
RESEARCH ARTICLE

On the verification of polynomial system solvers

Changbo CHEN, Marc MORENO MAZA (*), Wei PAN, Yuzhen XIE

The University of Western Ontario, London ON N6A 5B7, Canada

E Higher Education Press and Springer-Verlag 2008

Abstract We discuss the verification of mathematical

software solving polynomial systems symbolically by

way of triangular decomposition. Standard verification

techniques are highly resource consuming and apply only

to polynomial systems which are easy to solve. We exhibit

a new approach which manipulates constructible sets

represented by regular systems. We provide comparative

benchmarks of different verification procedures applied

to four solvers on a large set of well-known polynomial

systems. Our experimental results illustrate the high effi-

ciency of our new approach. In particular, we are able to

verify triangular decompositions of polynomial systems

which are not easy to solve.

Keywords software verification, polynomial system sol-

ver, triangular decomposition

1 Introduction

Solving systems of non-linear, algebraic or differential

equations, is a fundamental problem in mathematical sci-

ence. It has been studied for centuries and has stimulated

many research developments. Algorithmic solutions can

be classified into three categories: numeric, symbolic and

hybrid numeric-symbolic. The choice for one of them

depends on the characteristics of the system of equations

to solve. For instance, it depends on whether the coeffi-

cients are known exactly or are approximations obtained

from experimental measurements. This choice depends

also on the expected answers, which could be a complete

description of all the solutions, or only the real solutions,

or just one sample solution among all of them.

Symbolic solvers arepowerful tools in scientific computing:

they are well suited for problems where the desired output

must be exact and they have been applied successfully in areas

like digital signal processing, robotics, theoretical physics,

cryptology, dynamical systems, with many important out-

comes. Reference [1] gives an overview of these applications.

Symbolic solvers are also highly complex software. Firstly,

they implement sophisticated algorithms, which are generally

at the level of on-going research. Moreover, in most com-

puter algebra systems, the solve command involves nearly

the entire set of libraries in the system, challenging the most

advanced operations on matrices, polynomials, algebraic

and modular numbers, polynomial ideals, etc.

Secondly, algorithms for solving systems of polynomial

equations are by nature of exponential-space complexity.

Consequently, symbolic solvers are extremely time-con-

suming when applied to large examples. Even worse,

intermediate expressions can grow to enormous size and

may halt the computations, even if the result is of mod-

erate size. The implementation of symbolic solvers, then,

requires techniques that go far beyond the manipulation

of algebraic or differential equations, such as efficient

memory management, data compression, parallel and dis-

tributed computing, etc.

Last, but not least, the precise output specifications of a

symbolic solver can be quite involved. Indeed, given an

input polynomial system F, defining what a symbolic sol-

ver should return implies describing what the geometry of

the solution set V(F) of F can be. For an arbitrary F, the

set V(F) may consist of components of different natures

and sizes: points, lines, curves, surfaces. This leads to the

following difficult challenge.

Given a polynomial system F and a set of components

C1,…,Ce, it is hard, in general, to tell whether the union of

C1,…,Ce corresponds exactly to the solution set V(F) or

not. Actually, solving this verification problem is gen-

erally (at least) as hard as solving the system F itself.

Because of the high complexity of symbolic solvers,

developing verification algorithms and reliable verifica-

tion software tools is clearly a need. However, this veri-

fication problem has received little attention in the

literature. In this paper, we present new techniques for

verifying a large class of symbolic solvers. We also report

on intensive experimentation illustrating the high effi-

ciency of our approach w.r.t. known techniques.

We assume that each component of the solution set

V(F) is given by a so-called regular system. This is a
Received September 4, 2007; accepted December 10, 2007

E-mail: moreno@csd.uwo.ca

Front. Comput. Sci. China 2008, 2(1): 55–66
DOI 10.1007/s11704-008-0006-y

natural assumption in symbolic computations, well-

developed in the literature under different terminologies

in Refs. [2,3] and the references therein. In broad words, a

regular system consists of several polynomial equations

with a triangular shape

p1 x1ð Þ~p2 x1, x2ð Þ~ � � �~pi x1, x2, . . . , xnð Þ~0,

and a polynomial inequality

h x1, . . . , xnð Þ=0,

such that there exists (at least) one point (a1,…,an) satisfy-

ing the above equations and inequality. Note that these

polynomials may contain parameters.

Let us consider the following well-known system F

taken from Ref. [4].

x31{x6{x{y ~ 0

x8{z ~ 0

x10{t ~ 0

8><
>: :

We aim at solving this system for x. y. z. t, that is,

expressing x as a function of y, z, t, then y as a function

of z, t and z as a function of t. One possible decomposition

is given by the three regular systems below:

t4{t
� �

x{ty{z2 ~ 0

t3y2z2t2z2yz {t6z2t3zt{1
� �

z4 ~ 0

z5{t4 ~ 0

t4{t = 0

8>>>>><
>>>>>:

,

x2{z4 ~ 0

yzt2z2 ~ 0

z5{t ~ 0

t3{1 ~ 0

8>>>>><
>>>>>:

,

x ~ 0

y ~ 0

z ~ 0

t ~ 0

8>>>>><
>>>>>:

:

Another decomposition is given by these other three regu-

lar systems:

t4{t
� �

x{ty{z2 ~ 0

tzy2z2z3y{t8z2t5zt3{t2 ~ 0

z5{t4 ~ 0

z t4{t
� �

= 0

8>>>>><
>>>>>:

,

zx2{t ~ 0

tyzz2 ~ 0

z5{t ~ 0

t3{1 ~ 0

tz = 0

8>>>>>>>><
>>>>>>>>:

,

x ~ 0

y ~ 0

z ~ 0

t ~ 0

8>>>>><
>>>>>:

:

These two decompositions look slightly different (in par-

ticular, the second components) and one could think that,

if each of them was produced by a different solver, then at

least one of these solvers has a bug. In fact, both decom-

positions are valid, but proving that they encode the solu-
tion set V(F) is not feasible without computer assistance.

However, proving that they define the same set of points

can be achieved by an expert hand without computer

assistance. This is an important observation that will

guide us in this work.

Let us consider now an arbitrary input system F and a

set of components C1,…,Ce encoded by regular systems

S1,…,Se respectively. The usual approach for verifying
that C1,…,Ce correspond exactly to the solution set V(F)

is as follows.

1) First, one checks that each candidate componentCi is

actually contained inV(F). This essentially reduces to

substitute the coordinates of the points given by Ci

into the polynomials of F: if all these polynomials

vanish at these points, then Ci is a component of

V(F); otherwise, (and up to technical details that we
will skip in this introduction) Ci is not a component

of V(F).

2) Second, one checks that V(F) is contained in the

union of the candidate components C1,…,Ce by:

(2.1) computing a polynomial system G such that V(G)

corresponds exactly to C1,…,Ce,

(2.2) checking that every solution of V(F) cancels the

polynomials of G.
Steps (2.1) and (2.2) can be performed using standard

techniques based on computations of Gröbner bases, as

we discuss in Section 6.1. These calculations are very

expensive, as shown by our experimentation, reported in

Section 7.

In this paper, we propose a different approach, sum-

marized in non-technical language in Section 2. The main

idea is as follows. Instead of comparing a set of candidate
components C1,…,Ce against the input system F, we com-

pare this set against the output D1,…,Df produced by

another solver. Both this solver and the comparison pro-

cess are assumed to be validated. Hence, the candidate set

of components C1,…,Ce corresponds exactly to the solu-

tion set V(F) if and only if the comparison process shows

that D1,…,Df and C1,…,Ce define the same solution set.

The technical details of this new approach are given in
Sections 3–6. In Section 3, we review the fundamental

algebraic concepts and operations involved in our work.

In particular, we specify the kind of solvers that we con-

sider in this study, namely those solving polynomial sys-

tems by means of triangular decompositions in the so-

called sense of Lazard. (A precise definition is given in

Section 3.) This choice is motivated by the following rea-

sons. First, the case of decompositions in the sense of
Kalkbrener was treated in Ref. [2], via Gröbner basis

computations. Second, most algorithms computing tri-

angular decompositions use the sense of Lazard and no

56 Changbo CHEN, et al., On the verification of polynomial system solvers

verification tool for those has been reported prior to our

work. We leave for future research the verification of

Kalkbrener’s decompositions by means of more efficient

techniques than those reported in Ref. [2].

The key concept behind triangular decomposition in the

sense of Lazard is that of a constructible set, so we dedicate

Section 4 to it. Section 5 is a formal and complete presenta-

tion of our process for comparing triangular decompositions.

In Section 6, we summarize the different verification proce-

dures that are available for triangular decompositions,

including our new approach. In Section 7, we report on

experimentation with these verification procedures. Our data

illustrate the high efficiency of our new approach.

2 Methodology

Let us consider again an arbitrary input polynomial sys-

tem F and a set of components C1,…,Ce encoded by regu-

lar systems S1,…,Se, respectively. As mentioned in the

introduction, checking whether C1,…,Ce corresponds

exactly to the solution set V(F) of F can be done by means

of Gröbner bases computations. This verification process

is quite simple, see Section 6, and its implementation is

straightforward, Thus, if the underlying Gröbner basis

engine is reliable, such verification tool can be regarded

as safe. Reference [5] relies on a similar assumption.

Unfortunately, this verification process is highly expens-

ive. Even worse, as shown by our experimental results in

Section 7, this verification process is unable to check many

triangular decompositions that are easy to compute.

We propose a new approach in order to overcome this

limitation. We assume that we have at hand a reliable

solver computing triangular decompositions of poly-

nomial systems. We believe that this reliability can be

acquired over time by combining several features.

– Checking the solver with a verification tool based on

Gröbner bases for input systems of moderate dif-

ficulty.

– Using the solver for input systems of higher difficulty

where the output can be verified by theoretical argu-

ments, an example of such input system is given in

Ref. [6].

– Involving the library supporting the solver in other

applications.

– Making the solver widely available to potential users.

Suppose that we are currently developing a new solver

computing triangular decompositions. In order to verify

the output of this new solver, we can take advantage of the

reliable solver.

This may sound natural and easy in the first place, but

this is actually a wrong impression. Indeed, as shown in

the introduction, two different solvers can produce two

different, but valid, triangular decompositions for the same

input system. Checking that these two triangular decompo-

sitions encode the same solution set boils down to compute

the differences of two constructible sets. This is a non-trivial

operation, and the survey paper [7] gives the details.

The first contribution of our work is to provide a rela-

tively simple, but efficient, procedure for computing the

set theoretical differences between two constructible sets

in Section 5. Such procedure can be used to develop a

verification tool for our new solver by means of our reli-

able solver. Moreover, this procedure is sufficiently

straightforward to implement such that it can be trusted

after a relatively short period of testing, as the case for the

verification tool based on Gröbner bases computations.

The second contribution of our work is to illustrate the

high efficiency of this new verification tool. In Section 7,

we consider four solvers computing triangular decomposi-

tion of polynomial systems:

– the command Triangularize of the RegularChains

library [8] in MAPLE,

– the TRIADE solver of the BasicMath library [9] in

ALDOR,

– the commands RegSer and SimSer of the Epsilon

library [10] in MAPLE.

We have run these four solvers on a large set of well-known

input systems taken from Refs. [11–13]. For those systems

for which this is feasible, we have verified their computed

triangular decompositions with a verification tool based on

Gröbner bases computations. Then, for each input system,

we have compared all its computed triangular decomposi-

tions by means of our new verification tool.

Based on our experimentation data reported in Section

7, we make the following observations.

– All computed triangular decompositions, that could be

checked via Gröbner bases computations, are correct.

– However, the verification tool based on Gröbner

bases computations failed to check many examples

by running out of computer memory.

– For each input system F, all pairs of triangular

decompositions of F could be compared successfully

by our new verification tool.

– Moreover, for any system F to which all verification

tools could be applied, our new approach runs much

faster.

This suggests that the four solvers and our new verifica-

tion tool have a good level of reliability. Moreover, it

allows to process cases that were previously out of reach.

3 Preliminaries

Let K Y½ � :¼ K Y1; . . . ;Yn½ � be the polynomial ring over

the field K in variables Y1,???,Yn. Let p [K Y½ � be a

non-constant polynomial. The leading coefficient and

Front. Comput. Sci. China, 2008, 2(1) 57

the degree of p regarded as a univariate polynomial in Yi

will be denoted by lc(p,Yi) and deg(p,Yi) respectively. The

greatest variable appearing in p is called the main variable

denoted by mvar(p). The degree, the leading coefficient,

and the leading monomial of p regarding as a univariate

polynomial in mvar(p) are called the main degree, the

initial, and the rank of p; they are denoted by mdeg(p),

init(p) and rank(p) respectively.

Let F5K Y½ � be a finite polynomial set. Denote by SFT
the ideal it generates in K Y½ � and by

ffiffiffiffiffiffiffiffiffi
SFT

p
the radical of

SFT. Let h be a polynomial in K Y½ �, the saturated ideal

SFT : h‘ of SFT w.r.t h, is the set

q [K Y½ � j Am [N s:t: hmq [SFTf g;

which is an ideal in K Y½ �.
A polynomial p [K Y½ � is a zerodivisor modulo SFT if

there exists a polynomial q such that pq is zero modulo

SFT, and q is not zero modulo SFT. The polynomial is

regular modulo SFT if it is neither zero, nor a zerodivisor

modulo SFT. Denote by V(F) the zero set (or solution set,

or algebraic variety) of F in �Kn, where �K is an algebraic

closure of K. For a subset W5�Kn, denote by W its clos-

ure in the Zariski topology, that is the intersection of all

algebraic varieties V(G) containing W for all G5K Y½ �.
Let T5K Y½ � be a triangular set, that is a set of non-

constant polynomials with pairwise distinct main vari-

ables. Denote by mvar(T) the set of main variables of

tgT. A variable in Y is called algebraic w.r.t. T if it

belongs to mvar(T), otherwise it is called free w.r.t. T.

For a variable vgY, we denote by T, v (resp. T. v) the

subsets of T consisting of the polynomials t with main

variable less than (resp. greater than) v. If vgmvar(T),

we say Tv is defined. Moreover, we denote by Tv the poly-

nomial in T whose main variable is v, by T(v the set of

polynomials in T with main variables less than or equal to

v and by T> v the set of polynomials in T with main vari-

ables greater than or equal to v.

Definition 1 Let p; q [K Y½ � be two nonconstant polyno-

mials. We say rank(p) is smaller than rank(q) w.r.t Ritt

ordering and we write, rank(p), r rank(q) if one of the

following assertions holds:

– mvar(p),mvar(q),

– mvar(p)5mvar(q) and mdeg(p),mdeg(q).

Note that the partial order , r is a well ordering. Let

T5K Y½ � be a triangular set. Denote by rank(T) the set of

rank(p) for all pgT. Observe that any two ranks in rank

(T) are comparable by , r. Given another triangular set

S5K Y½ �, with rank(S)? rank(T), we write rank(T), r

rank(S) whenever the minimal element of the symmetric

difference (rank(T)\rank(S))< (rank(S)\rank(T)) belongs

to rank(T). By rank(T)(r rank(S), we mean either rank

(T), rank(S) or rank(T)5 rank(S). Note that any

sequence of triangular sets, of which ranks strictly

decrease w.r.t , r, is finite.

Given a triangular set T5K Y½ �, denote by hT the prod-

uct of the initials of T (throughout the work we use this

convention and when T consists of a single element g we

write it as hg for short). The quasi-componentW(T) of T is

V(T)/V(hT), in other words, the points of V(T) which do

not cancel any of the initials of T. We denote by Sat(T) the

saturated ideal of T: if T is empty then Sat(T) is defined as

the trivial ideal S0T, otherwise it is the ideal STT : h?T .

Let h [K Y½ � be a polynomial and F5K Y½ � a set of

polynomials, we write

Z F ,T ,hð Þ : ~ V Fð Þ>W Tð Þð Þ\V hð Þ:

When F consists of a single polynomial p, we use Z(p,T,h)

instead of Z({p},T,h); when F is empty we just write Z(T,

h). By Z(F,T), we denote V(F)>W(T).

Given a family of pairs S5 {[Ti,hi]|1(i(e}, where

Ti5K Y½ � is a triangular set and hi [K Y½ � is a polynomial.

We write

Z Sð Þ : ~
[e
i~1

Z Ti,hið Þ:

We conclude this section with some well known prop-

erties of ideals and triangular sets. For a proper ideal I ,
we denote by dim V Ið Þð Þ the dimension of V Ið Þ.
Lemma 1 Let I be a proper ideal inK Y½ � and p [K Y½ � be a
polynomial regular w.r.t I . Then, either V Ið Þ>V pð Þ is

empty or we have: dim V Ið Þ>V pð Þð Þf dim V Ið Þð Þ{1.

Lemma 2 Let T be a triangular set in K Y½ �. Then, we have
W(T)\V hTð Þ~W(T) and

W(T)\W(T)~V hTð Þ>W(T):

Proof Since W(T)(W(T), we have

W(T)~W(T)\V hTð Þ(W(T)\V hTð Þ:
On the other hand, W(T)(V(T) implies

W(T)\V hTð Þ(V(T)\V hTð Þ~W(T):

This proves the first claim. Observe that we have:

W(T)~ W(T)\V hTð Þ� �
| W(T)>V hTð Þ� �

:

We deduce the second one.

Lemma 3 (Refs. [2,14]) Let T be a triangular set in K Y½ �.
Then, we have

V Sat(T)ð Þ~W(T):

Assume furthermore that W(T)=1 holds. Then V(Sat

(T)) is a nonempty unmixed algebraic set with dimension

58 Changbo CHEN, et al., On the verification of polynomial system solvers

n2 |T |. Moreover, if N is the free variables of T, then for

every prime ideal P associated with Sat(T) we have
P> ½N�~S0T:

3.1 Regular chain and regular system

Definition 2 (Regular chain) A triangular set T5K½Y � is a
regular chain if one of the following conditions hold:

– either T is empty,

– or T \{Tmax} is a regular chain, where Tmax is the

polynomial in T with maximum rank, and the initial

of Tmax is regular w.r.t. Sat(T \{Tmax}).

It is useful to extend the notion of regular chain as follows.

Definition 3 (Regular system) A pair [T,h] is a regular

system if T is a regular chain, and h [K½Y � is regular w.
r.t Sat(T).

Remark 1A regular system in a stronger sense was presented

in Ref. [3]. For example, consider a polynomial system [T,h]

where T5 [Y1Y42Y2] and h5Y2Y3. Then [T,h] is still a

regular system in our sense but not a regular system in Ref.

[3]. We also note that in zero-dimension case (no free vari-

ables exist) the notion of a regular chain and that of a regular

set in Ref. [3] are the same, Refs. [2,3] giving the details.

Proposition 1 For every regular system [T,h] we have

Z(T ,h)=1.

Proof Since T is a regular chain, by Lemma 3 we have

V Sat(T)ð Þ=1. By definition of a regular system, the

polynomial hhT is regular w.r.t Sat(T). Hence, by

Lemma 1, the set V(hhT)>V(Sat(T)) either is empty, or

has lower dimension than V(Sat(T)). Therefore, the set

V(Sat(T))\V hhTð Þ
~V(Sat(T))\ V hhTð Þ>V(Sat(T))ð Þ

is not empty. Finally, by Lemma 2, the set

Z(T ,h)~W(T)\V(h)

~W(T)\V hhTð Þ
~V(Sat(T))\V hhTð Þ

is not empty.

3.2 Fundamental operations in TRIADE

Given a finite set of polynomial F, the TRIADE [15] algo-

rithms can ‘‘decompose’’ the solution setV(F) of F by a set

of regular chains {Ti|i5 1,…,r}. Two kinds of decomposi-

tions are possible:

– Kalkbrener’s triangular decomposition, that is:

V(F)~
[r
i~1

W(Ti), ð1Þ

– Lazard’s triangular decomposition, that is:

V(F)~
[r
i~1

W(Ti): ð2Þ

We list below the specifications of the operations from

TRIADE that we use in this paper. For simplicity, we use

the notationW
D

Wi, i~1, . . . ,eð Þ to denote the rela-

tion

W(
[e
i~1

Wi(W :

Below p, p1, p2 are polynomials, T and C are regular

chains, D is a triangular set.

– Regularize(p,T) returns regular chains T1,…,Te such

that

N W(T)
D

W Tið Þ,i~1,. . .,eð Þ,
N for all 1(i(e, the polynomial p is either 0 or

regular modulo Sat(Ti).

– Intersect(p,T) returns regular chains T1,…,Te such
that we have

V(p)>W(T)(W T1ð Þ| � � �
|W Teð Þ(V(p)>W(T):

– Extend(C<D) returns a set of regular chains {Ci|

i5 1,…,e} such that

W(C|D)
D

W Cið Þ,i~1, . . . ,eð Þ:
– Assume that p1 and p2 are two non-constant polyno-

mials with the same main variable v, which is larger

than any variable appearing in T, and assume

that the initials of p1 and p2 are both regular w.r.t.
Sat(T). Then, GCD(p1,p2,T) returns a sequence

g1,C1½ �, . . . , gd ,Cd½ �, 1,D1½ �, . . . , 1,De½ �ð Þ, where gi
are polynomials and Ci,Di are regular chains such that

N W(T)
D

W C1ð Þ, . . . ,W Cdð Þ,W D1ð Þ, . . . ,ð
W Deð ÞÞ,

N dim V(Sat(Ci))5 dim V(Sat(T)) and dim V(Sat
(Dj)), dim V(Sat(T)), for 1(i(d and

1(j(e,

N the leading coefficient of gi w.r.t. v is regular w.r.t.
Sat(Ci),

N gi5uip1+ vip2 mod Sat(Ci) for some polynomials ui
and vi,

N if gi is not constant and its main variable is v, then

p1 and p2 belong to Sat(Ci< {g}).

Based on the operations Regularize and Intersect, we

deduce a general intersection operation which decom-

poses a regular chain to regular systems, according to an

equality and an inequality.

Lemma 4 Let p and h be polynomials and T be a regular

chain. There exists an operation IntersectGeneral(p,T,h)

returning a set of regular chains {T1,…,Te} such that:

Front. Comput. Sci. China, 2008, 2(1) 59

(i) h is regular w.r.t Sat(Ti) for all i;

(ii) Z(p,T ,h)(
Se
i~1

Z Ti,hð Þ((V(p)>W(T))\V(h);

(iii) Moreover, if the product of initials hT of T divides

h, then

Z p,T ,hð Þ~
[e
i~1

Z Ti,hð Þ:

Proof Intersect(p,T) returns regular chains T1,…,Te such
that

V(p)>W(T)(W T1ð Þ| � � �
|W Teð Þ(V(p)>W(T): ð3Þ

Using Regularize(h,Ti) we can assume that (i) holds. (3)

clearly implies (ii). The conclusion (iii) follows from

Lemma 2.

4 Representations of constructible sets

The constructible set [16,17] is a classical concept in elim-
ination theory. In this section, we present two types of

representations for constructible sets in �Kn.

Definition 4 (Constructible set) A constructible subset of
�Kn is any finite union

A1\B1ð Þ| � � �| Ae\Beð Þ,

where A1,…,Ae, B1,…,Be are algebraic varieties over K.

Let F be the set of all constructible subsets of �Kn w.r.t K.

From Exercise 3.18 in Ref. [17], we have

– all open algebraic sets are in F ;

– the complement of an element in F is in F ;

– the intersection of two elements in F is in F .

Moreover, these three properties describe exactly all con-

structible sets.

Given a set of polynomial F and f [K Y½ �, we denote
D(F,f) the difference of V(F) and V(f), which is also called

a basic constructible set. If F is the empty set, then we

write D(f) for short. Note that for a regular system in

Ref. [3], D(T,h)5Z(T,h) holds.

4.1 Gröbner basis representation

Now Gröbner bases have become a standard tool to deal

with algebraic sets; and they can be applied to manipulate

constructible sets as well. Given a constructible set C,

according to the definition, one can represent C by a

unique sequence of closed algebraic sets whose defining

ideals naturally can be characterized by their reduced
Gröbner bases [18].

However, the constructible set is a geometrical object

intrinsically. We pay extra cost to manipulate them, since
it is very hard to compute the intersection of two ideals

and even to compute the radical ideal of an ideal.

Whatsoever, there exist effective algorithms tomanipulate

constructible sets. We shall use regular systems to do the

same jobs in a more efficient manner.

4.2 Regular system representation

In this section, we show that (Theorem 2) every construc-

tible set C can be represented by a finite set of regular

systems{[Ti,hi]|i5 1,…,e}, that is:

C~
[e
i~1

Z Ti,hið Þ:

Combining with Lemma 1, we know that if a regular sys-

tem representation of a constructible set is empty thenC is

an empty set. This fact leads to an important application

of verifying polynomial system solver. The proof of

Theorem 2 is partially constructible and relies on an algo-

rithm called Difference, presented in Section 5. As an

immediate consequence of the specifications of this algo-

rithm, we obtain the following theorems.

Theorem 1 Given two regular systems [T,h] and [T9,h9],
there is an algorithm to compute the regular system repre-

sentations of:

(1) the difference Z(T,h)\Z(T9,h9);

(2) the intersection Z(T,h)>Z(T9,h9).

Proof (1) follows from the algorithmDifference. Note that

given two sets A and B, A>B5A\(A\B). (2) follows from

a successive call to Difference.

Theorem 2 Every constructible set can be represented by a

finite set of regular systems.

Proof Consider the following family ~F of subsets of
�Kn:

~F~ SjS~
[e
i~1

Z Ti,pið Þ
()

,

where [Ti,pi] are regular systems. First, every open subset

can be decomposed into the finite union of open subsets

D(f) which can be represented by the empty regular chain

and f. Hence ~F contains all open subsets. Second, con-

sider two elements S and T in ~F ; and assume that

S~
[e
i~1

Z Si,pið Þ and T~
[f
j~1

Z Tj,qj
� �

:

We have

S
\

T~
[e
i~1

[f
j~1

Z Si,pið Þ
\

Z Tj,qj
� �� �

:

60 Changbo CHEN, et al., On the verification of polynomial system solvers

By Theorem 1, S>T has a regular system representation,

that is to say, S>T [~F . By induction, any finite intersec-

tion of elements of ~F is in ~F . Finally, we shall prove that

the complement of an element in ~F is in ~F . Essentially, we

only need to show that for each l(i(e, Z(Si,pi)
c is in ~F .

Indeed,

Z Si,pið Þc~W Sið Þc
[

V pið Þ
~V Sið Þc

[
V pihSi
ð Þ

is in ~F , since both V(Si)
c and V(pihSi

) have regular system

representations.

5 The Difference algorithm

In this section, we present an algorithm to compute the set

theoretical difference of two constructible sets given by

regular systems. Here we contribute a sophisticated algo-

rithm, which heavily exploits the structure and properties

of regular chains.

Two procedures, Difference and DifferenceLR, are

involved in order to achieve this goal. Their specification

and pseudo-code can be found below. The correctness

and termination of these algorithms are established in

Ref. [19]. For the pseudo-code, we use the MAPLE syn-

tax. However, each of the two functions below returns a

sequence of values. Individual value or sub-sequences of

the returned sequence are thrown to the flow of output

by means of an output statement. Hence an output state-

ment does not cause the termination of the function

execution.

Algorithm① Difference ([T,h],[T9,h9])

Input [T,h],[T9,h9] two regular systems.

Output Regular systems {[Ti,hi]|i5 1,…,e} such that:

Z(T ,h)\Z T 0,h0ð Þ~
[e
i~1

Z Ti,hið Þ:

Algorithm② DifferenceLR (L,R)

Input L5 {[Li, fi]|i5 1,…,r} and R5 {[Rj,gj]|j5 1,…,

s} two lists of regular systems.

Output Regular systems {[Ti,hi]|i5 1,…,e} such that:

[r
i~1

Z Li,fið Þ)
 !

\
[s
j~1

Z Rj,gj
� � !

~
[e
i~1

Z Ti,hið Þ:

Theorem 3 The algorithms Difference and DifferenceLR

terminate and satisfy the specifications as stated.

The proof of Theorem 3 is quite involved, and a

detailed proof is in Ref. [19]. Alternatively, we give a

naive method to realize the Difference algorithm here.

For two regular systems [T1,h1] and [T2,h2], the follow-

ing formula,

Z T1,h1ð Þ\Z T2,h2ð Þ~ Z T1,h1ð Þ
\

V T2ð Þc
� �

| Z T1,h1ð Þ
\

V h2hT2
ð Þ

� �

~
[
f [T2

Z T1,h1ð Þ\V(f)
 !
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Task A

[
Z T1,h1ð Þ>V h2hT2

ð Þð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Task B

,

ð4Þ

provides a method to compute the difference of the zero

sets of two regular systems, where Task A is achieved by

a call to IntersectGeneral(0,T1,fh1hT1
) and Task B is

achieved by a call to IntersectGeneral(h2hT2
,T1,h1hT1

).
However, this method completely ignores the structure

of [T2,h2] (a regular system). Algorithm 1 is more subtle

which exploits heavily the structure of [T2,h2]. In broad

words, the procedure processes as follows.

(1) If Sat(T1)5 Sat(T2) holds, computations reduce to ele-

mentary manipulations of zero sets.

(2) Otherwise, let v be the largest variable such that Sat

(T1,, v)5 Sat(T2,, v). Let G be a GCD of T1,v and T2,v

modulo Sat(T1,, v). If G is not constant and has main

variable v, computations split into cases where either

one can conclude easily or a recursive call to the pro-
cedure can be made. If G is constant or has main vari-

able less than v, one can also easily conclude.

In Section 7, we will see that ignoring the structure of

[T2,h2] will result in bad performance. For some systems,

we can solve them but we cannot verify via the naive

difference algorithm.

Algorithm 1 Difference([T,h], [T9,h9])

1: if Sat(T)5 Sat(T9) then
2: output IntersectGeneral(h9hT9,T,hhT)
3: else

4: Let v be the largest variable s.t. Sat(T, v)5 Sat(
T9, v)

5: if vgmvar(T9) and v1mvar(T) then

6: p0/T 0
v

7: output [T,hp9]
8: output DifferenceLR(IntersectGeneral(p9,T,

hhT), [T9,h9])
9: else if v1mvar(T9) and vgmvar(T) then

10: prTv

11: output DifferenceLR([T,h], IntersectGeneral

(p,T9,h9hT9))
12: else

13: prTv

14: G/GCD Tv,T
0
v,Tvv

� �
15: if Gj j~1 then

16: Let g,Cð Þ [G
17: if g [K then

ð4Þ

Front. Comput. Sci. China, 2008, 2(1) 61

18: output [T,h]

19: else if mvar(g), v then

20: output [T,gh]

21: output DifferenceLR(IntersectGeneral

(g,T,hhT), [T9,h9])
22: else if mvar(g)5 v then

23: if mdeg(g)5mdeg(p) then

24: D0
p/T 0

vv| pf g|T 0
wv

25: output Difference([T,h], D0
p,h

0hT 0
h i

26: else if mdeg(g),mdeg(p) then

27: qr pquo(p,g,C)

28: DgrC< {g}<T. v

29: DqrC< {q}<T. v

30: output Difference([Dg,hhT], [T9,h9])
31: output Difference([Dq,hhT], [T9,h9])
32: output DifferenceLR(IntersectGeneral

(hg,T,hhT), [T9,h9])
33: end if

34: end if

35: else if Gj jo2 then
36: for g,Cð Þ [G do
37: if |C|. |T, v| then

38: for EgExtend(C,T> v) do

39: for DgRegularize(hhT,E) do

40: if hhT1 Sat(D) then

41: output Difference([D,hhT], [T9,
h9])

42: end if

43: end for

44: end for

45: else

46: output Difference([C<T> v,hhT], [T9,
h9])

47: end if

48: end for

49: end if

50: end if

51: end if

Algorithm 2 DifferenceLR(L,R)

1: if L~1 then

2: output 1
3: else if R~1 then

4: output L

5: else if Rj j~1 then

6: Let [T9,h9]gR

7: for [T,h]gL do

8: output Difference([T,h], [T9,h9])
9: end for

10: else

11: while R=1 do

12: Let [T9,h9]gR, RrR\{[T9,h9]}
13: S/1
14: for [T,h]gL do

15: SrS<Difference([T,h], [T9,h9])

16: end for

17: LrS

18: end while

19: output L

20: end if

6 Verification of triangular decompositions

In this section, we describe how to verify the output from a

triangular decomposition solver. For verification of triangu-

lar decomposition in Kalkbrener’s sense, it is still unknown

whether we can circumvent Gröbner basis computations.

However, in Lazard’s sense, we present two methods, based

on Gröbner bases and regular systems, respectively.

6.1 Verification with Gröbner bases

The following two lemmas state theGröbnerbasismethods to

verify whether two basic constructible sets are equal or not.

Lemma 5 Let {F,f} and {G0,g0} be two polynomial sys-

tems. The following statements are equivalent

1) D(F ,f)\D G0,g0ð Þ(Sr
i~1

D Gi,gið Þ.
2) For every {i1,…,is}({0,…,r}, 0(s(r,ffi

SF> gi1 , . . . ,gisf gT
p

) P
k [0,...,rf g\ i1,...,isf g

Sf TSGkT: ð5Þ

Proof 1) is equivalent to D(F ,f)(
Sr
i~0

D Gi,gið Þ.

D(F ,f)
\ \r

i~0

D Gi,gið Þc
 !

~1:

Using the distributive property, we deduce that 1) is equi-

valent to

D(F ,f)>V gi1 , . . . ,gisð Þð Þ>
\

k [f0,...,rg\ i1,...,isf g
V Gkð Þc

0
@

1
A~1,

for all subsets {i1,…,is} of {0,…,r}. The proof easily fol-

lows.

Lemma 6 Let {F,f} and {G,g} be two polynomial systems.

The following statements are equivalent

1) D(F ,f)\D(G,g))
Sr
i~1

D Hi,hið Þ.
2) For all 1(i(r, we have

hig [
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SHi|GT

p
,hi [

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SHi,f T

p
, and

ShiTSFT5
ffiffiffiffiffiffiffiffiffiffiffi
SHiT

p
:

ð6Þ

Proof 1) holds if and only if for each 1(i(r we have

D Hi,hið ÞTD(F ,f)c~1,

D Hi,hið ÞTD(G,g)~1,

�

62 Changbo CHEN, et al., On the verification of polynomial system solvers

which holds if and only if

V Hið ÞTV hið ÞcTV(F)c~1,

V Hið ÞTV hið ÞcTV(f)~1,

V Hið ÞTV hið ÞcTV(G)
T
V(g)c~1:

8><
>:

The proof easily follows.

The above general lemmas can be used to check if the

output from the algorithm Difference is correct or not.

In particular, they can be applied to check if a triangular

decomposition is valid or not by comparing the input

system and one triangular decomposition. We naively

implement them using MAPLE package PolynomialIdeals.

6.2 Verification with the Difference algorithm

Given two Lazard’s triangular decompositions

{Ti|i5 1,…,e} and {Sj|j5 1,…,f} of a polynomial system.

Checking
Se
i~1

W Tið Þ~ Sf
j~1

W Sj

� �
amounts to checking

both

[e
i~1

W Tið Þ
 !

\
[f
j~1

W Sj

� � !
and

[f
j~1

W Sj

� � !
\
[e
i~1

W Tið Þ
 !

being empty. In turn, after computing the regular system

representations of above two constructible sets, according

to Theorem 3, we solve the verification problem with the

algorithm DifferenceLR in Lazard’s sense.

7 Experimentation

We have implemented a verifier, named Diff-verifier,

according to the DifferenceLR algorithm proposed in

Section 5, and it has been implemented inMAPLE 11 based

on the REGULARCHAINS library. To verify the effective-

ness of our Diff-verifier, we have also implemented

Table 1 Features of the polynomial systems

number of components

Sys name n d dimension MAPLE

Triangularize

ALDOR TRIADE

server

Epsilon

RegSer

Epsilon

SimSer

1 Montes S1 4 2 [2,2,1] 3 3 3 3

2 Montes S2 4 3 [0] 1 1 1 1

3 Montes S3 3 3 [1,1] 2 2 2 3

4 Montes S4 4 2 [0] 1 1 1 1

5 Montes S6 4 3 [2,2,2] 3 3 3 3

6 Montes S7 4 3 [1] 2 2 3 6

7 Montes S8 4 12 [2,1] 2 2 6 6

8 Alonso 7 4 [3] 3 3 3 4

9 Raksanyi 8 3 [4] 4 4 4 10

10 YangBaxter Rosso 6 3 [4,3,3,1,1,1,1] 7 7 4 13

11 l-3 4 3 [0,0,0,0,0,0,0,0,0,0,0,0,0] 25 13 8 8

12 Caprasse 4 4 [0,0,0,0,0] 15 5 4 4

13 Reif 16 3 [] 0 0 0 0

14 Buchberger WuWang 5 3 [2] 3 3 3 4

15 DonatiTraverso 4 31 [1] 6 3 3 3

16 Wu-Wang.2 13 3 [1,1,1,1,1] 5 5 5 5

17 Hairer-2-BGK 13 4 [2] 4 4 5 6

18 Montes S5 8 3 [4] 4 4 4 10

19 Bronstein 4 3 [1] 4 2 4 9

20 Butcher 8 4 [3,3,3,2,2,0] 7 6 6 6

21 genLinSyst-2-2 8 2 [6] 11 11 11 11

22 genLinSyst-3-2 11 2 [8] 17 18 18 18

23 Gerdt 7 4 [3,2,2,2,1,1] 7 6 10 10

24 Wang93 5 3 [1] 5 4 6 7

25 Vermeer 5 5 [1] 5 4 12 14

26 Gonnet 5 2 [3,3,3] 3 3 9 9

27 Neural 4 3 [1,1] 4 3 – –

28 Noonburg 4 3 [1,1] 4 3 – –

29 KdV 26 3 [12,12,11,11,11,11,11] 7 7 – –

30 Montes S12 8 2 [4] 22 17 23 –

31 Pappus 12 2 [6,6,6,6,6,6,6,6,6,6] 124 129 156 –

Front. Comput. Sci. China, 2008, 2(1) 63

another verifier, named GB-verifier, applying Lemma 5

and Lemma 6, on top of the PolynomialIdeals package in

MAPLE 11.

We use these two verifiers to examine four polynomial

system solvers herein. They are the Triangularize function

in the RegularChains library [8], the TRIADE server in

ALDOR on top of the BasicMath library [9], the RegSer

function and the SimSer function in Epsilon [10] imple-

mented inMAPLE. The first two solvers solve a polynomial

system into regular chains by means of the TRIADE algo-

rithm [15]. They can work in both Lazard’s sense and

Kalkbrener’s sense. In this work, we use the options for

solving in Lazard’s sense. The RegSer function decom-

poses a polynomial system into regular systems in a strong

sense, and the SimSer function decomposes a polynomial

system into simple systems. They adopt the elimination

methods in Ref. [13].

The problems used in this benchmark are chosen from

Refs. [11–13]. In Table 1, for each system, we give the

dimension sequence of the triangular decomposition com-

puted in Kalkbrener’s sense by the TRIADE algorithm. The

number of variables is denoted by n, and d is the maximum

degree of a monomial. We also give the number of com-

ponents in the solution set for each of the methods we are

studying.

Table 2 gives the timing of each problem solved by the

four methods. In this study, due to the current availability

of Epsilon, the timings obtained by the RegSer and the

SimSer are performed in Maple 8 on Intel Pentium 4

machines (1.60 GHz CPU, 513 MB memory and Red

Hat Linux 3.2.2-5). All the other timings are run on

Intel Pentium 4 (3.20 GHz CPU, 2.0 GB total memory,

and Linux 4.0.0-9), and the MAPLE version used is 11. The

TRIADE server is a stand-alone executable program com-

piled from a program in ALDOR.

Table 3 summarizes the timings of GB-verifier for veri-

fying the solutions of the four methods. Table 3 gives

also the timings of Diff-verifier for checking the solutions

by MAPLE Triangularize vs. ALDOR TRIADE server,

MAPLE Triangularize versus Epsilon RegSer, and

Epsilon RegSer versus Epsilon SimSer. For the case

where there is a time, the verifying result is also true.

The ‘–’ denotes the case where the test stalls by either

reaching the time limit of 43200 seconds or causing a

memory failure.

Based on Eq. (4) in Section 5, we implement the

Difference operation naively, and we call it Naive-diff-

verifier. From the Table 4 we can see clearly that, for most

problems, the Diff-verifier performs much better than

Naive-diff-verifier, especially for hard problems.

Table 2 Solving timings in second of the four methods

Sys Maple Triangularize ALDOR TRIADE server Epsilon RegSer Epsilon SimSer

1 0.104 0.164 0.01 0.03

2 0.039 0.204 0.03 0.02

3 0.069 0.06 0.019 0.111

4 0.510 0.072 0.049 0.03

5 0.052 0.096 0.03 0.03

6 0.150 0.06 0.09 5.14

7 0.376 0.072 0.2 1.229

8 0.204 0.065 0.109 0.16

9 0.460 0.066 0.141 0.481

10 1.252 0.108 0.069 0.21

11 5.965 0.587 1.53 2.91

12 2.426 0.167 1.209 2.32

13 123.823 1.886 1.979 2.36

14 0.2 0.101 0.049 0.109

15 2.641 0.08 0.439 0.7

16 105.835 1.429 5.49 6.14

17 23.453 0.688 1.76 1.679

18 0.484 0.078 0.13 0.471

19 0.482 0.071 0.24 1.000

20 9.325 0.442 1.689 2.091

21 0.557 0.096 0.13 0.21

22 1.985 0.173 0.431 0.411

23 4.733 0.499 3.5 4.1

24 7.814 5.353 2.18 30.24

25 26.533 0.580 4.339 60.65

26 3.983 0.354 2.18 2.48

27 15.879 1.567 – –

28 15.696 1.642 – –

29 9245.442 49.573 – –

30 17.001 0.526 2.829 –

31 79.663 4.429 11.78 –

64 Changbo CHEN, et al., On the verification of polynomial system solvers

This experimentation results illustrate that verifying a

polynomial solver is a truly difficult task. The GB-verifier

is very costly in terms of CPU time and memory. It only

succeeds for some easy examples. Assuming that the GB-

verifier is reliable, for the examples it succeeds, the

Diff-verifier agreeswith its results bypairwise checking,while

it takes much less time. This shows the efficiency of our Diff-

verifier.Moreover, theDiff-verifier succeeds in computing the

difference foranypairofoutputof the four solvers.Therefore,

our new approach can verify the solution set of all test

Table 3 Timings of GB-verifier and Diff-verifier

GB-verifier timing/s Diff-verifier timing/s

sys Maple Triangularize

(M.T.)

ALDOR TRIADE

server (A.T.)

Epsilon

RegSer (E.R.)

Epsilon

SimSer (E.S.)

M.T. vs A.T. M.T. vs E.R. E.R. vs E.S.

1 0.556 0.526 0.518 0.543 0.188 0.238 0.217

2 0.128 0.127 0.129 0.131 0.012 0.010 0.010

3 0.584 0.575 0.585 2.874 0.067 0.088 0.326

4 0.104 0.133 0.139 0.137 0.018 0.017 0.018

5 1.484 1.472 1.457 1.469 0.198 0.178 0.190

6 76.596 72.374 71.853 – 2.010 2.390 12.591

7 0.616 0.601 4.501 4.536 0.191 0.404 0.492

8 – – – – 0.571 0.677 0.925

9 – – – – 4.257 4.454 7.884

10 – – – – 6.555 8.824 9.037

11 – – – – 5.341 3.564 1.997

12 – 58.332 33.469 35.213 1.506 1.657 2.354

13 – – – – 0.000 0.000 0.000

14 1.96 1.937 2.165 5.739 0.617 0.661 0.722

15 330.317 – – – 1.689 3.095 2.870

16 10466.587 – – – 1.340 0.795 0.773

17 – – – – 1.883 2.272 4.903

18 – – – – 4.450 4.596 8.063

19 1.544 0.717 5.046 – 2.162 6.382 41.374

20 – – – – 5.683 5.113 5.949

21 – – – – 6.595 6.621 4.441

22 – – – – 21.689 17.943 11.503

23 – – – – 4.073 5.071 5.775

24 – – – – 1064.127 636.221 707.668

25 – – – – 817.499 1519.858 1585.095

26 – – – – 0.554 1.276 1.741

27 11383.335 – – – 1072.199 – –

28 – – – – 1248.353 – –

29 – – – – 5.418 – –

30 – – – – 428.503 706.854 –

31 – – – – 8071.055 9800.086 –

Table 4 Timings of Naive-diff-verifier and Diff-verifier for M.T. vs A.T.

Sys Naive-diff-verifier timing/s Diff-verifier timing/s Sys Naive-diff-verifier timing/s Diff-verifier timing/s

1 0.027 0.188 17 10876.470 1.883

2 0.003 0.012 18 5.498 4.450

3 0.075 0.067 19 7.491 2.162

4 0.010 0.018 20 450.342 5.683

5 0.049 0.198 21 158.879 6.595

6 2.146 2.010 22 4450.023 21.689

7 0.111 0.191 23 11.415 4.073

8 1.815 0.571 24 25047.768 1064.127

9 5.342 4.257 25 – 817.499

10 58.938 6.555 26 0.373 0.554

11 – 5.341 27 2466.459 1072.199

12 – 1.506 28 2464.389 1248.353

13 0.000 0.000 29 316.925 5.418

14 3.254 0.617 30 – 428.503

15 11.813 1.689 31 – 8071.055

16 11.374 1.340

Front. Comput. Sci. China, 2008, 2(1) 65

polynomial systems that at least two of our four solvers can

solve, which serves well for our purpose.

Furthermore, the tests also show that the Diff-

verifier can verify quite difficult problems. Therefore,

the tests indicate that all four solvers are solving
tools with a high probability of correctness, since the

checking results would not agree to each other otherwise.

References

1. Grabmeier J, Kaltofen E, Weispfenning V. Computer Algebra
Handbook. Berlin: Springer, 2003

2. Aubry P, Lazard D, Moreno Maza M. On the theories of
triangular sets. Journal of Symbolic Computation, 1999,
28(1–2): 105–124

3. Wang D. Computing triangular systems and regular systems.
Journal of Symbolic Computation, 2000, 30(2): 221–236

4. Donati L, Traverso C. Experimenting the Gröbner basis algo-
rithm with the ALPI system. In: Proceedings of ISSAC. New
York: ACM Press, 1989, 192–198

5. Aubry P, Moreno Maza M. Triangular sets for solving poly-
nomial systems: a comparative implementation of four meth-
ods. Journal of Symbolic Computation, 1999, 28(1–2): 125–154

6. Backelin J, Fröberg R. How we proved that there are exactly
924 cyclic 7-roots. In: Watt S M, Proceedings of ISSAC. New
York: ACM Press, 1991, 103–111

7. Sit W. Computations on quasi-algebraic sets. In: Proceedings
of IMACS ACA, 1998

8. Lemaire F, Moreno Maza M, Xie Y. The regularChains lib-
rary. In: Kotsireas I S, ed. Proceedings of Maple Conference
2005. 2005, 355–368

9. The Computational Mathematics Group. The BasicMath lib-
rary NAG Ltd, Oxford, UK, 1998. http://www.nag.co.uk/
projects/FRISCO.html

10. Wang D. Epsilon 0.618. http://www-calfor.lip6.fr/wang/
epsilon

11. Manubens M, Montes A. Improving DISPGB Algorithm
Using the Discriminant Ideal, 2006. http://www.citebase.org/
abstract?id5oai:arXiv.org:math/0601763

12. The SymbolicData Project, 2000–2006. http://www.Symbolic
Data.org

13. Wang D. Elimination Methods. Berlin: Springer, 2001

14. Boulier F, Lemaire F,MorenoMazaM.Well known theorems
on triangular systems. In: Proceedings of Transgressive
Computing 2006. Spain: University of Granada, 2006

15. Moreno Maza M. On triangular decompositions of algebraic
varieties. Technical Report TR 4/99, NAG Ltd, Oxford, UK,
1999. http://www.csd.uwo.ca/,moreno

16. Eisenbud D. Commutative Algebra. GTM 150. Berlin:
Springer, 1994

17. Hartshorne R. Algebraic Geometry. Berlin: Springer-Verlag,
1997

18. O’Halloran J, Schilmoeller M. Gröbner bases for constructible
sets. Journal of Communications in Algebra, 2002, 30(11):
5479–5483

19. Chen C, Golubitsky O, Lemaire F, et al. Comprehensive tri-
angular decomposition. In: Proceedings of Computer Algebra
in Scientific Computing. Berlin: Springer, LNCS, 2007, 4770:
73–101

66 Changbo CHEN, et al., On the verification of polynomial system solvers

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

