.

TK16, TL16, GS, WS (and, to some extent, GL) can all be seen as polynomial system solvers in the
sense of that they provide equidimensional decompositions where components are represented by
triangular sets. Moreover, they are implemented inMaple (with the support of efficient C code in the
case of GS and GL). The specification of TK16 are close to those of GS while TL16 is related to WS,
though the triangular sets returned by WS are not necessarily regular chains.

In Table B.2, we provide the timings of different versions of Triangularize. From this table, it is
clear that the implementations of Triangularize, based on the algorithms presented in this paper (that
is TK16, TL16) outperform the previous versions (TK13, TL13), based on Moreno Maza (1999), by
several orders of magnitude. In Table B.3, we provide the timings of Triangularize and other solvers.
We observe that TK16 outperforms GS and GL while TL16 outperforms WS.

References

Aubry, P., Lazard, D., Moreno Maza, M., 1999. On the theories of triangular sets. J. Symbolic Comput. 28 (1–2), 105–124.
Boulier, F., Lazard, D., Ollivier, F., Petitot,M., 1995. Representation for the radical of a finitely generated differential ideal. In: Proc.

of ISSAC’95. Montréal, Canada, pp. 158–166.
Boulier, F., Lemaire, F., Moreno Maza, M., 2006. Well known theorems on triangular systems and the D5 principle. In: Proc. of

Transgressive Computing 2006, Universidad de Granda.
Chen, C., Davenport, J.H., May, J., Moreno Maza, M., Xia, B., Xiao, R., 2010. Triangular decomposition of semi-algebraic systems.

In: Proc. of ISSAC’10. ACM Press, pp. 187–194.
Chen, C., Davenport, J.H., Lemaire, F., Moreno Maza, M., Phisanbut, N., Xia, B., Xiao, R., Xie, Y., 2011. Solving semi-algebraic

systems with the RegularChains library in Maple. Ib Proc. of MACIS 2011, S. Ratschau Ed., pp. 38–51.
Chen, C., Golubitsky, O., Lemaire, F., Moreno Maza, M., Pan, W., 2007. Comprehensive triangular decomposition. In: Proc. of

CASC’07. In: Lecture Notes in Computer Science, vol. 4770. pp. 73–101.
Chen, C., Moreno Maza, M., 2011. Algorithms for computing triangular decompositions of polynomial systems. In: Proc. of

ISSAC’11, pp. 83–90.
Chen, C., MorenoMaza, M., Xia, B., Yang, L., 2009. Computing cylindrical algebraic decomposition via triangular decomposition.

In: Proc. of ISSAC’09, pp. 95–102.
Chou, S.C., Gao, X.S., 1991. Computations with parametric equations. In: Proc. of ISSAC’91, Bonn, Germany, pp. 122–127.
Chou, S.C., Gao, X.S., 1992. Solving parametric algebraic systems. In: Proc. of ISSAC’92, pp. 335–341.
Cox, D., Little, J., O’Shea, D., 1998. Using Algebraic Geometry. In: Graduate Text in Mathematics, vol. 185. Springer-Verlag, New-

York.
Dahan, X., Kadri, A., Schost, É, 2009. Bit-size estimates for triangular sets in positive dimension. Technical report, The University

of Western Ontario, Journal of Complexity (in press).
Dahan, X., Moreno Maza, M., Schost, É, Wu, W., Xie, Y., 2005. Lifting techniques for triangular decompositions. In: Proc. of

ISSAC’05, pp. 108–115.
Della Dora, J., Dicrescenzo, C., Duval, D., 1985. About a newmethod for computing in algebraic number fields. In: Proc. EUROCAL

85, Vol. 2. Springer-Verlag, pp. 289–290.
Ducos, L., 2000. Optimizations of the subresultant algorithm. J. Pure Appl. Algebra 145, 149–163.
Gao, X.S., Chou, S.C., 1993. A Zero Structure Theorem for Differential Parametric Systems. J. Symbolic Comput. 16 (6), 585–595.
Gao, X.S., van der Hoeven, J., Luo, Y., Yuan, C., 2009. Characteristic set method for differential-difference polynomial systems.

J. Symbolic Comput. 44, 1137–1163.
Golubitsky, O., 2005. Private communication.
Hubert, É., 2000. Factorization free decomposition algorithms in differential algebra. J. Symbolic Comput. 29 (4–5), 641–662.
Kalkbrener, M., 1991. Three contributions to elimination theory. Ph.D. Thesis, Johannes Kepler University, Linz.
Kalkbrener, M., 1993. A generalized euclidean algorithm for computing triangular representations of algebraic varieties.

J. Symbolic Comput. 15, 143–167.
Kalkbrener, M., 1998. Algorithmic properties of polynomial rings. J. Symbolic Comput. 26 (5), 525–581.
Kapur, D., 1996. Automated Geometric Reasoning: Dixon Resultants, Gröbner Bases, and Characteristic Sets. In: Wang, D.M.

(Ed.), Automated Deduction in Geometry. In: Lecture notes in artificial intelligence, I360. Springer, pp. 1–36.
Lasker, E., 1905. Zur Theorie der Moduln und Ideale. Math. Ann. 60, 19–116.
Lazard, D., 1991. A new method for solving algebraic systems of positive dimension. Discrete Appl. Math. 33, 147–168.



642 C. Chen, M. Moreno Maza / Journal of Symbolic Computation 47 (2012) 610–642

Lemaire, F., Moreno Maza, M., Xie, Y., 2005. The RegularChains library. In: Proc. of Maple Conference 2005, pp. 355–368.
Li, X., Moreno Maza, M., Pan, W., 2009. Computations modulo regular chains. In: Proc. of ISSAC’09, pp. 239–246.
Li, X., Moreno Maza, M., Schost, É, 2007. Fast arithmetic for triangular sets: From theory to practice. In: ISSAC’07. ACM Press,

pp. 269–276.
Moreno Maza, M., Rioboo, R., 1995. Polynomial gcd computations over towers of algebraic extensions. In: Proc. of AAECC-11.

Springer, pp. 365–382.
Lecerf, G., 2003. Computing the equidimensional decomposition of an algebraic closed set by means of lifting fibers.

J. Complexity 19 (4), 564–596.
Maplesoft Incorporation. Maple 15: The essential tool for mathematics and modeling. http://www.maplesoft.com/products/

maple/.
Mishra, B., 1993. Algorithmic Algebra. Springer-Verlag.
Moreno Maza, M., On triangular decompositions of algebraic varieties. Technical Report TR 4/99, NAG Ltd, Oxford, UK, 1999.

Presented at the MEGA-2000 Conference, Bath, England. http://www.csd.uwo.ca/~moreno/books-papers.html.
Nöther, E., 1921. Idealtheorie in Ringbereichen. Mathematische Annalen 83 (1), 24.
Ritt, J.F., 1932. Differential Equations from an Algebraic Standpoint, Vol. 14. American Mathematical Society, New York.
Ritt, J.F., 1950. Differential Algebra. Amer. Math. Soc, New York.
Shimoyama, T., Yokoyama, K., 1996. Localization and primary decomposition of polynomial ideals. J. Symbolic Comput. 22 (3),

247–277.
Sommese, A.J., Verschelde, J., Wampler, C.W., 2008. Solving polynomial systems equation by equation. In: Algorithms in

Algebraic Geometry. Springer-Verlag, pp. 133–152.
Steel, A., 2005. Conquering inseparability: Primary decomposition and multivariate factorization over algebraic function fields

of positive characteristic. J. Symbolic Comput. 40 (3), 1053–1075.
van der Waerden, B., 1991. Algebra, seventh edition. Springer-Verlag.
Wang, D.K., The Wsolve package. http://www.mmrc.iss.ac.cn/~dwang/wsolve.txt.
Wang, D.M., 1991. On Wu’s method for solving systems of algebraic equations. Technical report RISC-LINZ Series no 91-52.0,

Johannes Kepler University, Austria.
Wang, D.M., 1993. An elimination method for polynomial systems. J. Symbolic Comput. 16, 83–114.
Wang, D.M., Epsilon 0.618. http://www-calfor.lip6.fr/wang/epsilon.
Wang, D.M., 1998. Decomposing polynomial systems into simple systems. J. Symbolic Comput. 25 (3), 295–314.
Wang, D.M., 2000. Elimination Methods. Springer, New York.
Wu,W.T., 1984a. Basic principles ofmechanical theoremproving in elementary geometries. J. Systems Sci.Math. Sci. 4, 207–235.
Wu, W.T., 1984b. Some recent advances in mechanical theorem-proving of geometries. Contemporary Math. 29, 235–241.
Wu, W.T., 1986. On zeros of algebraic equations — an application of Ritt Principle. Kexue Tongbao 1 (31), 1–5.
Wu, W.T., 1987. A zero structure theorem for polynomial equations solving. MM Research Preprints 1, 2–12.
Wu, W.T., 1989a. On the foundation of algebraic differential geometry. MM Research Preprints 3, 1–26.
Wu, W.T., 1989b. Some remarks on characteristic-set formation. MM Research Preprints 3, 27–29.
Wu, W.T., 1989c. On the generic zero and Chow basis of an irreducible ascending set. MM Research Preprints 4, 1–21.
Wu, W.T., 1989d. On a projection theorem of quasi-varieties in elimination theory. MM Research Preprints 4, 40–48.
Wu, W.T., 1989e. A mechanization method of geometry and its applications: solving inverse kinematic equation of PUMA-type

robots. MM Research Preprints 4, 49–53.
Wu, W.T., 1992. On problems involving inequalities. MM Research Preprints 7, 1–13.
Wu, W.T., 2006. Memory of my first research teacher: The great geometer Chern Shiing-Shen. In: Griffiths, Phillip A. (Ed.),

Inspired by S.S. Chern: A memorial volume in honor of a great mathematician. In: Nankai Tracts in Mathematics, Vol. 11.
Yang, L., Hou, X., Xia, B., 2001. A complete algorithm for automated discovering of a class of inequality-type theorems. Science

in China, Series F 44 (1), 33–49.
Yang, L., Zhang, J., 1991. Searching dependency between algebraic equations: an algorithm applied to automated reasoning.

Technical Report IC/89/263, International Atomic Energy Agency, Miramare, Trieste, Italy.

http://www.maplesoft.com/products/maple/
http://www.maplesoft.com/products/maple/
http://www.maplesoft.com/products/maple/
http://www.maplesoft.com/products/maple/
http://www.maplesoft.com/products/maple/
http://www.maplesoft.com/products/maple/
http://www.csd.uwo.ca/~moreno/books-papers.html
http://www.mmrc.iss.ac.cn/~dwang/wsolve.txt
http://www-calfor.lip6.fr/wang/epsilon

	Algorithms for computing triangular decomposition of polynomial systems
	Introduction
	The characteristic set method and related works
	Regular chains
	Subresultants and regular GCDs
	Definition of subresultants
	Specialization properties of subresultants
	Regular GCDs

	Recycling computations
	Controlling expression swell
	A Poisson product formula for iterated resultants
	Identifying the ``useful'' part of an iterated resultant
	Computing the ``useful'' part of an iterated resultant
	Examples
	Experimental results

	Conclusion
	The algorithms
	Experimentation
	References


