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Abstract. The comprehensive LU decomposition of a parametric ma-
trix consists of a case analysis of the LU factors for each specialization
of the parameters. Special cases can be discontinuous with respect to
the parameters, the discontinuities being triggered by zero pivots en-
countered during factorization. For polynomial matrices, we describe an
implementation of comprehensive LU decomposition in Maple, using
the RegularChains package.

Keywords: Parametric linear algebra · LU decomposition · Regular
chains.

1 Introduction

Decomposing a matrix A into lower and upper triangular factors L and U
is one of the fundamental operations in linear algebra. It is implemented in
Maple’s LinearAlgebra package as LUDecomposition. For polynomial matri-
ces, the function takes the usual Computer Algebra option of returning only a
generic factorization. Thus, for example,
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The special cases x � 1, 3{2 make the elements singular. The importance of re-
computing singular cases is established in [5], and, in the context of differential
elimination, in [7]. We remark that special cases for LU factoring do not always
occur when pivots are zero, because sometimes alternative pivots can lead to the
same factoring. Indeed special cases can be exactly detected by Maple’s existing
LUDecomposition function through a special syntax implementing the algorithm
of [5], which is not the default because its output is not just a simple answer, as
we discuss below. See [8] for an example of the syntax. Because re-computation
is necessary in those special cases by that method, which allows comprehensive
computation but is not itself comprehensive, we do not directly compare our
present implementation to that syntax.
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Symbolic computing in the presence of parameters has been the subject of
discussion over many years [1]. Early systems, such as Macsyma, often asked a
user interactively for information regarding a parameter, while other approaches
used provisos, case analyses, error messages, etc. An important distinction is that
between comprehensive approaches and generic approaches. In a comprehensive
approach, a system will attempt to identify and compute all possible special
cases, in contrast to a generic approach which selects one expression, implying
conditions (which may not be stated) on the parameters.

Comprehensive solutions have been defined and used in several areas of math-
ematics. In algebraic geometry, a comprehensive Gröbner Basis was defined in
[6], and a comprehensive triangular system based on regular chains was defined
in [9]. In the Maple package DEtools, the rifsimp program offers a casesplit

option, which is equivalent to a comprehensive analysis. A comprehensive so-
lution of linear systems was presented in [14]. Computer Algebra systems have
tended to avoid comprehensive results for several reasons. First, there is the
difficulty of continuing a computation using a comprehensive result; secondly,
there has been a fear that the number of cases will multiply exponentially and
overwhelm the system. Although this could happen, there are many problems
for which a comprehensive solution is possible and desirable.

2 Preliminaries

The implementation is based on Maple’s RegularChains library, which we
briefly describe in this section. The notion of a regular chain, introduced inde-
pendently in [2] and [4], is closely related to that of a triangular decomposition
of a polynomial system. Broadly speaking, a triangular decomposition of a poly-
nomial system S is a set of simpler (in a precise sense) polynomial systems
S1, . . . , Se such that a point p is a solution of S if, and only if, p is a solution of
(at least) one of the systems S1, . . . , Se.

If one wishes to describe all the solutions of S, those simpler systems are
required to be regular chains. We refer to [3, 10] for a formal presentation on the
concepts of a regular chain.

Multivariate polynomials. Let K be a field. If K is an ordered field, then we
assume that it is a real closed field such as the field R of real numbers. Otherwise,
we assume that K is algebraically closed, like the field C of complex numbers.
Let X1   � � �   Xs be s ¥ 1 ordered variables. We denote by KrX1, . . . , Xss
the ring of polynomials in the variables X1, . . . , Xs with coefficients in K. For a
non-constant polynomial p P KrX1, . . . , Xss, the greatest variable in p is called
the main variable of p, denoted by mvar(p), and the leading coefficient of p w.r.t.
mvar(p) is called the initial of p, denoted by init(p).

Regular chains. A set R of non-constant polynomials in KrX1, . . . , Xss is called
a triangular set, if for all p, q P R with p � q we have mvar(p) � mvar(p).
A variable Xi is said to be free w.r.t. R if there exists no p P R such that
mvar(p)=Xi. For a nonempty triangular set R, we define the saturated ideal
sat(R) of R to be the ideal(R):h8R , where hR is the product of the initials of the
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polynomials in R. The saturated ideal of the empty triangular set is defined as
the trivial ideal x0y. From now on, R denotes a triangular set of KrX1, . . . , Xss.
The ideal sat(R) has several properties, and in particular it is unmixed [11]. We
denote its height, that is, the number of polynomials in R, by e, thus sat(R) has
dimension s � e. Let Xi1   � � �   Xie be the main variables of the polynomials
in R. We denote by rj the polynomial of R whose main variable is Xij and by
hj the initial of rj . Thus hR is the product h1 � � �he. We say that R is a regular
chain whenever R is empty or, tr1, . . . , re�1u is a regular chain and he is regular
modulo the saturated ideal sat(tr1, . . . , re�1u).

Constructible sets. Let F � KrX1, . . . , Xss be a set of polynomials and
g P KrX1, . . . , Xss be a polynomial. We denote by V pF q � Ks the zero set
or affine variety of F , that is, the set of points in the affine space Ks at which
every polynomial f P F vanishes. If F consists of a single polynomial f , we write
V pfq instead of V pF q. We call a constructible set any subset of Ks of the form
V pF qzV pgq. Let R � KrX1, . . . , Xss be a regular chain and let h P KrX1, . . . , Xss
be a polynomial. We say that the pair rR, hs is a regular system whenever
h is regular modulo sat(R) and V phRq � V phq holds. We write ZpR, hq for
V pRqzV phq. One should observe that for a regular system rR, hs the zero set
ZpR, hq is necessarily not empty. Regular systems provide an encoding for con-
structible sets. More precisely, there exists a finite family T of regular systems
rR1, h1s, . . . , rRe, hes of KrX1, . . . , Xss such that

V pF qzV pgq � ZpR1, h1q Y � � � Y ZpRe, heq.

We call T a triangular decomposition of the constructible set V pF qzV pgq. En-
coding constructible sets with regular systems has another benefit. It leads to
efficient algorithms for performing set-theoretic operations on constructible sets;
see [9]. These operations, as well as the above mentioned triangular decomposi-
tion algorithms, are part of the RegularChains library [12, 13] distributed with
the Maple CAS.

3 Comprehensive LU method

We consider the LU factoring of matrices with multivariate polynomial entries,
using partial pivoting. The pivots are analysed with the RegularChains library
in Maple. Care is taken to identify cases where zero pivots do not, after all,
lead to distinct LU factors. Considering that constructible sets represent the
solution set of a polynomial, if there exists cases where the pivot is zero in a step
of LU decomposition, constructible sets are used to represent their equations.
Subsequently, these equations are used to express the constraints of validity of
each solution branch (e.g.: x � 3{2 for the example shown in section 1)

For the decomposition to be comprehensive (i.e., span all possible scenarios),
we need to conduct the row reductions on all possible unique cases that may
arise. Therefore, at each step, a pivot’s constructible sets are analysed. Let CS1

express the solution set of pivot � 0. This constructible set can be built with
the GeneralConstruct command from the RegularChains library in Maple :
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Fig. 1. Steps towards the comprehensive solution. Each root-to-leaf path represents
a distinct LU decomposition of A. On each step, the calculation is split between two
potential branches. Square nodes represents non-unique, and therefore dropped, cases.

>> GeneralConstruct([],[A(k,k)],R);

Where the first and second arguments express equations and inequations to
build the constructible set from, and the third argument is a polynomial ring.
In order to build CS1, we would give GeneralConstruct one inequation that
represents the condition pivot ‰ 0, and no equations. If CS1 is nonempty, there
are cases in which the natural matrix pivot can be used for the row reduction
operation; so this operation is recorded in a branch (pivot ‰ 0 in Figure 1). Let
CS2 express the solution set of an inequation pivot “ 0. Similarly to the other
case, CS2 can be built with the GeneralConstruct command:

>> GeneralConstruct([A(k,k)],[],R);

However, in this case, an equation pivot “ 0 is passed as argument to the
function, and no inequations are used. If CS2 is non-empty, we look for an alter-
native pivot in the same column that has an empty CS2 (this way guaranteeing
that there will be no cases where division by zero is possible). The alterna-
tive pivot is used to build the permutation matrix and the original CS2 value is
saved, so that we can keep track of the exception case conditions. The alternative
operation is recorded in a second branch (pivot “ 0 in Figure 1).

This process is repeated iteratively on each step of the LU factoring, every
time splitting the result in two possible cases, and this way forming an incomplete
binary tree (incomplete because we only keep the unique leaves). The result is
a group of solutions and their constraints, where the joining of all solution’s
constructible sets form a partition of the variable domain space.

Fig. 1. Steps towards the comprehensive solution. Each root-to-leaf path represents
a distinct LU decomposition of A. On each step, the calculation is split between two
potential branches. Square nodes represents non-unique, and therefore dropped, cases.

>> GeneralConstruct([],[A(k,k)],R);

Where the first and second arguments express equations and inequations to
build the constructible set from, and the third argument is a polynomial ring.
In order to build CS1, we would give GeneralConstruct one inequation that
represents the condition pivot � 0, and no equations. If CS1 is nonempty, there
are cases in which the natural matrix pivot can be used for the row reduction
operation; so this operation is recorded in a branch (pivot � 0 in Figure 1). Let
CS2 express the solution set of an inequation pivot � 0. Similarly to the other
case, CS2 can be built with the GeneralConstruct command:

>> GeneralConstruct([A(k,k)],[],R);

However, in this case, an equation pivot � 0 is passed as argument to the
function, and no inequations are used. If CS2 is non-empty, we look for an alter-
native pivot in the same column that has an empty CS2 (this way guaranteeing
that there will be no cases where division by zero is possible). The alterna-
tive pivot is used to build the permutation matrix and the original CS2 value is
saved, so that we can keep track of the exception case conditions. The alternative
operation is recorded in a second branch (pivot � 0 in Figure 1).

This process is repeated iteratively on each step of the LU factoring, every
time splitting the result in two possible cases, and this way forming an incomplete
binary tree (incomplete because we only keep the unique leaves). The result is
a group of solutions and their constraints, where the joining of all solution’s
constructible sets form a partition of the variable domain space.
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4 Implementation in Maple

We have written a Maple procedure ComprehensiveLU(A,R,opt) to implement
the method described. The arguments are A, a square matrix with polynomial
elements, R, a descriptor of the polynomial ring containing the elements (the
procedure PolynomialRing in the RegularChains library), and opt, to select
different displays of the results. The results are returned as a list of lists. Each
list consists of a factoring pP,L, Uq, and a constructible set, specifying the con-
ditions. It is our intention to add the ComprehensiveLU procedure as part of the
LinearAlgebra library from Maple in the future.

The options available for the printing of conditions are constructible sets (the
default), prettyprinting and programmable. To present some examples below, we
have unpacked the output using the prettyprinting option, for easier reading. We
have also confined our examples to small matrices with only a few polynomial en-
tries. In each example, the first case corresponds to the generic result, and equals
the result returned by the Maple command LinearAlgebra[LUDecomposition].

We return to the introductory example (1).
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���� ,
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The permutation matrix is I and is omitted. The two conditions are not returned
by Maple. The special cases are�
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0 1 0
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�
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!
x� 1 � 0 .

A multivariate example shows how the number of conditions increases as the
number of parameters increases.

A �

�
�a 2b 3
d �2 6
7 3 2

�
� . (3)

The generic case (also returned by Maple without conditions) is
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There are 3 special cases, and it is interesting to note that they uncover additional
constraints.

A �
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The second case is
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Lastly,
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4.1 Efficiency

The implementation uses the RegularChains library, which is more efficient at
performing polynomial arithmetic than the older LUDecomposition procedure.
In order to perform comparison tests, we created a set of input matrices with
polynomial elements up to degree 5, and measured the computation time for
the LU factoring of each configuration. To ensure a fair efficiency analysis, the
comparison test restricts the ComprehensiveLU program to computing only the
generic case, in order to keep it comparable with the Maple library. The results
are shown in Figure 2. See below the script for the efficiency comparison test:

cf := proc(d) randpoly([x_1, x_2, x_3], dense, degree = d); end;

t1 := []: t2 := []: xd := []:

for d from 1 to 2 do # coeff. degree

m := 3; n:= 3; ## order of the matrix

xd := [op(xd),d];

A := Matrix([[cf(d), cf(d), cf(d)], [1, cf(d), cf(d)],

[cf(d), 2, 4]]):

R := PolynomialRing([x_3, x_2, x_1]):

t_1 := x_1^n + x_1 + 1; t_2 := x_2^2 - x_1 - 1;

t_3 := x_3^2 - x_2 - 1;

cs := GeneralConstruct([t_1, t_2, t_3], [], R):

t := time(): ComprehensiveLU(A, R, cs);

t1 := [op(t1),time() - t]:
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Fig. 2. Computation time vs polynomial degree for LUDecomposition of Maple and the
present ComprehensiveLU. Recursion levels were introduced, with ComprehensiveLU
being restricted to computing only the generic case.

printf("with \%g degree polynomials, ComprehensiveLU took

\%g seconds to compute the result \n",d, time() - t);

a_1:=RootOf(t_1, x_1): a_2:=RootOf(y^2 - a_1 + 1, y):

a_3:=RootOf(z^2 - a_2 + 1, z):

B := eval(A, [x_1 = a_1, x_2 = a_2, x_3 = a_3]);

t := time(): LUDecomposition(B);

t2 := [op(t2),time() - t]:

printf("with \%g degree polynomials, LUDecomposition took

\%g seconds to compute the result \n",d, time() - t);

end do:

The experiment consists of an LU factoring of 3 � 3 matrices with random
polynomials. In order to make the computations algebraically challenging, re-
currence levels were established to define the polynomial variables, which obey
additional polynomial relationships with highest degree equal to 3. The experi-
ment script loops over values of the random polynomial degree d ranging from
1 to 5 and records the time it took both algorithms to compute the final result
in each iteration. The plot in figure 2 illustrates the comparison findings.

5 Conclusion

In parametric linear algebra, LU decomposition can be a discontinuous operation
if the pivots encountered throughout the factorization are polynomials with roots
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defined in the problem’s domain space. The discontinuity equations define special
cases that we carefully consider in this project.

Our aim is to provide a comprehensive tool for computing LU factors of para-
metric matrices in Maple. We have shown that the main existing procedure in
Maple’s LinearAlgebra library, LUDecomposition, can only decompose generic
cases of parametric matrices in an explicit way. Therefore, our algorithmic pro-
cedure ComprehensiveLU can be seen as a complement to the existing library
function.
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