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Without the support of NSERC for the past five years, my research program would not have been
so successful. It is a pleasure to be able to conduct my scientific investigation in Canada where there is
an established tradition of excellent, funded research in computer algebra. My research is devoted to
the design and implementation of polynomial system solvers based on symbolic computation. Solving
systems of non-linear, algebraic or differential equations, is a fundamental problem in mathematical
sciences. It has been studied for centuries and still stimulates many research developments.

Solving polynomial systems is a driving subject for symbolic computation. In many computer
algebra systems, the solve command involves nearly all libraries in the system, challenging the most
advanced operations on matrices, polynomials, algebraic numbers, polynomial ideals, etc.

Symbolic solvers are also powerful tools in scientific computing: they are well suited for prob-
lems where the desired output must be exact and they have been applied successfully in mathematics,
physics, engineering, chemistry and education, with important outcomes. See Chapter 3 in [10] for
an overview of these applications. While the existing computer algebra systems have met with some
practical success, symbolic computation is still under-utilized in areas like mathematical modeling and
computer simulation. Part of this is due to the fact that much larger and more complex computers are
required - often beyond the scope of existing systems.

The implementation of symbolic solvers is, indeed, a highly difficult task. Symbolic solvers are
extremely time-consuming when applied to large examples. Even worse, intermediate expressions can
grow to enormous size and may halt the computations, even if the result is of moderate size. Therefore,
the implementation of symbolic solvers requires techniques that go far beyond the manipulation of
algebraic or differential equations; these include efficient memory management, data compression,
parallel and distributed computing, etc.

Though there has been progress, researchers have realized that solvers, and other computer al-
gebra software, were far from making the best use of their computer resources. Indeed, computer
algebra software packages rarely take into account memory hierarchy and memory contention. The
increasing diversity of architectures makes this problem more dramatic. With the desire of achiev-
ing high-performance on practical problems, research in symbolic computation has entered a new era
where implementation techniques are at least as important as theoretical developments. This phe-
nomenon is largely accentuated by the recent improvements in computer hardware which focus on
parallel processing rather than increasing clock speed alone.

The goal of my proposed research is to deliver efficient mathematical algorithms, implementation
and code optimization techniques for symbolic polynomial system solvers, and more generally for
symbolic computation, to achieve high-performance on modern computing resources from SMPs and
multi-cores to clusters of multi-processors. To achieve this, I propose the following projects, which
extend my previous work into five promising and strongly-related areas.

FASTTRIADE: Fast arithmetic and modular methods for triangular decomposition,
COGEPAS: Code generation for polynomial arithmetic subroutines,
PASCOLIB: Parallel symbolic computation library,
HPCSOLVE: High-performance solver for clusters of multi-processor,
CADYNA: Computer algebra support for studying dynamical systems.

In the sequel, references written in boldface as [1], [2], . . . refer to the contribution list in my Form
100. Those numbered as [1], [2], . . . are listed at the end of this proposal.
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1 Overview
The development of polynomial system solvers, as computer programs based on symbolic computa-
tion, started four decades ago with the discovery of Gröbner bases in the PhD thesis of B. Bucherber,
whereas efficient implementation capable of tackling real-world applications is very recent [6]. Trian-
gular decompositions are an alternative way for solving systems of algebraic equations symbolically.
They focus on extracting geometrical information from the solution set V (F ) of the input polynomial
system F rather than insisting on revealing algebraic properties as Gröbner bases do. A triangular de-
composition of V (F ) is given by finitely many polynomial sets, each of them with a triangular shape
and so-called a triangular set1; these sets describe the different components of V (F ), such as points,
curves, surfaces, etc. Triangular decompositions were invented by J.F. Ritt in the 30’s for systems of
differential polynomials. Their stride started in the late 80’s with the method of W.T. Wu dedicated to
algebraic systems. Different concepts and algorithms extended the work of Wu. At the end of 90’s the
notion of a regular chain, introduced by M. Kalkbrener, led to important algorithmic improvements.
The era of polynomial system solvers based on triangular decompositions could commence. Since
2000, exciting complexity results [3] and algorithms (see the progress report below) have boosted
the development of implementation techniques. I believe that triangular decompositions are highly
promising techniques which have the potential to produce high-performance solvers.

A few sequential computer algebra packages (GMP, NTL, Gb/FGb) can be regarded as high-
performance tools. However, only the first one, which provides big integer arithmetic, can support the
proposed software. The largest effort of the computer algebra community toward high-performance
is on parallel symbolic computation. This has been a very active area during the 80’s and 90’s, see
the survey in Section 2.18 of [10]. Unfortunately, the attention of the computer algebra community
has been somewhat withdrawn from parallelism during the last decade. The success of the workshop
Parallel Symbolic Computation 2007 (which I organized last Summer) indicates a renewed interest.

Two goals rule the design of a parallel software package: the application must exhibit enough
parallelism to efficiently utilize multiple processors while it must minimize the data communication
costs and memory traffic. A number of features of symbolic computation make this design even more
complex. The latter three are typical difficulties in polynomial system solving.

Data duplication. In a sequential program, the data-structures representing two polynomial sets S =
{p, q} and T = {q, r} are likely to share the representation of the common element q; data
duplication may not be avoided in a parallel program running two independent processes, one
holding S and the other T . Data-structures like the above sets, or linked lists, are frequent in
symbolic computation and this problem of data duplication can be a bottleneck.

Huge data. Intermediate expressions can become huge in a nearly unpredictable way. Thus, data seri-
alization and unserializatiom (for data communication) have an appreciable cost. More generally,
memory traffic and network communication are harder to handle in this context.

Task irregularity. In an algorithm using a task pool (say the Bucherber Algorithm for Gröbner bases
managing a list of critical pairs) the number of tasks and their grain sizes may vary dramatically
and are also hard to determine in advance; this makes task scheduling quite difficult.

Evolving job. When running a parallel symbolic solver, the total amount of computing resources that
can be efficiently utilized is far from being constant during the execution time. Addressing this
issue is actually a challenge for dynamic job schedulers; see the survey papers [7, 15].

1This notion extends to non-linear systems that of a triangular system, well-known in linear algebra.
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2 Progress report
The expected results identified in my previous Discovery grant have been achieved. First, we have
obtained a coarse-grained parallel solver for triangular decompositions [6] together with a supporting
framework library [7]. Data duplication, as defined above, has been recognized as a major issue: one of
the objectives of our PASCOLIB project is to face this difficulty. Secondly, we have obtained the first
modular method (allowing a good control on intermediate expression swell) for computing triangular
decompositions [24]. This algorithm applies only to input systems with rational number coefficients
and with finitely many solutions. The cases of systems with coefficients modulo a prime number or
with infinitely many solutions are among the objectives of our FASTTRIADE project.

We have also obtained unanticipated results, which are major tools for reaching high-performance.
First, we have identified implementation techniques for fast polynomial arithmetic operations [8, 17]:
our code compares to, and often outperforms, the packages with similar specifications [14]. Secondly,
we have discovered highly efficient algorithms for low-level operations supporting triangular decom-
positions, such as polynomial multiplication modulo a triangular set [5]. Developing auto-tuning soft-
ware tools for adapting these low-level routines on the main stream and emerging architectures is the
objective of our COGEPAS project. Another unanticipated result is a new algorithmic approach for
studying polynomial systems with parameters [11]. This is essential to our CADYNA project.

3 Objectives
It is well recognized that the impact of the high-performance software for both numerical and exact
linear algebra on engineering and scientific computing is tremendous. The most significant results are
the BLAS [11], LAPACK [4], PLAPACK [1], ATLAS [19] and LinBox [5]. The successful techniques
include hierarchical modularization, implementation of highly efficient algorithms for basic routines,
block-based algorithms for better exploiting the memory hierarchies, parallel and distributed methods,
as well as automatically optimizing and tuning code on different platforms.

Today, solving polynomial systems of non-linear equations on high-performance architectures is
of great interest. On one hand, exciting progress has been made on practical aspects of symbolic
solving. On the other hand, the pervasive ubiquity of parallel architectures has led to a new quest for
mathematical algorithms and software capable of exploiting these computing resources. Therefore,
it is time to realize a high-performance symbolic solver so that the scientific computing community
could readily take advantage of its power and more difficult problems could be solved.

Inspired by the successful story of high-performance linear algebra, based on my experience with
the development of three sequential solvers and one coarse-grained parallel solver, as well as my re-
cent contributions to implementation techniques, fast algorithms, modular methods and fine/medium-
grained parallelism, I propose five strongly-related projects addressing high-performance in symbolic
computation. The core project HPCSOLVE will deliver polynomial system solvers for clusters of
multi-processors to compute triangular decompositions. It will rely on three foundamental projects,
FASTTRIADE, COGEPAS and PASCOLIB dedicated respectively to algebraic algorithms, code gener-
ation and parallel symbolic computation. Our fifth project, CADYNA, will produce an expert system
for studying dynamical systems. It will rely intensively on HPCSOLVE and thus will be our driving
application. Today, no software possesses the functionalities and computing power of the proposed
one. I strongly believe that these five projects could bring major advances in symbolic computation
and a great opportunity for computer algebra to conquer new application areas.
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FASTTRIADE: Fast arithmetic and modular methods for triangular decomposition. The re-
search commenced in [5], on fast algorithms for low-level operations supporting triangular decomposi-
tions will be continued. Similarly, following [24], the quest for modular methods has to be pursued. It
is well-known that modular methods favor the use of fast arithmetic. As demonstrated in [6], modular
methods also creates opportunities for parallel execution. Therefore, modular methods are essential
techniques for reaching high-performance in symbolic computation. As mentioned earlier, the fun-
damental situation of polynomial systems, with coefficients modulo a prime number and with finitely
many solutions, still requires an efficient modular method for computing triangular decompositions.
In the Master’s Thesis of my PhD student Raqeeb Rasheed [17], we have obtained promising results
for systems with 2 or 3 variables. I believe that our strategy generalizes to systems in n variables and
n equations. First, we concentrate on polynomial systems F which satisfy what we call genericity
assumptions. Under these, we obtain a highly efficient algorithmic solution, where the cost of each
operation can be controlled in a nearly optimal way. Secondly, we relax these genericity assumptions
while maintaining an efficient algorithm. In the work of G. Lecerf [12] genericity assumptions are
also used; relaxing them is achieved by means of generic perturbation. We avoid this transforma-
tion by making use of our recent algorithms for change of variable ordering [3] and triangular set
merging [24]. The experimental results of [17] illustrate the good behavior of our approach.

COGEPAS: Code generation for polynomial arithmetic subroutines. Similarly to the ATLAS [19]
and SPIRAL projects [16], COGEPAS will be dedicated to code generation, code optimization and
platform adaptation for a specific domain of routines. We will focus on arithmetic operations (multi-
plication, polynomial GCD, etc.) modulo a triangular set. These operations are easy to implement in a
high-level language. Reaching high-performance, however, requires to take care of different issues and
the proposed software tool will have an algorithm level and an implementation level, as in SPIRAL.
By means of a syntax directed-approach, the algorithm level will generate different algorithmic so-
lutions, for instance one using FFT-based arithmetic, and another using classical arithmetic. These
solutions, encoded in a high-level language, will be compared, first, by a complexity analysis and sec-
ondly by benchmarking their generated C code. Then, thresholds will be determined, depending on
the input data size, and an algorithmic solution will be selected. This algorithm level will automatize
the work that we conducted manually in [9]. At the implementation level, according to the features of
the target architecture, compiler optimization techniques such as code transformation for locality and
parallelism are adjusted to our application. The generated C code is augmented with either CILK [8]
or KAAPI [9] constructs (for task scheduling). Then, the code is profiled on the target multi-processor
machine. If a bottleneck is identified, then additional phases of code optimization are performed.

PASCOLIB: Parallel symbolic computation library. The goal of the PASCOLIB project is to pro-
vide a high-performance software library for symbolic computation on clusters of multi-processors.
This library, written in C and ALDOR, will extend the framework introduced in [7] and will pro-
vide both multi-threaded and multi-processed parallelisms. Moreover, COGEPAS will support the
PASCOLIB in a similar way that ATLAS supports LAPACK. A typical PASCOLIB implementation
would be that of a modular method for computing a polynomial GCD modulo a parametric triangular
set (or regular chain). Such an algorithm could specialize the parameters to several values, leading to
several threads that can run concurrently the routines of COGEPAS. The task scheduling could rely
fully on CILK or KAAPI. However, certain algorithms, in particular those for triangular decomposi-
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tions, can efficiently guide the task scheduling (based on information discovered during the compu-
tation, see [6]) and the PASCOLIB should accommodate them. Another feature of the PASCOLIB

would be distributed data-structures in order to limit data duplication (as defined above). Suppose that,
during a computation, a Master M and its Workers W1, W2, . . . ,Wp need to exchange data of some
recursive type T , say binary tree. Suppose that M decides to send a copy of a variable v of type T to
W1. Then, M should send to W1 only the sub-expressions of v that W1 does not know such that W1

can construct a copy of v, without duplicating any subtrees of v in its local memory. If the type T is
declared “distributed”, then the PASCOLIB would provide this simple mechanism for objects of T in
a transparent way. This mechanism should be very effective for types T like polynomial sets.

HPCSOLVE: high-performance solver on clusters of multi-processors. Based on my experience
on coarse-grained parallel triangular decompositions and medium/fine-grained parallel arithmetic op-
erations modulo a triangular set, I am convinced that triangular decompositions will lead to the real-
ization of HPCSOLVE, the first symbolic solver with multi-level parallelism. Following the techniques
initiated in [6], the modular algorithms for polynomial system solving developed by the FASTTRIADE

project will create opportunities for coarse-grained parallel execution. These modular algorithms, im-
plemented in PASCOLIB, will rely on the low-level routines provided by COGEPAS. As shown in [8],
these routines exhibit a rich parallelism. The high productivity of HPCSOLVE will result not only from
its multi-level parallelism, fast polynomial arithmetic operations and modular methods implemented
in COGEPAS and PASCOLIB but also from the fact that COGEPAS code is optimized for locality and
parallelism, and tuned on the target machine. Despite of all its high-performance features, HPCSOLVE

should have irregular computing resource needs during an execution. Developing HPCSOLVE together
with a job scheduler accommodating evolving jobs (as defined above) would be of great interest.

CADYNA: Computer algebra support for studying dynamical systems. The existing software
packages devoted to dynamical systems, based on symbolic or numerical methods, fall in the follow-
ing categories: (a) computation of normal forms and center manifolds using [13], (b) stability analysis
of equilibria using symbolic techniques [18], (c) stability analysis of equilibria and limit cycles for
planar dynamical systems [2, 20], (d) symbolic computation of Lyapounov quantities [14], (e) com-
putation of bifurcation diagrams using numerical parameter continuation (Content, Matcont, AUTO
2000, XPP/XPPAUT). All these packages perform only specific tasks and frequently assume that par-
ticular conditions hold. In addition, they do not have mechanisms to automatically produce systematic
case distinctions according to parameter values. The recent progress for solving parametric polyno-
mial systems indicate that a computer program could efficiently generate an automatic and systematic
discussion of the locus of the equilibria, together with the normal forms at these equilibria, of a given
(polynomial) dynamical system, depending on the values of its bifurcation parameters. The objective
of the CADYNA project is to design and implement the first expert software system of this kind.

Summary and impact. We will design and deliver high-performance software packages: solvers for
polynomial systems and libraries for symbolic computation. The problems arising from our driven
application will put all the components of our solvers and libraries at extreme challenges, bringing
efficiency and robustness. I believe that the technology and software generated by this project will be
major advances in computer algebra. They will also provide scientific computing with tools capable of
tackling problems for which no software solutions exist today.
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