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Abstract

The D5 Principle was introduced in 1985 by Jean Della Dora, Claire Dicrescenzo and
Dominique Duval in their celebrated note “About a new method for computing in algebraic
number fields”. This innovative approach automatizes reasoning based on case discussion
and is also known as “Dynamic Evaluation”. Applications of the D5 Principle have been
made in Algebra, Computer Algebra, Geometry and Logic.

Many algorithms for solving polynomial systems symbolically need to perform standard
operations, such as GCD computations, over coefficient rings that are direct products of
fields rather than fields. We show in this paper how asymptotically fast algorithms for
polynomials over fields can be adapted to this more general context, thanks to the D5
Principle.

1 Introduction

The standard approach for computing with an algebraic number is through the data of its
irreducible minimal polynomial over some base field k. However, in typical tasks such as
polynomial system solving, involving many algebraic numbers of high degree, following this
approach will require using probably costly factorization algorithms. Jean Della Dora, Claire
Dicrescenzo and Dominique Duval introduced “Dynamic Evaluation” techniques (also termed
“D5 Principle”) as a means to compute with algebraic numbers, while avoiding factorization.
Roughly speaking, this approach leads one to compute over direct products of field extensions
of k, instead of only field extensions.

Applications of Dynamic Evaluation have been made by many authors: Gonzdilez-Lépez
and Recio (1993), Gémez Diaz (1994), Duval (1994), Lombardi (2003) and others. Many
algorithms for polynomial system solving rely on this philosophy; see, for instance, the work of
Lazard (1992), Kalkbrener (1993), Delliere (1999), Moreno Maza (2000), Mora (2003). Boulier
et al. (2001).

This work is aiming at filling the lack of complexity results for this approach. The addition
and multiplication over a direct product of fields are easily proved to be quasi-linear (in a
natural complexity measure). As for the inversion, it has to be replaced by gquasi-inversion:
following the D5 philosophy, meeting zero-divisors in the computation will lead to splitting
the direct product of fields into a family thereof. It is much more tricky to prove quasi-linear
complexity estimate for quasi-inversion, because the algorithm relies on operations for which
such an estimate has to be proved: GCD computation and splitting.



Every triangular set T encodes a direct product of fields K(7T') and a triangular decompo-
sition of T describes a decomposition of K(7') into such direct products. These fundamental
notions are defined hereafter. In what follows, we assume that the base field k is perfect.

Definition 1.1. A triangular set T is a family of n-variate polynomials over k:
T =T (Xy), To(X1,X2), ..., Th(X1,....Xp)),

which forms a reduced Grobner basis for the lexicographic order induced by X, > --- > X7,
and such that the ideal (T') generated by 7" in k[X1,...,X,] is radical.

If T is a triangular set, the residue class ring K(T) := k[X1,...,X,]/(T) is a direct prod-
uct of fields. Hence, our questions can be basically rephrased as studying the complexity of
operations (addition, multiplication, quasi-inversion) modulo triangular sets. The following
notation helps us quantify these algorithms.

Definition 1.2. We denote by deg;(T) the degree of T; in X;, for all 1 < i < n, and by deg(T)
the product deg; (7T') - - - deg,,(T'). We call it the degree of T'.

Observe that (T) is zero-dimensional and that for all 1 < ¢ < n, the _set (Ty...,T;) is a
triangular set of k[X1,...,X;]. The zero-set of T in the affine space A" (k) has a particular
feature: it is equiprojectable (Aubry and Valibouze, 2000; Dahan and Schost, 2004); besides,

its cardinality equals deg(T').

Definition 1.3. A triangular decomposition of a zero-dimensional radical ideal I C k[X7, ..., X,]
is a family T = T,..., T* of triangular sets, such that I = (T') N ---N (T¢) and (T*%) +(T7) =
(1) for all i # j. A triangular decomposition T’ of I refines another decomposition T if for ev-
ery T € T there exists a (necessarily unique) subset decomp(7, T') C T’ which is a triangular
decomposition of (T').

Let T be a triangular set, let T =T",...,T° be a triangular decomposition of (T"), and define
K(T) := K(T!) x --- x K(T®). Then by the Chinese remainder theorem, K(7T') ~ K(T). Now
let TV be a refinement of T. For each triangular set 7% in T, denote by U»!,... , U%% the
triangular sets in decomp(T"?, T'). We have the following e isomorphisms:

bi: K(TY) ~ KU x --- x K(U), (1)
which extend to the following e isomorphisms, where y is a new variable.
@0 K(T')[y] = KU™)[y] x - x KU [y). (2)

Definition 1.4. For h = (hy,...,he) € K(T")[y] x --- x K(T¢)[y], we call split of h with
respect to T and T', and write split(h, T, T') the vector (®1(h1),...,Pc(he)).

Note that if g € K(T')[y], then we have split(g, {T'}, T') = split(split(g, {T'}, T), T'). Moreover,
we define split(g, T) = split(g, {7}, T).

We now introduce a fundamental notion, that of non-critical decompositions. It is mo-
tivated by the following remark. Let T = T',...,T° be a family of triangular sets, with



T = (le,TQj,,,.,Tg). For 1 < ¢ < n, we write Tii = le, T2j, ceey TZJ and define the family
T<; by: '
T<; ={T%, | j<e} (with no repetition allowed)

Even if T is a triangular decomposition of a 0-dimensional radical ideal I C k[X7, ..., Xy],
T<; is not necessarily a triangular decomposition of I Nk[X7,..., X;]. Indeed, with n = 2 and
e =2, consider T' = ((X; —1)(X; —2), X3) and T? = ((X; — 1)(X1 — 3), Xa — 1). The family
T =T!,7T? is a triangular decomposition of the ideal I = (T'') N (T?). However, the family of
triangular sets T<1 is not a triangular decomposition since (T1) + (T2) = (X1 — 1).

Definition 1.5. Let T be a triangular set in k[X1,...,X,]. Two polynomials a,b € K(T')[y]
are coprime if the ideal (a,b) C K(T")[y] equals (1).

Definition 1.6. Let 7' # T" be two triangular sets. The least integer £ such that T;, # T
is called the level of the pair T,T". The pair T,T" is critical if Ty and T, are not coprime in
E[Xq,...,Xe1]/{T1,...,Te—1)[X¢]. A triangular decomposition T of (T') is non-critical if T
has no critical pairs, otherwise it is said critical.

The pair {T"', T?} in the above example has level 1 and is critical. Consider U = (X; —
1, Xs), UM? = (X1 -2,X3), U = (X1 —1,X5—1) and U?? = (X; — 3, X2 — 1). Observe that
T = {Ub,UY2, UL, U%?} is a non-critical triangular decomposition of I refining {T*, T2}
and that T'<9 is a triangular decomposition I N k[X1, X3].

This notion of critical pair is fundamental, as obtaining fast algorithms for splitting is
not guaranteed for critical decompositions, as shown in the following extension of the previous
example. Consider a third triangular set 7% = ((X1 —2)(X1 —3), X2+ X1 —3). One checks that
U = {T*,T?,T3} is a triangular decomposition of T = ((X1 —1)(X; —2)(X1 —3), X2(X2 —1)).
However, splitting an element p from {T'} to U requires to compute

pmod (X7 —1)(X; —2), pmod (X; —1)(X; —3), pmod (X7 — 2)(X; —3),

whence some redundancies. In general, these redundancies prevent the splitting computation
from being quasi-linear w.r.t. deg(T'). But if the triangular decomposition is non-critical, then
there is no more redundancy, and the complexity of splitting p can be hoped to be quasi-linear.

Removing critical pairs of a critical triangular decomposition in order to be able to split fast
requires to delete the common factors between the polynomials involved in the decomposition.
To do it fast, (in quasi-linear time) the coprime factorization, or gcd-free basis computation,
algorithm is used. Of course to implement this algorithm over a direct product of fields, one
first needs to compute GCDs over such a product in quasi-linear time.

Since K(T') is a direct product of fields, any pair of univariate polynomials f,g € K(T')[y]
admits a GCD h in K(T')[y], in the sense that the ideals (f,g) and (h) coincide, see Moreno
Maza and Rioboo (1995). However, even if f, g are both monic, there may not exist a monic
polynomial kA in K(7)[y] such that (f,g) = (h) holds. Consider for instance f = y + “42'—1
(assuming that 2 is invertible in k) and g = y + 1 where a € K(T) satisfies a®> = a, a # 0
and a # 1. GCDs with non-invertible leading coefficients are of limited practical interest; this
leads us to the following definition.



Definition 1.7. Let f,g be in K(T')[y]. An eztended greatest common divisor (XGCD) of
f and g is a sequence ((h;,u;,v;,T%),1 < i < €), where T = T',...,T¢ is a non-critical
decomposition of (T) and for all 1 < i < e, h;,u;,v; are polynomials in K(7%)[y], such that
the following holds. Let f1,..., fo = split(f,{T'}, T) and g1,...,ge = split(g, {T}, T); then for
1 < < e, we have:

e h; is monic or null,
e the inequalities degu; < degg; and degv; < deg f; hold,
e the equalities (f;, g;) = (h;) and h; = u;f; + v;g; hold.

One easily checks that such XGCDs exists, and can be computed, for instance by applying
the D5 Principle to the Euclidean algorithm. In order to divide f by g in K(T')[y], we need to
check whether the leading coefficient of g is invertible. For this purpose, the following notion
is convenient.

Definition 1.8. A quasi-inverse of an element f € K(T) is a sequence of couples ((u;, T*),1 <
i < e) where T = T',...,T° is a non-critical decomposition of (T') and u; is an element of
K(T*?) for all 1 < i < e, such that the following holds. Let fi,..., fo = split(f, {T}, T); then
for 1 <14 < e we have either f; =u; =0, or fiu; = 1.

Outlook of the paper. To compute GCDs in quasi-linear time over a direct product of fields,
we adapt the Half-GCD techniques (Yap, 1993) in Section 4 and explain why its complexity
is preserved. This requires a careful inductive process that we summarize in this paper.

o We first need complexity estimates for multiplication modulo a triangular set and split-
ting w.r.t. triangular decompositions. This is done in Section 3.

e Assuming that multiplications and quasi-inverse computations can be computed fast
in K(T'), and assuming fast non-critical refining for triangular decompositions of T', we
obtain in Section 4 a fast algorithm for computing GCDs in K(7')[y]. Note that Langemyr
(1991a) states that GCD’s over products of fields can be computed in quasi-linear time,
but with no proof.

e Assuming that GCDs can be computed fast in K(71,...,7,-1)[X,], we present fast
algorithms for quasi-inverses in K(7") (Section 5), coprime factorization for polynomials
in K(T1,...,Tp,-1)[Xn] (Section 6) and refining a triangular decomposition T of T into
a non-critical one (Section 7).

These are the basic blocks for our inductive process, which yields our main results:

Theorem 1.9. For any € > 0, there exists A. > 0 such that addition, multiplication and
quasi-inversion in K(T) can be computed in A" deg(T)'*¢ operations in k.

Theorem 1.10. There exists G > 0, and for any € > 0, there exists A > 0, such that one can
compute an extended greatest common divisor of polynomials in K(T)[y], with degree at most
d, using at most G A" d'+< deg(T)"™® operations in k.
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Due to space constraints, it is not possible to give all details of our algorithms in this
paper. Hence, some algorithms like GCD receive a detailed treatment, while we have to be
more sketchy on other ones.

2 Complexity notions

We start by recalling basic results for operations on univariate polynomials.
Definition 2.1. A multiplication time is a map M : N — R such that:

e For any ring R, polynomials of degree less than d in R[X] can be multiplied in at most
M(d) operations (+, x) in R.

e For any d < d, the inequalities Y& <

() < M) and M(dd') < M(d)M(d') hold.

Note that in particular, the inequality M(d) > d holds for all d. The following result is due
to Cantor and Kaltofen (1991), following the work of Schonhage and Strassen: There exists
¢ € R such that the function d — cdlogp(d) logp logp(d) is a multiplication time. In what
follows, the function logp is defined by logp(z) = 2log,(max{2,z}): this function turns out
to be more convenient than the classical logarithm for handling inequalities.

Fast polynomial multiplication is the basis of many other fast algorithms: Euclidean di-
vision, computation of the subproduct tree (see Chapter 10 in von zur Gathen and Gerhard
(1999)), and multiple remaindering.

Proposition 2.2. There exists a constant C > 1 such that the following holds over any ring
R. Let M be a multiplication time. Then:

1. Dividing in R[X] a polynomial of degree less than 2d by a monic polynomial of degree at
most d requires at most 5M(d) + O(d) < C M(d) operations (+, X) in R.

2. Let F be a monic polynomial of degree d in R[X]. Then additions and multiplications in
R[X]/F requires at most 6 M(d) + O(d) < C M(d) operations (+, x) in R.

3. Let F,..., Fy be non-constant monic polynomials in R[X], with sum of degrees d. Then
one can compute the subproduct tree associated to F1,...,Fs using at most M(d) logp(d)
operations (+, x) in R.

4. Let Fy,..., Fs be non-constant monic polynomials in R[X], with sum of degrees d. Then
given A in R[X] of degree less than d, one can compute A mod Fi,..., A mod F; within
11 M(d) logp(d) + O(dlogp(d)) < C M(d) logp(d) operations (4, x) in R.

5. Assume that R is a field. Then, given two polynomials in R[X] of degree at most d,
computing their monic GCD and their Bézout coefficients can be done in no more than
33 M(d) logp(d) + O(dlogp(d)) < C M(d)logp(d) operations (+, x,/) in R.

6. Assume that R is a field and that F is a monic squarefree polynomial in R[X] of degree
d. Then, computing a quasi-inverse modulo F' of a polynomial G € R[X] of degree less
than d can be done in no more than 71 M(d) logp(d) + O(dlogp(d)) < C M(d) logp(d)
operations (+, %, /) in R.



PROOF. The first point is proved in Chapter 9 of (von zur Gathen and Gerhard, 1999)
and implies the second one. The third and fourth points are proved in Chapter 10 of the
same book. The fifth point is reported in Chapter 11 of that book, and is a particular case of
Section 4 of this article. If F' has no multiple factors in R[X], a quasi-inverse of G modulo F
can be obtained by at most two extended GCD computations and one division with entries of
degree at most d. Using estimates for the GCD leads to the result claimed in point 6. O

We now define our key complexity notion, arithmetic time for triangular sets.

Definition 2.3. An arithmetic time is a function T' — A, (T) with real positive values and
defined over all triangular sets in k[X1, ..., X,] such that the following conditions hold

(Eo) For every triangular decomposition T = T, ..., T¢ of T, we have A(T!) +--- + A(T®) <
A(T).

and such that the following properties hold for any triangular set 7" in k[X7, ..., X,]:
(E1) Every addition or multiplication in K(7") can be done in at most A, (7") operations in k.
(E2) Every quasi-inverse in K(7') can be computed in at most A, (7") operations in k.

(E3) Given a triangular decomposition T of T, one can compute a non-critical triangular
decomposition T which refines T, in at most A, (T) operations in k.

(E4) For every a € K(T') and every non-critical triangular decomposition T of T', one can
compute split(a, {T}, T) in at most A,(T) operations in k.

Our main goal in this paper is then to give estimates for arithmetic times. This is done
through an inductive proof; the following proposition gives such a result for the base case,
triangular sets in one variable.

Proposition 2.4. If n =1, then T € k[X1] — CM(degT') logp(degT') is an arithmetic time.

PROOF. A triangular set in one variable is simply a squarefree monic polynomial in k[X1].
Hence, (E1), (E2) and (Ej) respectively follow from points 2, 6 and 4 in Proposition 2.2.
Property (FEp) is clear. Since n = 1, all triangular decompositions are non-critical, and (F3)
follows. -

3 Basic complexity results: multiplication and splitting

This section is devoted to give first complexity results for triangular sets: we give upper bounds
on the cost of multiplication, and splitting. In general, we do not know how to perform this last
operation in quasi-linear time; however, when the decomposition is non-critical, quasi-linearity
can be reached.

Proposition 3.1. Let M be a multiplication time, and let C be the constant from Proposi-
tion 2.2. Let T be a triangular set in k[X1,...,X,]. Then:



o Additions and multiplications modulo T' can be done in at most C™ [[,.,, M(deg; T') op-
erations in k. -

o If T is a non-critical decomposition of T, then for any h in K(T), split(h,{T},T) can
be computed in at most nC™ [],.,, M(deg; T') logp(deg; T') operations in k.

PROOF. The first part of the proposition is easy to deal with: the case of additions is
obvious, using the inequality M(d) > d; as to multiplication, an easy induction using point (1)
in Proposition 2.2 gives the result. The end of the proof uses point (4) in Proposition 2.2; the
non-critical assumption is then used through the following lemma. O

Lemma 3.2. Consider a non-critical decomposition T of the triangular set T = (T1,...,Ty).
Write T<,,—1 = {UY,...,U?}, and, for all i < s, denote by T®', ..., T"% the triangular sets in
T such that T* N k[X1,...,Xn_1] = U® (thus T is the set of all T*, with i < s and j < e;).
Then T<p_1 is a non-critical decomposition of the triangular set (T1,...,T,_1). Moreover, for
all 1 < s, we have:

Z deg, T" = deg,, T.

J<e;

4 Fast GCD computations modulo a triangular set

GCDs of univariate polynomials over a field can be computed in quasi-linear time by means of
the Half-GCD algorithm (Brent et al., 1980; Yap, 1993). We show how to adapt this technique
over the direct product of fields K(7') and how to preserve its complexity class. Throughout
this section, we consider 7' — A, (T') an arithmetic time for triangular sets in k[X1,..., X,].

Proposition 4.1. For all a,b € K(T)[y] with dega, degb < d, one can compute an extended
greatest common divisor of a and b in O(M(d)log(d))An(T) operations in k.

We prove this result by describing our GCD algorithm over the direct product of fields
K(T') and its complexity estimate. We start with two auxiliary algorithms.

Monic forms. Any polynomial over a field can be made monic by division through its leading
coefficient. Over a product of fields, this division may induce splittings. We now study this
issue.

Definition 4.2. A monic form of f € K(T)[y] is a sequence of quadruples ((u;,v;, m;,T;),
1 <i<e), where T =T, ..., T is a non-critical decomposition of T, u;, v; are in K(T") and
m; is in K(T%)[y] for all 1 < i < e, and such that the following holds.

Let fi,..., fe = split(f,{T'}, T). Denote by lc(f;) the leading coefficient of f;. Then, for
all 1 <17 < e we have u; = lc(f;), and m; = v;f;, and either u; = v; = 0 or u;v; = 1.

Observe that for all 1 < ¢ < e, the polynomial m; is monic or null.

The following algorithm shows how to compute a monic form. This function uses a pro-
cedure quasilnverse(f,T). This procedure takes as input a triangular decomposition T =



T!,...,T¢ of T and a sequence f = f1,..., fo in K(T%)[y] x --- x K(T°)[y] and returns a se-
quence (((fij,T9),1 < j < €),1 <4 < e) where ((fi;,T%),1 < j < ¢;) is a quasi-inverse of
fi modulo T and such that (T%,1 < j < e;,1 < i < e) is a non-critical refinement of T. Its
complexity is studied in Section 5.

The number at the end of a line, multiplied by A, (T'), gives an upper bound for the total
time spent at this line. Therefore, the following algorithm computes a monic form of f in at
most (8d + 6)A,(T) operations in k.

monic(f,T) ==
1 T:={T}
2 v:=(0)
3 g:=Ff
4  while g # 0 repeat
4.1  u:= split(le(g), {T}, T) [d+1]
4.2 (w,T') := quasilnverse(u, T) [3d + 3]
4.3 v :=split(v, T, T) [d+1]
4.4  for 1 <i < #v repeat
4.4.1 if v; = 0 then v; := w; [d+1]
45 T:=T
4.6 g := g—leadingTerm(g)
5 f:=split(f,{T},T) [d]
6 u:=lc(f)
7 m:=v-f [d]
8 return ((u;,v;,m;, T%),1 <i < #T)

Division with monic remainder. The previous notion can then be used to compute Fu-
clidean divisions, producing monic remainders: they will be required in our fast Euclidean
algorithm for XGCDs.

Definition 4.3. Let f,g € K(T')[y] with g monic. A division with monic remainder of f by g is
a sequence of tuples ((g;, gi, vs, us, 73, T%),1 < i < e) such that T = T,..., T is a non-critical
decomposition of T', and, for all 1 < i < e, we have u;, v; € K(T*) and g¢;, ¢;, 4, € K(T*)[y], and
such that the following holds.

Let f1,...,fe =split(f,{T}, T) and g1,...,ge = split(g,{T}, T). Then, for all 1 < i <ee,
the polynomial r; is null or monic, we have either u; = v; = 0 or u;v; = 1, and the polynomials
¢; and u;r; are the quotient and remainder of f; by g; in K(7%)[y].

The following algorithm computes a division with monic remainder of f by g and requires
at most (5M(d) + O(d))A,,(T) operations in k. We write (¢,7) = div(f, g) for the quotient and
the remainder in the (standard) division with remainder in K(7')[y].

mdiv(f,g,T) ==
1 (gyr) o= div(f, ) [BM(d) + O(d)]
2 ((ug,v4,73,T%),1 < i < #T) := monic(r, T) [8d — 2]
3 (¢,1 <4 < H#T) := split(q, {T}, T) [d+ 1]



4 (9i,1 <14 <#T) := split(g, {7}, T) [d]
5 return ((gia qiauiaviaTz)a 1<:1< #T)

We are now ready to generalize the Half-Gcd method as exposed in Yap (1993). We
introduce the following operations. For a,b € K(T')[y] with 0 < degb < dega = d, each of the
algorithms Mgeq(a, b, T) and Myged(a, b, T) returns a sequence ((My,T?),..., (M., T¢)) where

(s1) T=T",...,T¢ is a non-critical triangular decomposition of T,
(s2) M; is a square matrix of order 2 with coefficients in K(7*%)[y],

such that, if we define (aq,...,a.) = split(a, {T'}, T) and (by,...,b.) = split(b,{T}, T), then,
for all 1 < i < e, defining (#;, s;) = (a;, b;) *M;, we have

(s3) in the case of My.q, the polynomial ¢; is a GCD of a;,b; and s; = 0 holds,

(s4) in the case of Mygeq, the ideals (;,s;) and (a;, b;) of K(T*)[y] are identical, and degs; <
[d/2] < degt; holds.

The algorithm below implements Mgcq(a, b, T'), and is an extension of the analogue algo-
rithm known over fields. Observe that if the input triangular set 7" is not decomposed during
the algorithm, in particular if K(7') is a field, then the algorithm yields generators of the ideal
(a,b). If T is decomposed, then the lines from 5 to 7.3.1 guarantee that Mycq(a, b, T') generates
a non-critical triangular decomposition of T'.

Mgcd(a,b, T) ==
0 G:=[];T:=[];
1 ((M;,T"),1 <i<e):=Mnga(a,b,T) [H(d)]
2 (ai,...,ae) :=split(a, (T",1 <i < e)) [0(d)]
3 (by,...,be) := split(b, (T*,1 < i < e)) [O(d)]
4 foriinl---erepeat
4.1 (tz’,si) = (ai,bi) tMZ' [4. M(d) + O(d)]
4.2  if ; =0 then
4.2.1 G =G, (M;,T"
4.2.2 T:=T,T"
4.3 ((8ij»9ijs rijs wigs vijy TY), 1 < j < ¢;) := mdiv(t;, s;) [SM(d) + O(d)]
4.4 (Mija 1<5< ei) = Split(Mi, (T”, 1<5< ez)) [O(d)]
4.5 for jin1.--¢; repeat
451 My = ( 0 1 ) My 2M(d) + O(d)]

Vij  —QijVij

4.5.2 if Tij = 0 then

4.5.2.1 G:=G,(M;;T"

4522 T:=T,TY

4.5.3 ((Nz'jk,Tijk), 1 S k S e,-j) = Mgcd(sij,rij,Tij) [G(d/2)]
4.5.4 (Mijka 1<k< e,-j) = Split(Mij, (Tijk, 1<k< e,-j)) [O(d)]
4.5.5 for £ in 1---¢;; repeat



45.5.1 My == NyuMyj, [8M(d) + O(d)]
4.5.5.2 G =G, (MijkaTUk)
4.5.5.3 T :=T, Tk

5 T := removeCriticalPairs(T) [1]
6 Res:=][]

7 for (M,T) € G repeat

7.1 U := decomp(T, T")

7.2 (Mg, 1 < £ < #U) := split(M, {T},U) [O(d)]
7.3 for 1 </< #Udo

7.3.1 Res := Res, (M;,U?)

8 return Res

The Half-GCD algorithm can be adapted to K(7')[y] (not reported here due to space con-
sideration) leading to an implementation of Mygcq(a, b, T). It has a structure very similar to
Mgca(a, b, T'), see (Yap, 1993) for details in the case the coefficients lie in a field.

Now, we give running time estimates for Mpgcq(a,b,T) and Mgcq(a,b,T). For 0 < degb <
dega = d, we denote by G(d) and H(d) respective upper bounds for the running time of
Mgcd(a,b) and Mygeq(a, b), in the sense that both operations can be done in respective times
G(d)A,(T) and H(d)A,(T).

The number at the end of an above line, multiplied by A,(T), gives an upper bound of
the running time of this line. These estimates follow from the super-linearity of the arithmetic
time for triangular sets, the running time estimates of the operation mdiv(f, g,7") and classical
degree bounds for the intermediate polynomials in the Extended Euclidean Algorithms; see
for instance Chapter 3 in (von zur Gathen and Gerhard, 1999). Therefore, counting precisely
the degrees appearing, we have: G(d) < G(d/2) + H(d) + (33/2)M(d) + O(d). The operation
Mhgcd(a, b, T') makes two recursive calls with input polynomials of degree at most d/2, leading
to H(d) < 2H(d/2) + (33/2)M(d) + O(d). The superlinearity of M implies

H(d) < %M(d) logd+ O(d log d) and G(d) < 2H(d) + 2M(d) + O(d).

This leads to the result reported in Proposition 4.1.

We conclude with the specification of a function used in the remaining sections. For a tri-
angular decomposition T = T,...,T¢ of T, two sequences f = fi,..., f. and g = g1,...,ge in
K(TY)[y], ..., K(T®)[y], the operation xged(f, g, T) returns a sequence (((gij, wij, vij, T9),1 <
j <ei),1 <i<e) where ((gij, uij, vij, T¥),1 < j < e;) is an extended greatest common divisor
of f; and g; and such that (T%,1 < j < e;,1 <14 < e) is a non-critical refinement of T.

Proposition 4.1 implies that if fi,..., fe, g1, ..., ge have degree at most d then xged(f, g, T)
runs in at most O(M(d)log(d))A,(T") operations in k.

5 Fast computation of quasi-inverses
Throughout this section, we consider an arithmetic time A,,_; for triangular sets in n — 1

variables. We explain how a quasi-inverse can be computed fast with the algorithms split,
zged, and removeCritical Pairs.
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Proposition 5.1. Let T = (T1,...,T,) be a triangular set with deg;(T) = d; for all1 < i < n.
Let f be in K(T). Then one can compute a quasi-inverse of f in O(M(dy)log(dn))An—1(T<n)
operations in k.

We first give the algorithm, followed by the necessary explanations. Here, the quantity at the
end a line, once multiplied by A,,_1(T<y), gives the total time spent at this line.

quasilnverse, (f,T) ==

1 ((g;,ui,vi,TQn), 1<i<e):=xged(f, Tn, T<p) [O(M(dy) log(dy))]
2 (I3,...,T7) = split(Tn, {T<n }, {Tén’ 5 Ten}) [0(dy)]
3 (fis---, fe) = split(f, {T<n}a{Tém"' TSn}) [O(dn)]
4 T:={}; C:={}; result:={};

5 fori=1...edo

5.1  if deg(g;) =0 then

51.1 C:=0C, (u;,TL,UT:); T:=T, T:,UT}

5.2  else if deg(g;) > 0 then

52.1 C:=C, (0,7, Ug); T:=T, T, Ug;

5.2.2  g; := quotient(T},g;) [5M(dy,) + O(dy)]
5.2.3  ((9ij> uijs vij; Tn),1 < j <€) := xged(fi, i, T%,,) [O(M(dn) log(dy))]
5.2.4  (TE,...,T%) := split(g;, {12, }, {T%,,...,T5:}) [0(dy)]

525 forj=1...e; do

52.5.1 C:=C, (u;, TS, UT¥); T:=T, T, UTY

6 T, := removeCriticalPairs(T«y) 0(1)
7 for (u,S) € Cdo

7.1 (RY,...,RY) := decomp(S<n, T.,)

7.2 (Sk,...,8!) = split(Sy, {S<n}, {R',...,R'}) [O(dy)]
7.3 (u1,...,u) = split(u, {S<, }, {RY,..., R'}) [O(dy)]
7.4  result := result, ((ux, RFUSK) 1<k <)

8 return result

We first calculate the extended greatest common divisor of f and 7, modulo the triangular
set T<p, = (T4,...,Ty—1). This induces a non-critical decomposition {T%,,...,T¢,} of T<p.
For further operations, we compute the images of T}, and f over this decomposition.

Let 1 < i < e. If the value of g; is 1, then u; is the inverse of f modulo {T%, UT:}.
Otherwise, degg; > 0, and the computation needs to be split into two branches.

In one branch, at line 5.2.1, we build the triangular set {7, Ug;}, modulo which f reduces
to zero. In the other branch, starting from line 5.2.2, we build the triangular set as {T%, Ug;},
modulo which f is invertible. Indeed since the triangular set {T%, U g;} generates a radical
ideal, T}! is squarefree modulo {7}, and ged(f, ¢;) must be 1 modulo {T%,,Ug;}. Therefore we
can simply use the zgcd (step 5.2.3) once to compute the quasi-inverse of f modulo {T%,, Ug;}-

After collecting all the quasi-inverses, we remove the critical pairs in the new family of
triangualr sets. Since no critical pairs are created at level n in the previous computation, the
removal of critical pairs needs only to perform below level n. At the end, we split the inverses
and the top polynomials w.r.t the last non-critical decomposition.
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We also need quasi-inverse computations in two other different situations. One is when
f may not have the same main variable as the triangular set 7. We need also to com-
pute the quasi-inverses in the sense of quasilnverse(f, T) introduced in Section 4 where T =
T, ...,T¢ is a triangular decomposition of T, and f = fi,..., f. is a sequence of polynomials
in k[X1,...,X,]. They are simply built on top of the quasilnverse,(f,T"), with additional
splits and removal of critical pairs.

The dominant cost is the two xgcd calls. Therefore, in each situation, the total cost is
bounded by O(M(d,)log(dn))An—1(T<n).

6 Coprime factorization

We present a quasi-linear time algorithm for coprime factorization of univariate polynomials
over a field. Other fast algorithms for this problem are given by (Gautier and Roch, 1997),
with a concern for parallel efficiency, and in (Bernstein, 2005), in a wider setting, but with a
slightly worse computation time.

Due to space consideration, we present our algorithm only for polynomials over a field
k; however, it adapts over a direct product of fields, following the ideas presented in Sec-
tion 4. We will use this tool in Section 7 for computing non-critical refinement of a triangular
decomposition (see the example in the introduction for a motivation of this idea).

Definition 6.1. Let A = aj,...,as be squarefree polynomials in k[y]. Some polynomials
bi,...,b; in k[y] are a coprime factorization of A if gcd(b;,b;) = 1 for i # j, each a; can be
written as a product of some of the b;, and each b; divides one of the a;.

Proposition 6.2. Let d be the sum of the degrees of A = a1,...,as. Then a coprime factor-
ization of A can be computed in O(M(d)logp(d)3) operations in k.

The subproduct tree. The subproduct tree is a useful construction to devise fast algorithms
with univariate polynomials, in particular the coprime factorization. We review this notion
briefly and refer to (von zur Gathen and Gerhard, 1999) for more details. Let mq,...,m, be
monic, non-constant, polynomials in k[y]. The subproduct tree Sub associated to mq,...,m,
is defined as follows:

If r = 1, then Sub is a single node, labeled by the polynomial m;. Else, let v’ = [r/2], and
let Sub; and Subs be the trees associated to mq,...,my and my41,...,m, respectively. Let
p1 and po be the polynomials at the roots of Sub; and Suby. Then Sub is the tree whose root
is labeled by the product pips and has children Sub; and Subs.

A row of the tree consists in all nodes lying at some given distance from the root. The
depth of the tree is the number of its non-empty rows. Let d = . ; deg(m;); then the the
sum of the degrees of the polynomials on any row of Sub is at most d, and the depth of Sub is
at most logp(d).

Coprime factorization. We first define the subroutines required for this algorithm. For
simplicity, in what follows, we omit the O( ) in the complexity estimates attached to the
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algorithms. Furthermore, recall that the cost at given any line in our algorithms denotes the
total time spent at this line.

The first subroutine takes as input p, a1, ..., a. € k[z], and outputs ged(p, a1), - - ., ged(p, ae)-
We write as above d = Y7, dega,.

multiGed(p, {a1, ..., ac}) ==
1 ifdeg(p) > dthen p:=pmoda;...a. [M(degp)]
2 fori=1...e, compute p mod a; [M(d) logp(d)]
3 L:={};foriinl...e,doL :=L U{ged(p;,a;)} [ > M(deg a;) logp(deg a;)]
4 return L

The cost of line 2 is given in Proposition 2.2. The function d — M(d)logp(d) is super-
additive, so the complexity at line 3 fits in O(M(d)logp(d)). Hence, the total cost of this
algorithm is in O(M(d) logp(d)).

The next step is to compute several pairs of GCDs. On input, we take two families of
polynomials {a1, ..., ac},{b1, ..., bs}, where all a; (resp all b;) are squarefree and pairwise
coprime. Then the following algorithm computes all polynomials ged(a;, b;). We write d =

max(_; deg ai, ), deg by).

pairsOfGed({a1, ..., ac},{b1, ..., bs}) ==
1  Build a subproduct tree Sub(ay,...,a.) and let f = RootOf(Sub) [M(d)logp(d)]
2 Label the root of Sub by multiGed(f, {b1,...,bs}) [M(d) logp(d)]

3 for every node N € Sub, going top-down repeat
3.1 if N is not a leaf and has label g then
3.1.1  f; := leftChild(N); fo := rightChild(N);

3.1.2  {h1, ..., hs} :=multiGed(f1, g) [M(d) logp(d)?]
3.1.3  {ws, ..., ws} = multiGed(f2,g) [M(d) logp(d)?]
3.1.4  fy is labeled by {hq, ..., hs}
3.1.5  fyis labeled by {wy, ..., ws}

To give the complexity of this algorithm, one proves that the total number of operations along
each row is in O(M(d) logp(d)), whence a total cost O(M(d) logp(d)?).

The third subroutine computes a special case of coprime factorization. The input is
{a1,...,a¢},{b1,...,bs}, where we suppose that all a; (resp all b;) are squarefree and pair-
wise coprime. It outputs a coprime factorization of the family {a1,...,ae,b1,...,bs}. We still
write d = max(}_; dega;, ) ; degb;).

coprimeFactorizationSpecialCase({a1, ..., ac}, {b1,...,bs}) ==
1 {gijhi<ice<j<s == pairsOfGed({ay, ..., ae}, {b1, ..., bs}) [M(d) logp(d)*]
2 forjinl...srepeat
2.1 aj=]li<i<e 9ij ; V== bj quo o [M(d) logp(d)]
3 foriinl...erepeat
31 Bi=Ili<j<s9i 3 0i = a; quo B; [M(d) logp(d)]

4 return {gi1,---,Gijs---1G9e,5 Vir--->Vs1015+--,0¢}
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The validity of this algorithm is easily checked. The estimates for the cost of lines 2.1 and
3.1 come for the cost necessary to build a subproduct tree, together with degree estimates on
the polynomials a; and §;. Hence, the total cost is in O(M(d) logp(d)?) operations.

We can finally give our algorithm for coprime factorization. As input, we take square-
free polynomials a1, ...,a., and write d = ), dega;. We need a construction close to the
subproduct tree: we form a binary tree whose nodes will be labelled by sets of polynomials.
Initially the leaves contain the polynomials a;, and all other nodes are empty. We call this the
tree Sub’.

coprimeFactorization({a1,...,a.}) ==
1  Build the tree Sub'(ai,...,ae)
2 for every node N € Sub’ and from bottom-up repeat
2.1 if N is not a leaf then
2.1.1  fi :=leftChild(N) ; fo := rightChild(N)
2.1.2  Label N by the set coprimeFactorizationSpecialCase(f1, f2) [M(d) logp(d)3]
3 return the label of RootOf(Sub’)

The total number of operations at a node N of Sub’ is O(M(dy)logp(dy)?), where dy
is the sum of the degrees of the polynomials at N. Summing over all nodes, using the tree
structure, the total cost is seen to be in O(M(d) logp(d)?) operations, proving Proposition 6.2.
We conclude this section by defining coprime factorization over direct products of fields and
by giving the complexity of our algorithm in this case

Definition 6.3. Let a = ay, ..., a; be squarefree, monic polynomials in K(7")[y]. Let thus U =
U',...,U® be a triangular decomposition of T', for which we write (a; 1,--.,a;¢) = split(a;, U)
for all 4 = 1,...,s. Then, a coprime factorization of a over U consists of families of pairwise
coprime, monic polynomials b; in K(U?)[y], for j < e, such that each b; forms a coprime
factorization of a1 j,...,a, ; over each field in the direct product K(U7).

Proposition 6.4. Let T — A, (T) be an arithmetic time for triangular sets in n variables. Let
T be a triangular set T C k[X1,...,X,], and a = ay,...,as be squarefree, monic polynomials
in K(T)[y]. Then, one can compute a non-critical decomposition U of T, as well as a coprime
factorization of a over U, in O(M(d)log®(d) A(T)) operations in k, where d =", ., dega;.

7 Removing critical pairs

We next show how to remove critical pairs. This is an inductive process, whose complexity is
estimated in the following proposition and its corollary.

We need to extend the notion of “refining” introduced previously. Extending Definition 1.3,
we say that a family of triangular sets T' refines another family T if for every T € T, there
exists a subset of T’ that forms a triangular decomposition of (T'). Note the difference with
the initial definition: we do not impose that the family T forms a triangular decomposition of
some ideal I. In particular, the triangular sets in T do not have to generate coprime ideals.

Proposition 7.1. There exists a constant K such that the following holds. Let Aq,...,Ap_1
be arithmetic times for triangular sets in 1,...,n — 1 variables.
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Let T be a triangular set in n variables, and let U be a triangular decomposition of (T').

Then for all j = 1,...,n, the following holds: given U<;, one can compute a non-critical
triangular decomposition W of T<; that refines U<; using a; operations in k, where a; satisfies
the recurrence inequalities ag = 0 and for j =0,...,n —1,

aji1 < 2a; + KM(djy1 -+ - dy)logp(djr - - dn)*Aj(T<;),
and where d; = deg; T for j =1,...,n.

Before discussing the proof of this assertion, let us give an immediate corollary, which
follows by a direct induction.

Corollary 7.2. Given a triangular decomposition U of (T), one can compute a non-critical
triangular decomposition W of (T) that refines U in time

K (Qn_lM(dl e dn) 10gp(d1 e dn)3 +eee M(dn) logp(dn)3An—1(T§n—1)) .

PROOF. We only sketch the proof of the proposition. Let thus 7 bein 0,...,n —1 and let
U = U',...,U® be a triangular decomposition of (T'); we aim at removing the critical pairs
in Ugjy1. Let V be obtained by removing the critical pairs in U<;. Thus, V consists in
triangular sets in k[X1, ..., X;], and has no critical pair.

Let us fix i < e, and write U* = (U{,...,U.). By definition, there exists a subset V; =
Vbl ...,V of V which forms a non-critical decomposition of (U7, ...,U}). Our next step is
to compute

471 .7i : l ) )
U;-_H, cees U;_fl = split( ]Z-_H, (vy,..., U;-),Vi).

Consider now a triangular set V in V. There may be several subsets V; such that V € V.
Let Sy C {1,...,e} be the set of corresponding indices; thus, for any i € Sy, there exists
£(i) in 1,...,e; such that V = Vi), We will then compute a coprime factorization of all
polynomials U1 in K(V)[X;41], for i € Sy, and for all V..

This process will refine the family V. creating possibly new critical pairs: we get rid of
these critical pairs, obtaining a decomposition W. It finally suffices to split all polynomials
in the coprime factorization obtained before from V to W to conclude. The cost estimates
then takes into account the cost for the two calls to the same process in j variables, hence the
term 2a;, and the cost for coprime factorization and splitting. Studying the degrees of the
polynomials involved, this cost can be bounded by

KM(dj11---dy)logp(djt1--- dn)*Aj(T<;))

for some constant K that controls the O( ) estimate of Proposition 6.2. O

8 Concluding the proof

All ingredients are now present to give the proof of the following result, which readily implies
the main theorems stated in the introduction.

15



Theorem 8.1. There exists a constant L such that, writing

An(dy,....d L”HM ) logp(d;)3,
i<n
the function T — Ap(deg, T),...,deg,T) is an arithmetic time for triangular sets in n vari-

ables, for all n.

PrOOF. The proof requires to check that taking L big enough, all conditions defining
arithmetic times are satisfied. We do it by induction on n; the case n = 1 is settled by
Proposition 2.4, taking L larger than the constant C in that proposition, and using the fact
that logp(z) > 1 for all z.

Let us now consider index n; we can thus assume that the function A; is an arithmetic
time for triangular sets in j variables, for j = 1,...,n — 1. Then, at index n, condition (Ej)
makes no difficulty, using the super-additivity of the function M. Addition and multiplication
(condition (F1)) and splitting (condition (F,)) follow from Proposition 3.1, again as soon as
the condition L > C holds. The computation of quasi-inverses (condition (E5)) is taken care
of by Proposition 5.1, using our induction assumption on A, as soon as L is large enough to
compensate the constant factor hidden in the O( ) estimate of that proposition.

The cost for removing critical pairs is given in the previous section. In view of Corollary 7.2,
and using the condition M(dd’) < M(d)M(d'), after a few simplifications, to satisfy condition
(E3), L must satisfy the inequality

K(2n—1 +2n—2L++Ln—1) S Ln’

where K is the constant introduced in Corollary 7.2. This is the case for L large enough:
L > K + 2 suffices. U
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