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Abstract. Given a bivariate polynomial p(W,X) we aim at computing
the supremum of the real values x such that there exists a real value w
satisfying p(w, x) = 0. We allow the coefficients of p to depend on real
parameters. Our approach relies on the notion of border polynomial and
takes advantage of triangular decomposition techniques. We report on
the implementation of our algorithm and illustrate its effectiveness with
problems from the theory of robust control.

1 Introduction

The work reported in this paper is motivated by problems arising in control
theory and requiring to compute quantities which depend on parameters. A well-
known source of such problems is Model Predictive Control (MPC) for which
computational strategies decompose the work on off-line and on-line phases [18,
19] and lead to parametric programming (or parametric optimization). Another
source, which can also be handled by parametric programming, is robust and
optimal control [11, 12, 20, 23], in particular for linear dynamical systems with
real parameters. This is, in fact, the application targeted by the present work.

Although the primary approach for solving parametric programming prob-
lems is based on numerical approximation methods [9,10], a few methods based
on symbolic computation [1,12,14] have also been proposed. Symbolic approaches
for solving parametric optimization problems have at least the following advan-
tages w.r.t. their numerical counterparts. Firstly, non-convex feasible regions
are not a theoretical concern for the symbolic approaches. Secondly, the size
of the feasible parameter regions, even when unbounded, does not create extra
difficulty. In fact, the symbolic methods divide the parameter space into con-
nected components according to singularities, which are a natural measure of
the complexity of the solving process. The paper [9] includes an account on the
major difficulties faced by the approximation methods used by the numerical
approaches in parametric optimization.

Before stating the problem studied here, we present our targeted application.
For a linear dynamical system, we aim at computing the H∞ norm of its transfer



matrix when this latter depends on real parameters. We briefly review the nec-
essary materials, following the notations of [5]. Let A,B,C,D be real matrices
with respective formats n×n, n×m, p×n, p×m. Consider the linear dynamical
system {

ẋ = Ax+Bu
y = Cx+Du

(1)

with transfer matrix
G(s) = C(sIn −A)−1B +D. (2)

When A is said stable, that is, when all its eigenvalues of A have negative real
part, one defines the H∞ norm of the transfer matrix as

||G(s)||∞ = sup
<(s)>0

σmax(G(s)) = sup
ω∈R

σmax(G(ıω)). (3)

Here we have σmax(F ) = λ
1/2
max(F ∗F ), where σmax(·) and λmax(·) denote respec-

tively the maximum singular value and maximum eigenvalue of a real square
matrix.

TheH∞ norm of a single input single output (SISO) linear system is the peak
gain of the frequency response. For a multiple input multiple output (MIMO)
system, the H∞ norm is the peak gain across all input/output channels. The
H∞ norm as a measure is thoroughly embedded in modern control theory. For
instance, in robust control it takes the role of a robustness measure [23] and
in model order reduction it is used as an error measure [16]. In the late 90’s,
a few algorithms demonstrating fast convergence of iterative approaches and
exploiting the properties of the singular values of a transfer matrix have been
developed [4–6]. Recently the methods reported in [13] and [2] compute the
H∞ norm via localizing the common roots of two or three polynomials. A new
algorithm that is efficient for descriptor systems is achieved by computing the
eigenvalues of certain structured matrix pencils [3]. However, all these methods
are numeric and are devoted to linear systems free of parameters.

We are now ready to state the problem studied in this paper. Let p ∈
R[W,H][X] be a univariate polynomial in X whose coefficients are multivari-
ate polynomials in two sets of variables W = W1, . . . ,Wm and H = H1, . . . ,Hn

and, with coefficients in the field R of real numbers.
For a value of h ∈ Rn of H we evaluate p at H = h and obtain a polynomial

ph ∈ R[W ][X]. We denote by xsup(h) the supremum of the set

Πh = {x ∈ R | (∃(w1, . . . , wm) ∈ Rm) pw,h(x) = 0} (4)

where pw,h is the polynomial of R[X] obtained by evaluating ph atW = w1, . . . , wm.
In a more compact form, this writes

xsup(h) = sup
w, p(w,h,x)=0

x. (5)

Note the use of sup (supremum, or least upper bound) instead of max since the
set Πh may not admit a maximum, for instance, if p = w1(x−h1). Whether Πh



admits a maximum or not, a supremum of that set always exists. This results
from the completeness of the real numbers, thus the following property: every
nonempty subset of the set of real numbers that is bounded from above has a
supremum that is also a real number. If the set Πh is empty, by convention we
take −∞ as supremum. If the set Πh is not empty and unbounded from above,
then +∞ is its supremum. Now we denote by xsup the function from Rn to R
mapping h to xsup(h).

We view h as a parameter and we call Parametric Supremum Real Root
Problem (PSRRP for short) the problem of computing xsup(h) for every h. In
the absence of parameters, we denote by xsup the supremum supw, p(x,w)=0 x and
call Supremum Real Root Problem (SRRP for short) the problem of computing
xsup. In the absence of the variables W1, . . . ,Wm, PSRRP remains well defined
as above. However, the algorithmic solutions to PSRRP depend on the value of
n.

The case n = 1, to which this paper is devoted, allows us to propose an
algorithmic solution which is a practically efficient and specific to this case. As
mentioned above, solving PSRRP with n = 1 is motivated by a major application
of robust control theory: computing the H∞ norm of the transfer matrix of a
linear dynamical system with parametric uncertainty.

Before discussing our algorithmic solution to PSRRP, we walk through a
few simple examples so as to highlight the different roles of the variables W =
W1, . . . ,Wm and H = H1, . . . ,Hn. We fix m = n = 1. Consider the polynomial
p1 = h1x− w1, we have xsup(h1) = +∞ for all h1 ∈ R. Choose another polyno-
mial p2 = h21x− w2

1 − 1. We have xsup(h1) = +∞ if h1 6= 0 and −∞ otherwise.
Now consider the polynomial p3 = x+ h1w

2
1 − h1 − 1. Then, we have

xsup(h1) =

{
+∞ h1 < 0
h1 + 1 h1 ≥ 0.

In the subsequent sections, we shall assume n = 1 and simply write W instead
of W1. We give now an overview of our results.

In Section 2, an algorithm for SRRP is easily derived from the theory of the
border polynomial [17, 21]. We do not claim that our solution is new. In fact,
we believe that it is equivalent to that of Kanno and Smith1 in [13]. However,
the use of the theory of the border polynomial makes the presentation of our
solution much simpler.

In Section 3, we turn our attention to the parametric case, that is, PSRRP.
Here again we consider the border polynomial of p(W,H,X); let us denote it
by f(H,X). An additional difficulty comes from the fact that the roots of f ,
regarded as a univariate polynomial in X, are now functions of the parameters
H. In order to adapt the algorithm of Section 2, one needs delineability, that is,
to make the graphs of those functions locally disjoint. This is achieved by means
of a real comprehensive triangular decomposition of f(H,X) = 0, regarded as a
parametric system with H as parameters. Via point sampling, this delineability

1 One should note that the primary concern of those Authors is to compute the H∞
norm of a linear dynamical system numerically.



property allows us to reduce our computation to the non-parametric case, that
is, SRRP. In some exceptional cases (typically when suprema are attained on
the variety defined by f) our algorithm cannot conclude, in which cases a full
cylindrical algebraic decomposition of f(H,X) is needed.

Section 4 illustrates our algorithm with a few examples, taken from the
literature, applied to an implementation realized with the RegularChains li-
brary www.regularchains.org.

2 Solving the Supremum Real Root Problem via BP/DV

Recall that, in the non-parametric case, the problem is, for a given bivariate
polynomial p ∈ R[W,X] to compute xsup defined by

xsup = sup
w, p(x,w)=0

x. (6)

Let us view p as a parametric polynomial with parameter X. The motivation is
the following. Consider the real curve p = 0 in the (x,w)-plane and assume that
it is not empty. Then, two cases arise:

(1) either for every positive real value q there is a point on that curve with q
as an X-coordinate and the curve is unbounded in the X-direction; then the
answer to our supremum problem is +∞;

(2) or the curve is bounded in the X-direction and the supremum S is the X-
coordinate of a “special” point.

Regarding p as a parametric polynomial in X, and computing its border polyno-
mial (BP) [21] or its discriminant variety (DV) [15] (which are equivalent notions
in the case of a parametric system consisting of a single polynomial equation, as
it follows from the results of [17]) will tell us which case we are in. Moreover, if
we are in the second case, we will deduce the value of xsup.

The BP/DV of p, regarded as a parametric semi-algebraic system with pa-
rameter X, consists of all real X-values at which the real curve p = 0 is in one
of the following cases:

(1) vertical (i.e. parallel to the W -axis) asymptote,
(2) singular point of the curve,
(3) critical point or singular value of the projection of the curve onto the X-axis.

Moreover, the set of all those X-values is finite and is given by the real roots of
the polynomial

f = lcoeffW (p) · discrimW (p), (7)

where lcoeff and discrim denote the leading coefficient and the discriminant,
respectively.

We make two observations about the polynomial p:

(1) if p admits a univariate factor u ∈ R[W ] (thus not depending on X) such
that u = 0 has real solutions, then we clearly have supw, p(x,w)=0 x = +∞.

www.regularchains.org


(2) if p admits a univariate factor u ∈ R[X] (thus not depending on W ) then u
divides lcoeffW (p) and thus f .

Based on these preliminary observations, we are ready to state our algo-
rithm SupRealRoot. Let ξ1 < · · · < ξe be the real roots of f . Define ξ0 = −∞
and ξe+1 = +∞. The algorithm below computes xsup = sup{x ∈ R | ∃w ∈
R p(w, x) = 0}.

SupRealRoot(p) begin

for i = e+ 1 downto 1 by −1 do {
let q be a rational number s.t. ξi−1 < q < ξi
if p(q,W ) = 0 has real roots in W then return ξi
if i ≤ e and p(ξi,W ) = 0 has real roots in W then return ξi

}
return ξ0

end

Observe that each interval ]ξi−1, ξi[ is a connected component of the com-
plement of the BP/DV of p = 0 regarded as a parametric semi-algebraic system
with parameter X. Thus, the following two properties are equivalent.

1. There exists q ∈ ]ξi−1, ξi[ such that p(q,W ) = 0 admits at least one real
solution W = w.

2. For every q ∈ ]ξi−1, ξi[ there exists at least one point on the real curve p = 0
with q as X-coordinate.

The correctness of our algorithm SupRealRoot follows immediately from the
above equivalence.

Using the RegularChains library in Maple, we have realized a command
SupRealRoot implementing the above algorithm. This command takes as input
a bivariate polynomial p ∈ R[W,X] and returns xsup = supw, p(x,w)=0 x together
with additional information in order to support ParametricSupRealRoot, as we
shall see in the next section. To this end, our command SupRealRoot actually
returns a pair where the first item is the supremum xsup and the second one is
defined below:

– ∞, if xsup = +∞ holds,
– 0, if xsup = −∞,
– a real root index i of an irreducible factor g of the polynomial f defining DV

(i.e. the zero locus of BP) such that g(ξi) = 0, indicating that the supremum
is reached between the (i−1)-th and i-th roots of g and is equal to the latter,

– −i, if the supremum xsup is equal to the i-th root of g but cannot be reached
within a connected component of the complement of DV, i.e., only in DV
itself.

For efficiency reasons, in our implementation we have a special case for the factors
g of p depending only on w. We first factorize the polynomial f and then apply
real root isolation to each irreducible factor. Of course, isolation intervals are
refined until they are pairwise disjoint such that real algebraic numbers (namely
ξ1 < · · · < ξe) that these intervals encode can be effectively sorted.



3 Solving the Parametric Supremum Real Root Problem
via Real Comprehensive Triangular Decomposition

Recall the problem stated in (5): For each parameter value h ∈ Rn compute

xsup(h) = sup
w, p(w,h,x)=0

x.

Similarly to the non-parametric case, we define

f = lcoeffW (p)× discrimW (p) ∈ R[H,X].

Due to the role of H as a parameter of the problem, we are interested in the real
roots x1(h) < · · · < xe(h) of f regarded as a univariate polynomial in X. The
difficulty is that the number of these roots depends on h. Thus we need a case
discussion for the real roots of f as a function of h.

This case discussion can be provided by the command RealComprehensive-

Triangularize [7], applied to f and regarding H as parameters. We obtain a
partition, C1, . . . , Ce, of the parameter space into connected components such
that above each cell Ci the real X-values satisfying f = 0 are given by continuous
functions xi1(h), xi2(h), . . . with disjoint graphs (encoded by the data structure
squarefree semi algebraic system [7, 8]).

For each cell Ci which is full-dimensional in the parameter space, we perform
the following tasks.

(1) Obtain a sample point vi of the cell Ci
2

(2) Call the command SupRealRoot (as defined in Section 2 for the non-parametric
case) at h = vi. Three cases arise.

(2.1) If the non-parametric SupRealRoot command returns a pair of the form
[ξ,m] with ξ ∈ {+∞,−∞} (that is, with m ∈ {0,∞}), then the function
ParametricMaxRealRoot returns [ξ, Ci].

(2.2) If the non-parametric SupRealRoot returns a pair of the form [ξ,m]
where m > 0 holds, then we compute the polynomial g which has ξ
as its j-th real root at h = vi and ParametricMaxRealRoot returns
[[j, g], Ci].

(2.3) In all other cases, which can be regarded as exceptional, our method
cannot conclude directly and we are led to apply a CAD-based approach,
say computing a CAD of p(x,w, h) = 0 for h < x < w.

In the above algorithm, cells Ci which are not full-dimensional in the parameter
space, as well as cells Ci leading to (2.3) (meaning that ssup(vi) is attained
on f = 0) are situations that are encountered rarely in practice, that is, when
parameters are specialized to actual values.

Using the RegularChains library in Maple, we have realized a command
ParametricSupRealRoot implementing the above algorithm, which is illustrated
in the next section.
2 In fact, the RealComprehensiveTriangularize command computes a sample point

with each of the cells C1, . . . , Ce.



4 Examples

In this section, we illustrate the use of a command ParametricHinfinityNorm

that we developed in Maple based on the method ParametricSupRealRoot

described in section 3. The output of ParametricHinfinityNorm has similar
specifications as RealComprehensiveTriangularize: it returns a partition of
the parameter space into CAD cells and, above each cell, a formula for the H∞
norm of a linear parametric dynamical system, taking its transfer matrix as
input. In each case of the output, the displayed result is a pair consisting of two
items. The second one is a semi-algebraic system describing a list of CAD cells
C. The first item is a pair of the form [`, g(h, x)] such that the H∞ norm value
is the square root of the `-th root (in x) of the g(h, x) = 0, which is guaranteed
to be delineable for all h ∈ C.

The first example is taken from Problem 4.8 in [22]. Given a transfer function
Gs, the problem is to compute ||Gs||∞ using the Bode plot and state space
algorithm, respectively for c = 1, 0.1, 0.01, 0.001. In our computation below, we
treat c as a real parameter with constraint 0 < c <= 1. The result consists
of four cases. Since there is only one parameter, namely c, the corresponding
semi-algebraic set is either a point or an open interval. The value of ||Gs||∞ is 1
for the first three cases, i.e. when c = 1, or 1

2 < c < 1, or c = 1
2 . The fourth case

shows that when 0 < c < 1
2 , the value of ||Gs||∞ is the square root of the second

real root of the polynomial f = (256c8 − 768c6 + 768c4 − 256c2)x2 + (256c6 +
32− 480c4 + 192c2)x− 27, which can be computed by a real root isolation of a
univariate polynomial for a specified value of c. For instance, the value of ||Gs||∞
at c = 0.1 is 3.575787201.

The second example is the classical mass-spring-dampler systemmẍ+bẋ+k =
u, where m is the mass [kg], b is the viscous damping coefficient [Ns/m], k
is the spring constant and u is the force input [N ]. In the following Maple
session we apply our functions to study the H∞ of the mass-spring-dampler
system with positive real parameters m, b, k. We first compute the transfer func-
tion from its state space representation A,B,C and D = 0. The output of



ParametricHinfinityNorm on this system has three cases. The first case reports
the CAD cells which are not full-dimensional in the parameter space and are not

processed. The second case tells that when k < b2

4m or k > b2

4m and k < b2

2m , the
ParametricHinfinityNorm of this system is 1

k . The third case means that when

k > b2

2m , the ParametricHinfinityNorm is 2m
b
√
−b2+4mk

.

5 Concluding Remarks

Taking advantage of the notion of border polynomial and triangular decom-
position techniques, we have presented an algorithm and its implementation for
computing the supremum of the real roots of a parametric univariate polynomial.
The precise formulation of this problem (with the bivariate polynomial p(W,X)
whose coefficients are real polynomials in H) targets the computation of the
H∞ norm of the transfer matrix of a linear dynamical system with parametric
uncertainty.

Our implementation allows us to solve the vast majority of the examples
that we have found in the literature. A few examples (like the 2-mass-2-spring-
2-dampler system, which, in its full generality, has 6 parameters) cannot be
solved by our code without specializing some of the parameters. However, our
preliminary implementation offers several opportunities for optimization. For
instance, in the context of our application to parametric H∞ norm computation,
the polynomial f ∈ R[H,X] defined in Section 3 is the border polynomial of the
characteristic polynomial of the square of a transfer matrix: we have observed
that f often had several irreducible factors and exploiting this fact when calling
RealComprehensiveTriangularize should greatly reduce computation costs.
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