
Background material
The ProjectionCAD package

Using the Regular Chains Library to Build
Cylindrical Algebraic Decompositions by

Projecting and Lifting

Matthew England

Joint work with: R. Bradford, J.H. Davenport & D. Wilson
The University of Bath

The 4th International Congress on Mathematical Software
Hanyang University, Seoul, Korea

August 5-9 2014

Supported by EPSRC Grant EP/J003247/1.
England et al. Using RegularChains to build CADs by projection and lifting



Background material
The ProjectionCAD package

1 Background material
Cylindrical Algebraic Decomposition
How to build a CAD

2 The ProjectionCAD package
Motivation and implementation
Functionality

England et al. Using RegularChains to build CADs by projection and lifting



Background material
The ProjectionCAD package

Cylindrical Algebraic Decomposition
How to build a CAD

Outline

1 Background material
Cylindrical Algebraic Decomposition
How to build a CAD

2 The ProjectionCAD package
Motivation and implementation
Functionality

England et al. Using RegularChains to build CADs by projection and lifting



Background material
The ProjectionCAD package

Cylindrical Algebraic Decomposition
How to build a CAD

What is a CAD?

A Cylindrical Algebraic Decomposition (CAD) is:
a decomposition meaning a partition of Rn into connected
subsets called cells;
(semi)-algebraic meaning that each cell can be defined by a
sequence of polynomial equations and inequations.
cylindrical meaning the cells are arranged in a useful manner -
their projections are either equal or disjoint.

England et al. Using RegularChains to build CADs by projection and lifting



Background material
The ProjectionCAD package

Cylindrical Algebraic Decomposition
How to build a CAD

Example - Cylindrical Algebraic Decomposition

A CAD of R2 is given by the following collections of 13 cells:

x < −1 {

[x < −1, y = y ],

x = −1 {

[x = −1, y < 0], [x = −1, y = 0], [x = −1, y > 0],

{

[−1 < x < 1, y2 + x2 − 1 > 0, y > 0],

{

[−1 < x < 1, y2 + x2 − 1 = 0, y > 0],

− 1 < x < 1 {

[−1 < x < 1, y2 + x2 − 1 < 0],

{

[−1 < x < 1, y2 + x2 − 1 = 0, y < 0],

{

[−1 < x < 1, y2 + x2 − 1 < 0, y < 0],

x = 1 {

[x = 1, y < 0], [x = 1, y = 0], [x = 1, y > 0],

x > 1 {

[x > 1, y = y ]

England et al. Using RegularChains to build CADs by projection and lifting



Background material
The ProjectionCAD package

Cylindrical Algebraic Decomposition
How to build a CAD

Example - Cylindrical Algebraic Decomposition

A CAD of R2 is given by the following collections of 13 cells:

x < −1 { [x < −1, y = y ],
x = −1 { [x = −1, y < 0], [x = −1, y = 0], [x = −1, y > 0],

{ [−1 < x < 1, y2 + x2 − 1 > 0, y > 0],
{ [−1 < x < 1, y2 + x2 − 1 = 0, y > 0],

− 1 < x < 1 { [−1 < x < 1, y2 + x2 − 1 < 0],
{ [−1 < x < 1, y2 + x2 − 1 = 0, y < 0],
{ [−1 < x < 1, y2 + x2 − 1 < 0, y < 0],

x = 1 { [x = 1, y < 0], [x = 1, y = 0], [x = 1, y > 0],
x > 1 { [x > 1, y = y ]

England et al. Using RegularChains to build CADs by projection and lifting



Background material
The ProjectionCAD package

Cylindrical Algebraic Decomposition
How to build a CAD

Sign-invariance

Traditionally a CAD is
produced from a set of
polynomials such that each
polynomial has constant sign
(positive, zero or negative) in
each cell. Such a CAD is said
to be sign-invariant.

The example from the
previous slide was a
sign-invariant CAD for the
polynomial x2 + y2 − 1.

Sign-invariance means we need only test one sample point per cell
to determine behaviour of the polynomials. Various applications:
quantifier elimination, optimisation, theorem proving, . . .

England et al. Using RegularChains to build CADs by projection and lifting



Background material
The ProjectionCAD package

Cylindrical Algebraic Decomposition
How to build a CAD

Sign-invariance

Traditionally a CAD is
produced from a set of
polynomials such that each
polynomial has constant sign
(positive, zero or negative) in
each cell. Such a CAD is said
to be sign-invariant.

The example from the
previous slide was a
sign-invariant CAD for the
polynomial x2 + y2 − 1.

Sign-invariance means we need only test one sample point per cell
to determine behaviour of the polynomials. Various applications:
quantifier elimination, optimisation, theorem proving, . . .

England et al. Using RegularChains to build CADs by projection and lifting



Background material
The ProjectionCAD package

Cylindrical Algebraic Decomposition
How to build a CAD

Sign-invariance

Traditionally a CAD is
produced from a set of
polynomials such that each
polynomial has constant sign
(positive, zero or negative) in
each cell. Such a CAD is said
to be sign-invariant.

The example from the
previous slide was a
sign-invariant CAD for the
polynomial x2 + y2 − 1.

Sign-invariance means we need only test one sample point per cell
to determine behaviour of the polynomials. Various applications:
quantifier elimination, optimisation, theorem proving, . . .

England et al. Using RegularChains to build CADs by projection and lifting



Background material
The ProjectionCAD package

Cylindrical Algebraic Decomposition
How to build a CAD

Sign-invariance

Traditionally a CAD is
produced from a set of
polynomials such that each
polynomial has constant sign
(positive, zero or negative) in
each cell. Such a CAD is said
to be sign-invariant.

The example from the
previous slide was a
sign-invariant CAD for the
polynomial x2 + y2 − 1.

Sign-invariance means we need only test one sample point per cell
to determine behaviour of the polynomials. Various applications:
quantifier elimination, optimisation, theorem proving, . . .

England et al. Using RegularChains to build CADs by projection and lifting



Background material
The ProjectionCAD package

Cylindrical Algebraic Decomposition
How to build a CAD

Sign-invariance

Traditionally a CAD is
produced from a set of
polynomials such that each
polynomial has constant sign
(positive, zero or negative) in
each cell. Such a CAD is said
to be sign-invariant.

The example from the
previous slide was a
sign-invariant CAD for the
polynomial x2 + y2 − 1.

Sign-invariance means we need only test one sample point per cell
to determine behaviour of the polynomials. Various applications:
quantifier elimination, optimisation, theorem proving, . . .

England et al. Using RegularChains to build CADs by projection and lifting



Background material
The ProjectionCAD package

Cylindrical Algebraic Decomposition
How to build a CAD

Sign-invariance

Traditionally a CAD is
produced from a set of
polynomials such that each
polynomial has constant sign
(positive, zero or negative) in
each cell. Such a CAD is said
to be sign-invariant.

The example from the
previous slide was a
sign-invariant CAD for the
polynomial x2 + y2 − 1.

Sign-invariance means we need only test one sample point per cell
to determine behaviour of the polynomials. Various applications:
quantifier elimination, optimisation, theorem proving, . . .

England et al. Using RegularChains to build CADs by projection and lifting



Background material
The ProjectionCAD package

Cylindrical Algebraic Decomposition
How to build a CAD

CAD Terminology

The cylindricity property means that all
cells in a CAD of Rd lie in the cylinder
above a cell, c ∈ Rd−1.

I.e. in c × R.

We call the decomposition of the
cylinder a stack. It consists of:

sections of polynomials (cells where
a polynomial vanishes);
sectors cells in-between (or above /
below) sections.

E.g. This stack has 3
sections and 4 sectors.

England et al. Using RegularChains to build CADs by projection and lifting



Background material
The ProjectionCAD package

Cylindrical Algebraic Decomposition
How to build a CAD

CAD Terminology

The cylindricity property means that all
cells in a CAD of Rd lie in the cylinder
above a cell, c ∈ Rd−1.

I.e. in c × R.
We call the decomposition of the
cylinder a stack. It consists of:

sections of polynomials (cells where
a polynomial vanishes);
sectors cells in-between (or above /
below) sections.

E.g. This stack has 3
sections and 4 sectors.

England et al. Using RegularChains to build CADs by projection and lifting



Background material
The ProjectionCAD package

Cylindrical Algebraic Decomposition
How to build a CAD

Outline

1 Background material
Cylindrical Algebraic Decomposition
How to build a CAD

2 The ProjectionCAD package
Motivation and implementation
Functionality

England et al. Using RegularChains to build CADs by projection and lifting



Background material
The ProjectionCAD package

Cylindrical Algebraic Decomposition
How to build a CAD

CAD via Projection and lifting
Traditionally CAD algorithms work by a process of:

Projection: to derive a set of polynomials from the input
which can define the decomposition

Lifting: to incrementally build CADs by dimension.

England et al. Using RegularChains to build CADs by projection and lifting



Background material
The ProjectionCAD package

Cylindrical Algebraic Decomposition
How to build a CAD

CAD via Projection and lifting
Traditionally CAD algorithms work by a process of:

Projection: to derive a set of polynomials from the input
which can define the decomposition
Lifting to incrementally build CADs by dimension.

England et al. Using RegularChains to build CADs by projection and lifting



Background material
The ProjectionCAD package

Cylindrical Algebraic Decomposition
How to build a CAD

CAD via Projection and lifting
Traditionally CAD algorithms work by a process of:

Projection: to derive a set of polynomials from the input
which can define the decomposition
Lifting to incrementally build CADs by dimension.

England et al. Using RegularChains to build CADs by projection and lifting



Background material
The ProjectionCAD package

Cylindrical Algebraic Decomposition
How to build a CAD

CAD via Projection and lifting
Traditionally CAD algorithms work by a process of:

Projection: to derive a set of polynomials from the input
which can define the decomposition
Lifting to incrementally build CADs by dimension.

England et al. Using RegularChains to build CADs by projection and lifting



Background material
The ProjectionCAD package

Cylindrical Algebraic Decomposition
How to build a CAD

CAD via Projection and lifting
Traditionally CAD algorithms work by a process of:

Projection: to derive a set of polynomials from the input
which can define the decomposition
Lifting to incrementally build CADs by dimension.

England et al. Using RegularChains to build CADs by projection and lifting



Background material
The ProjectionCAD package

Cylindrical Algebraic Decomposition
How to build a CAD

CAD via Projection and lifting
Traditionally CAD algorithms work by a process of:

Projection: to derive a set of polynomials from the input
which can define the decomposition
Lifting to incrementally build CADs by dimension.

England et al. Using RegularChains to build CADs by projection and lifting



Background material
The ProjectionCAD package

Cylindrical Algebraic Decomposition
How to build a CAD

CAD via Projection and lifting
Traditionally CAD algorithms work by a process of:

Projection: to derive a set of polynomials from the input
which can define the decomposition
Lifting to incrementally build CADs by dimension.

England et al. Using RegularChains to build CADs by projection and lifting



Background material
The ProjectionCAD package

Cylindrical Algebraic Decomposition
How to build a CAD

CAD via Triangular Decomposition

< 2009 All CAD research broadly within Collin’s projection
and lifting framework.

ISSAC 2009 Chen, Moreno Maza, Xia & Yang give new approach.

Rn Rn

Rn−1 Rn−1

R1 R1

Projection Lifting

England et al. Using RegularChains to build CADs by projection and lifting



Background material
The ProjectionCAD package

Cylindrical Algebraic Decomposition
How to build a CAD

CAD via Triangular Decomposition

< 2009: All CAD research broadly within Collin’s projection
and lifting framework.

ISSAC 2009: Chen, Moreno Maza, Xia & Yang give new approach.

Rn Rn

Cn Cn

Rn−1 Rn−1

R1 R1

Projection Lifting

CCD

RRI

England et al. Using RegularChains to build CADs by projection and lifting



Background material
The ProjectionCAD package

Cylindrical Algebraic Decomposition
How to build a CAD

CAD via Triangular Decomposition

< 2009: All CAD research broadly within Collin’s projection
and lifting framework.

ISSAC 2009: Chen, Moreno Maza, Xia & Yang give new approach.

Rn Rn

Cn Cn

Rn−1 Rn−1

R1 R1

Projection Lifting

CCD

RRIRC-CAD

PL-CAD

England et al. Using RegularChains to build CADs by projection and lifting



Background material
The ProjectionCAD package

Cylindrical Algebraic Decomposition
How to build a CAD

Cylindrical complex decompositions

RC-CAD starts with a complex cylindrical decomposition (CCD).
The tree below represents a sign-invariant CCD for
p := x2 + bx + c under variable ordering c ≺ b ≺ x .

c = 0

b = 0

x = 0 x 6= 0

b 6= 0

p = 0 p 6= 0

c 6= 0

b2 − 4c = 0

2x + b = 0 2x + b 6= 0

b2 − 4c 6= 0

p = 0 p 6= 0

The key advantage is case distinction: the polynomial b is not
sign-invariant for the whole decomposition, only when required.

England et al. Using RegularChains to build CADs by projection and lifting



Background material
The ProjectionCAD package

Cylindrical Algebraic Decomposition
How to build a CAD

Cylindrical complex decompositions

RC-CAD starts with a complex cylindrical decomposition (CCD).
The tree below represents a sign-invariant CCD for
p := x2 + bx + c under variable ordering c ≺ b ≺ x .

c = 0

b = 0

x = 0 x 6= 0

b 6= 0

p = 0 p 6= 0

c 6= 0

b2 − 4c = 0

2x + b = 0 2x + b 6= 0

b2 − 4c 6= 0

p = 0 p 6= 0

The key advantage is case distinction: the polynomial b is not
sign-invariant for the whole decomposition, only when required.

England et al. Using RegularChains to build CADs by projection and lifting



Background material
The ProjectionCAD package

Motivation and implementation
Functionality

Outline

1 Background material
Cylindrical Algebraic Decomposition
How to build a CAD

2 The ProjectionCAD package
Motivation and implementation
Functionality

England et al. Using RegularChains to build CADs by projection and lifting



Background material
The ProjectionCAD package

Motivation and implementation
Functionality

The ProjectionCAD package

A Maple package developed at the University of Bath which
builds CADs via projection and lifting.

Currently freely available from the authors;
Plans to integrate it into the RegularChains Library at
http://www.regularchains.org/

Originally developed to compare the theory of PL-CAD and RC-CAD
in an implementation independent context.
Later used to implement new theory for PL-CAD (summarised
later) which has in turn led to new theory for RC-CAD (see the
talks of Davenport and Moreno Maza).

England et al. Using RegularChains to build CADs by projection and lifting



Background material
The ProjectionCAD package

Motivation and implementation
Functionality

Motivation

ProjectionCAD uses the RegularChains Library to create
stacks of cells in the lifting phase. The main motivation:

Uses efficient algorithms for triangular decomposition to
compute with algebraic numbers.
Ensures ProjectionCAD always uses the best available
sub-algorithms (such as new code for real root isolation).
ProjectionCAD can match output formats with the
RC-CAD implementations. Allows for easy comparison and
use of the intuitive tree-like piecewise structure.

England et al. Using RegularChains to build CADs by projection and lifting



Background material
The ProjectionCAD package

Motivation and implementation
Functionality

Implementation I

In the PL-CAD framework cells are constructed to decompose a
cylinder into a stack according to the signs of given projection
polynomials. We use the command in the RegularChains
Library for this. It was originally developed as a sub-algorithm to
MakeSemiAlgebraic: the tool for converting a CCD into a CAD.

Difficulties: The RegularChains command assumed that in
addition to delineability, the polynomials separate above the cell,
meaning they are coprime and square-free throughout.

England et al. Using RegularChains to build CADs by projection and lifting



Background material
The ProjectionCAD package

Motivation and implementation
Functionality

Implementation II

To overcome the difficulties polynomials were pre-processed before
the RegularChains algorithm was called:

To ensure they were coprime a variant of the Triangularize
algorithm was repeatedly called to find the zeros of a
polynomial also zeros of a regular chain but not zeros of
another set (polynomials already processed).
To ensure they were squarefree an analogue of Musser’s
algorithm for square-free factorization adapted for regular
chains was repeatedly used.

England et al. Using RegularChains to build CADs by projection and lifting



Background material
The ProjectionCAD package

Motivation and implementation
Functionality

Outline

1 Background material
Cylindrical Algebraic Decomposition
How to build a CAD

2 The ProjectionCAD package
Motivation and implementation
Functionality

England et al. Using RegularChains to build CADs by projection and lifting



Background material
The ProjectionCAD package

Motivation and implementation
Functionality

Basic functionality

ProjectionCAD can build sign-invariant CADs:
using either the Collins or McCallum projection operators;
in a variety of output formats (including one’s useful for future
computation and others designed for human readability);

with the stronger property of order-invariance if requested (so
each polynomial vanishes to constant order in each cell);
with minimal delineating polynomials built automatically
(avoiding unnecessary failure declarations).

England et al. Using RegularChains to build CADs by projection and lifting



Background material
The ProjectionCAD package

Motivation and implementation
Functionality

Basic functionality

ProjectionCAD can build sign-invariant CADs:
using either the Collins or McCallum projection operators;
in a variety of output formats (including one’s useful for future
computation and others designed for human readability);
with the stronger property of order-invariance if requested (so
each polynomial vanishes to constant order in each cell);
with minimal delineating polynomials built automatically
(avoiding unnecessary failure declarations).

England et al. Using RegularChains to build CADs by projection and lifting



Background material
The ProjectionCAD package

Motivation and implementation
Functionality

Equational constraints

Equational Constraint: an equation logically implied by a formula.

Given a formula we seek a CAD so that the Boolean value is
constant on each cell. A CAD sign-invariant for the polynomials
involved would achieve this. However, McCallum defined a
projection operator which leads to a CAD on which:

the polynomial defining the EC is sign-invariant;
the polynomials defining other constraints are sign-invariant if
the EC is satisfied.

ProjectionCAD has an implementation of this more efficient
(less cells, less computation time) projection. It also uses additional
optimisation in the lifting stage to give further efficiencies.

England et al. Using RegularChains to build CADs by projection and lifting



Background material
The ProjectionCAD package

Motivation and implementation
Functionality

Equational constraints example

Consider the formulae φ := (x2 + y2 − 1 = 0) ∧ (x2 − y > 0).

England et al. Using RegularChains to build CADs by projection and lifting



Background material
The ProjectionCAD package

Motivation and implementation
Functionality

Truth-table invariance

Given a sequence of formulae a truth-table invariant CAD
(TTICAD) is a CAD such that each formula has constant Boolean
value on each cell.

Together with McCallum the Bath team validated a new
projection operator to build TTICADs which makes savings
from equational constraints.
Only one formula need have an EC to generate savings over a
sign-invariant CAD for the polynomials involved.
Implemented in ProjectionCAD (including savings in the
lifting stage).

England et al. Using RegularChains to build CADs by projection and lifting



Background material
The ProjectionCAD package

Motivation and implementation
Functionality

Why build a TTICAD?

A TTICAD can be useful for:
An application providing a sequence of separate formulae

For example, algebraic simplification of identities involving
multi-valued functions requires checking validity on regions of
complex space divided by the branch cuts of the functions
involved: a TTICAD for the formulae describing the cuts is exactly
the desired object.

Finding a truth-invariant CAD for a parent formula
A TTICAD for the defining sub-formula is truth-invariant for the
parent. TTICAD can be the most efficient known approach
(especially if there is no EC for the parent formula).

England et al. Using RegularChains to build CADs by projection and lifting



Background material
The ProjectionCAD package

Motivation and implementation
Functionality

Why build a TTICAD?

A TTICAD can be useful for:
An application providing a sequence of separate formulae

For example, algebraic simplification of identities involving
multi-valued functions requires checking validity on regions of
complex space divided by the branch cuts of the functions
involved: a TTICAD for the formulae describing the cuts is exactly
the desired object.

Finding a truth-invariant CAD for a parent formula
A TTICAD for the defining sub-formula is truth-invariant for the
parent. TTICAD can be the most efficient known approach
(especially if there is no EC for the parent formula).

England et al. Using RegularChains to build CADs by projection and lifting



Background material
The ProjectionCAD package

Motivation and implementation
Functionality

TTICAD Example I

Consider
√

z2 − 1
√

z2 + 1 =
√

z4 − 1. Most software takes
√

x to
be the positive root, in which case the identity is not always true.

For z = x + iy, the functions involved have branch cuts:

ϕ1 := 2xy = 0 ∧ x2 − y2 < 1,
ϕ2 := 2xy = 0 ∧ x2 − y2 < −1,
ϕ3 := 4x3y − 4xy3 = 0 ∧ x4 − 6x2y2 + y4 < 1.

Either a TTICAD for {ϕ1, ϕ2, ϕ3} or a sign-invariant CAD for the
polynomials involved would decompose C = R2 according to these
cuts. We then need to test the truth at a finite number of sample
points.

England et al. Using RegularChains to build CADs by projection and lifting



Background material
The ProjectionCAD package

Motivation and implementation
Functionality

TTICAD Example II

England et al. Using RegularChains to build CADs by projection and lifting



Background material
The ProjectionCAD package

Motivation and implementation
Functionality

Sidenote: Branch Cuts in ICMS Demo Session

We have another package, BranchCuts for calculating and
visualising the branch cuts of multi-valued functions in Maple. It
was integrated into the FunctionAdvisor in Maple 17.

England et al. Using RegularChains to build CADs by projection and lifting



Background material
The ProjectionCAD package

Motivation and implementation
Functionality

Layered Sub-CADs

A layered sub-CAD is a subset of cells from a CAD consisting of
those with a prescribed dimension and higher.

Can be produced more efficiently than a full CAD.
Implemented in ProjectionCAD by truncating the lifting
process appropriately.
Useful if problems known to have solutions of a given
dimensions, or if solutions are only needed to a specific
accuracy.
Can build layered CADs directly or incrementally (one layer at
a time starting with cells of full-dimension and working down).

England et al. Using RegularChains to build CADs by projection and lifting



Background material
The ProjectionCAD package

Motivation and implementation
Functionality

Layered Sub-CAD Example
Consider a sign invariant CAD for {x2 + y2 − 1, x − y2}.

England et al. Using RegularChains to build CADs by projection and lifting



Background material
The ProjectionCAD package

Motivation and implementation
Functionality

Variety CADs

A variety sub-CAD is a subset of cells from a CAD consisting of
those which lie on a prescribed variety.

Can be produced more efficiently than a full CAD.
Implemented in ProjectionCAD when the variety is an
equational constraint for the input.
Much smaller output than a full-CAD, with time savings also
possible depending on the dimension of the variety.
Useful if all that is required is a description of solutions to
formulae.

England et al. Using RegularChains to build CADs by projection and lifting



Background material
The ProjectionCAD package

Motivation and implementation
Functionality

Other functionality

Other functionality in ProjectionCAD:
Combinations of layered and variety sub-CADs with each
other and different projection operators (for example, layered
variety truth-table invariant sub-CADs are available).
User commands for stack generation and induced CADs (the
CADs of lower dimensional space produced as part of a
computation) allowing for easy experimentation.
Heuristics to help with choices such as variable ordering, EC
designation, and how best to prepare formulae for TTICAD.

England et al. Using RegularChains to build CADs by projection and lifting



Background material
The ProjectionCAD package

Motivation and implementation
Functionality

The End

References to the theory implemented in ProjectionCAD are
summarised in the ICMS paper, along with the technical details of
how the RegularChains routines are used.

Contact Details
M.England@bath.ac.uk

http://www.cs.bath.ac.uk/∼me350/

Thanks for listening!

England et al. Using RegularChains to build CADs by projection and lifting


	Background material
	Cylindrical Algebraic Decomposition
	How to build a CAD

	The ProjectionCAD package
	Motivation and implementation
	Functionality


