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Zero-divisors

In the whole section we consider a commutative ring R with units.

Definition
An element a ∈ R is a zero-divisor if a ≠ 0 and there exists b ∈ R such that
a b = 0 and b ≠ 0.
If R has no zero-divisors, we say that R is an integral domain.

Remark
Observe also the ring R may contain nonzero elements that are neither
zero divisor, nor units.
Let R = Z/6Z and let U = R[x] be the ring of univariate polynomials over
R. The ring U has units (for instance the constant polynomial 5), it has
zero divisors (for instance the polynomial 2x + 4 since 3(2x + 4) = 0) and
also elements like x + 1 which is not a unit nor a zero divisor.



Primitive roots of unity (1/2)

Definition
Let n be a positive integer and ω ∈ R.

1. ω is a n-th root of unity if ωn = 1.

2. ω is a primitive n-th root of unity if

2.1 ωn
= 1,

2.2 n is a unit in R,
2.3 for every prime divisor t of n the element ωn/t

− 1 is neither zero nor
a zero divisor.

Remark
When R is an integral domain the last condition becomes: for every
prime divisor t of n the element ωn/t ≠ 1. Observe also that a n-th root
of unity is necessarily a unit.

Example
Consider that R is the field C of complex numbers. The number
ω = e2 ıπ/8 is a primitive 8-th root of unity.



Primitive roots of unity (2/2)
Example
In R = Z/8Z we have 32 ≡ 1. However 3 is not a primitive 2-th of unity,
since n = 2 is not a unit in R.

Example
In R = Z/17Z we have the following computation in Axiom

(1) -> R := PF(17)

(1) PrimeField 17

Type: Domain

(2) -> w: R := 3

(2) 3

Type: PrimeField 17

(3) -> [w^i for i in 0..16]

(3) [1,3,9,10,13,5,15,11,16,14,8,7,4,12,2,6,1]

Type: List PrimeField 17

(4) -> u: R := 2

(4) 2

Type: PrimeField 17

(5) -> [u^i for i in 0..16]

(5) [1,2,4,8,16,15,13,9,1,2,4,8,16,15,13,9,1]

Type: List PrimeField 17

The first list shows that 3 is a primitive 16-th root of unity. However with
ω = 2 we have ω8 − 1 = 0 since (24 − 1)(24 + 1) = 15 × 17 ≡ 0.



Properties of primitive roots of unity (1/3)

Proposition
Let 1 < ` < n be integers and let ω be a primitive n-th root of unity. Then
we have

1. ω` − 1 is neither zero nor a zero divisor in R,

2. Σ0≤ j <n ω
j ` = 0.

Proof (1/3)
It relies on the formula

(c − 1) Σ0≤ j <m c j = cm − 1 (1)

which holds for every c ∈ R and every positive integer m.
Let us prove the first statement of the lemma. Let g be the gcd of ` and
n. Let u, v ∈ Z be such that

u ` + v n = g (2)

Since ` < n we have 1 ≤ g < n.



Properties of primitive roots of unity (2/3)
Proof (2/3)
Hence, there exists a prime factor t of n such that

g ∣ (n/t) (3)

Let
c = ωg and m = n/(tg) (4)

in Relation (1) leading to

(ωg − 1) a = (ωn/t − 1) (5)

for some a ∈ R. Hence if (ωg − 1) would be zero or a zero divisor then so
would be (ωn/t − 1) which is false. Now applying Relation (1) with c = ω`
and m = u implies that (ω` − 1) divides (ωu ` − 1). But with Relation (2)
we obtain

(ωu ` − 1) = (ωu ` ωv n − 1) = (ωg − 1) (6)

Hence
(ω` − 1) ∣ (ωg − 1) (7)

Therefore (ω` − 1) cannot be zero or a zero divisor.



Properties of primitive roots of unity (3/3)

Proof (3/3)
Now let us prove the second statement of the lemma. By applying
Relation (1) with c = ω` and m = n we have

(ω` − 1) Σ0≤ j <n ω
` j = ω`n − 1 = 0 (8)

Since (ω` − 1) is neither zero nor a zero divisor we otain the desired
formula.
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Discrete Fourier Transform (1/3)

Notations
Let n be a positive integer and ω ∈ R be a primitive n-th root of unity. In
what follows we identify every univariate polynomial

f = Σ0≤ i <n fi x
i ∈ R[x] (9)

of degree less than n with its coefficient vector (f0, . . . , fn−1) ∈ Rn.

Definition
The R-linear map

DFTω ∶ { Rn z→ Rn

f z→ (f (1), f (ω), f (ω2), . . . , f (ωn−1)) (10)

which evaluates a polynomial at the powers of ω is called the Discrete
Fourier Transform (DFT).

Proposition
The R-linear map DFTω is an isomorphism.



Discrete Fourier Transform (2/3)

Proof

▸ Since the R-linear map DFTω is an endomorphism (the source and
target spaces are the same) we only need to prove that DFTω is
bijective.

▸ Observe that the Vandermonde matrix VDM(1, ω, ω2, . . . , ωn−1) is
the matrix of the R-linear map DFTω.

▸ Then for proving that DFTω is bijective we need only to prove that
VDM(1, ω, ω2, . . . , ωn−1) is invertible which holds iff the values
1, ω, ω2, . . . , ωn−1 are pairwise different.

▸ A relation ωi = ωj for 0 ≤ i < j < n would imply ωi (1 − ωj−i) = 0.

▸ Since (1 − ωj−i) cannot be zero or a zero divisor then ωi and thus ω
must be zero.

▸ Then ω cannot be a root of unity. A contradiction.

▸ Therefore the values 1, ω, ω2, . . . , ωn−1 are pairwise different and
DFTω is an isomorphism.



Discrete Fourier Transform (3/3

Proposition
Let Vω denote the matrix of the isomorphism DFTω. Then ω−1 the
inverse of ω is also a primitive n-th root of unity and we have

Vω Vω−1 = nIn

where In denotes the unit matrix of order n.

Proof
Define ω′ = ω−1. Observe that ω′ = ωn−1. Thus ω′ is a root of unity, and,
in fact, a n-th root of unity. Consider the product of the matrix Vω and
Vω′ . The element at row i and column k is:

(Vω Vω′)ik = Σ0≤ j <n (Vω)ij(Vω′)jk
= Σ0≤ j <n ω

ij (ω′)jk
= Σ0≤ j <n ω

ij ω−jk

= Σ0≤ j <n (ωi−k)j

Observe that ωi−k is either a power of ω or a power of its inverse. Thus,
in any case this is a power of ω. If i = k this power is 1 and (Vω Vω′)ik is
equal to n. If i ≠ k , the previous section implies (Vω Vω′)ik = 0.
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n-th convolution of two polynomials (1/2)

Let n be a positive integer and ω ∈ R be a primitive n-th root of unity.

Definition
The convolution w.r.t. n of the polynomials f = Σ0≤ i <n fi x

i and
g = Σ0≤ j <n gj x

j in R[x] is the polynomial

h = Σ0≤ k <n hk x
k (11)

such that for every k = 0⋯n − 1 the coefficient hk is given by

hk = Σi+j≡k mod n fi gj (12)

The polynomial h is denoted by f ∗n g , or simply by f ∗ g if not
ambiguous.



n-th convolution of two polynomials (2/2)

Remark
Observe that the product of f by g is

p = Σ0≤ k < 2n−1 pk x
k (13)

where for every k = 0⋯2n − 2 the coefficient pk is given by

pk = Σi+j=k fi gj (14)

We can rearrange the polynomial p as follows.

p = Σ0≤ k <n (pk xk) + xn Σ0≤ k <n−1 (pk+n xk)
= Σ0≤ k <n (pk + pk+n x

n) xk
≡ Σ0≤ k <n hk x

k mod xn − 1
(15)

with p2n−1 = 0, since deg(p) = deg(f ) + deg(g) = 2n − 2.
Therefore we have

f ∗ g ≡ fg mod xn − 1 (16)



DFT and convolution

Proposition
For f ,g ∈ R[x] univariate polynomials of degree less than n we have

DFTω(f ∗ g) = DFTω(f )DFTω(g) (17)

where the product of the vectors DFTω(f ) and DFTω(g) is computed
component-wise.

Proof
Since f ∗ g and f g are equivalent modulo xn − 1, there exists a
polynomial q ∈ R[x] such that

f ∗ g = f g + q (xn − 1) (18)

Hence for i = 0⋯n − 1 we have

(f ∗ g)(ωi) = f (ωi)g(ωi) + q(ωi)(ωi n − 1)
= f (ωi)g(ωi) (19)

since ωn = 1.
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A divide-and-conquer strategy (1/4)

The Fast Fourier Transform computes the DFT quickly. This important
algorithm for computer science (not only computer algebra, but also
digital signal processing for instance) was (re)-discovered in 1965 by
Cooley and Tukey.

▸ Let n be a positive even integer, ω ∈ R be a primitive n-th root of
unity and f = Σ0≤ i <n fi x

i .

▸ In order to evaluate f at 1, ω, ω2, . . . , ωn−1, we follow a
divide-and-conquer strategy; more precisely, we consider the divisions
with remainder of f by xn/2 − 1 and xn/2 + 1.

▸ So let q0,q1, r0, r1 be polynomials such that

f = q0(xn/2 − 1) + r0 with { deg(r0) < n/2
deg(q0) < n/2

(20)

and

f = q1(xn/2 + 1) + r1 with { deg(r1) < n/2
deg(q1) < n/2

(21)



A divide-and-conquer strategy (2/4)

▸ The relations deg(q0) < n/2 and deg(q1) < n/2 hold because the
polynomial f has degree less than n.

▸ Observe that the computation of (q0, r0) and (q1, r1) can be done
very easily.

▸ Indeed, let F0,F1 ∈ R[x] be such that

f = F1 x
n/2 + F0 with { deg(F1) < n/2

deg(F0) < n/2
(22)

We have

f = F1(xn/2 − 1) +F0 +F1 and f = F1(xn/2 + 1) +F0 −F1 (23)

▸ Hence we obtain

r0 = F0 + F1 and r1 = F0 − F1 (24)



A divide-and-conquer strategy (3/4)

▸ Let i be an integer such that 0 ≤ i < n/2. By using Relation (20)
with x = ω2 i we obtain

f (ω2 i) = q0(ω2 i)(ωn i − 1) + r0(ω2 i) = r0(ω2 i) (25)

since ωn i = 1.

▸ Then, by using Relation (21) with x = ω2 i+1 we obtain

f (ω2 i+1) = q1(ω2 i+1)(ωn i ωn/2 + 1) + r1(ω2 i+1) = r1(ω2 i+1) (26)

since ωn/2 = −1.

▸ Indeed, this last equation follows from

0 = ωn − 1 = (ωn/2 − 1)(ωn/2 + 1) (27)

and the fact that ωn/2 − 1 is not zero nor a zero divisor.



A divide-and-conquer strategy (4/4)

Therefore we have proved the following.

Proposition
Evaluating f ∈ R[x] (with degree less than n) at 1, ω1, . . . , ωn−1 is
equivalent to

▸ evaluate r0 at the even powers ω2 i for 0 ≤ i < n/2, and

▸ evaluate r1 at the odd powers ω2 i+1 for 0 ≤ i < n/2.

▸ Since it is easy to show that ω2 is a primitive n/2-th root of unity we
can hope for a recursive algorithm.

▸ This algorithm would be easier if both r0 and r1 would be evaluated
at the same points. So we define

r1
∗(ω2 i) = r1(ω2 i+1). (28)



Algorithm

Input: n = 2k , f = Σ0≤ i <n fi x
i , and the powers

1, ω, ω2, . . . , ωn−1 of a primitive n-th root of unity
ω ∈ R.

Output: DTFω(f ) = (f (1), f (ω), f (ω2), . . . , f (ωn−1)).

if n = 1 return (f0)
r0 := Σ0≤ j <n/2 (fj + fj+n/2)x j
r∗1 := Σ0≤ j <n/2 ω

j (fj − fj+n/2)x j
call the algorithm recursively to evaluate r0 and r∗1
at the n/2 first powers of ω2

return(r0(1), r∗1 (1), r0(ω2), r∗1 (ω2), . . . , r0(ωn−2), r∗1 (ωn−2))



Complexity analysis

Proposition
Let n be a power of 2 and ω ∈ R be a primitive n-th root of unity. Then,
the previous FFT algorithm computes DTFω(f ) using

▸ n log(n) additions in R,

▸ (n/2) log(n) multiplications by powers of ω.

leading in total to 3/2n log(n) ring operations.

Proof
By induction on k = log2(n). Let S(n) and T (n) be the number of
additions and multiplications in R that the algorithms requires for an
input of size n. If k = 0 the algorithm returns (f0) whose costs is null
thus we have S(0) = 0 and T (0) = 0 which satisfies the formula since
log(n) = log(1) = 0. Assume k > 0. Just by looking at the algorithm we
that

S(n) = 2S(n/2) + n and T (n) = 2T (n/2) + n/2 (29)

leading to the result by plugging in the induction hypothesis.



Plan

Primitive roots of unity

The discrete Fourier transform

Convolution of polynomials

The fast Fourier transform

Fast convolution and multiplication

Computing primitive roots of unity

Efficient implementation of FFT

Classical division with remainder

The quotient as a modular inverse

Modular inverses using Newton iteration

Division with remainder using Newton iteration

Fast extended Euclidean algorithm



Algorithm

Input: f ,g ∈ R[x] with degree less than n = 2k , a primitive
n-th root of unity ω ∈ R.

Output: f ∗ g ∈ R[x]

compute 1, ω, ω2, . . . , ωn−1

α := DFTω(f )
β := DFTω(g)
γ := αβ
return (DFTω)−1(γ) = 1/nDFTω−1(γ)



Complexity analysis

Proposition
Let n be a power of 2 and ω ∈ R a primitive n-th root of unity. Then
convolution in R[x]/⟨xn − 1⟩ and multiplication in R[x] of polynomials
whose product has degree less than n can be performed using

▸ 3n log(n) additions in R,
▸ 3/2n log(n) + n − 2 multiplications by a power of ω,
▸ n multiplications in R,
▸ n divisions by n (as an element of R),

leading to 9/2n log(n) +O(n) operations in R.

Remark
To multiply two arbitrary polynomials of degree less than n ∈ N we only
need a primitive 2k -th root of unity where

2k−1 < 2n ≤ 2k (30)

Then we have decreased the cost of about O(n2) of the classical algorithm
to O(n log(n)).

The multivariate case is discussed here: http:

//www.csd.uwo.ca/~moreno/CS433-CS9624/BPAS-CS9624-2x2.pdf

http://www.csd.uwo.ca/~moreno/CS433-CS9624/BPAS-CS9624-2x2.pdf
http://www.csd.uwo.ca/~moreno/CS433-CS9624/BPAS-CS9624-2x2.pdf
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Computing primitive roots

Please read this section: http://www.csd.uwo.ca/~moreno//CS424/

Lectures/FastMultiplication.html/node7.html

In particular, the subsection: http://www.csd.uwo.ca/~moreno/

/CS424/Lectures/FastMultiplication.html/node10.html

http://www.csd.uwo.ca/~moreno//CS424/Lectures/FastMultiplication.html/node7.html
http://www.csd.uwo.ca/~moreno//CS424/Lectures/FastMultiplication.html/node7.html
http://www.csd.uwo.ca/~moreno//CS424/Lectures/FastMultiplication.html/node10.html
http://www.csd.uwo.ca/~moreno//CS424/Lectures/FastMultiplication.html/node10.html
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Efficient implementation of FFT

Please read this section: http://www.csd.uwo.ca/~moreno//CS424/

Lectures/FastMultiplication.html/node11.html

http://www.csd.uwo.ca/~moreno//CS424/Lectures/FastMultiplication.html/node11.html
http://www.csd.uwo.ca/~moreno//CS424/Lectures/FastMultiplication.html/node11.html
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Algorithm

Input: univariate polynomials a = Σn
0 aix

i and b = Σm
0 bix

i

in R[x] with respective degrees n and m such that
n ≥ m ≥ 0 and bm is a unit.

Output: the quotient q and the remainder r of a w.r.t. b.
Hence a = bq + r and deg r < m.

r := a
for i = n −m,n −m − 1, . . . ,0 repeat
if deg r = m + i then
qi := leadingCoefficient(r) /bm
r := r − qix

ib
else qi := 0

q := Σn−m
0 qix

i

return (q, r)



Complexity analysis (1/2)

Proposition
Let a and b two univariate polynomials in R[x] with respective degrees n
and m such that n ≥ m ≥ 0 and the leading coefficient of b is a unit.
Then, there exist unique polynomials q and r such that a = bq + r and
deg r < m. The polynomials q and r are called the quotient and the
remainder of a w.r.t. to b. Moreover, the previous algorithm compute
them in (2m + 1)(n −m + 1) ∈ O(nm) operations in R.

Proof

▸ Consider an iteration of the for loop where deg r = m + i holds at the
begining of the loop.

▸ Observe that r and qix
ib have the same leading coefficient. Since

deg b = m, computing the reductum of qix
ib requires m operations.

▸ Then subtracting the reductum of qix
ib to that of r requires again m

operations.
▸ Hence each iteration of the for loop requires at most 2m+1 operations

in R, since we need also to count 1 for the computation of qi .
▸ The number of for loops is n −m + 1. Therefore, the algorithm

requires (2m + 1)(n −m + 1).



Complexity analysis (2/2)

Remark

▸ One can derive from the previous algorithm a bound for the
coefficients of q and r , which is needed for performing a modular
version (based for instance on the CRT).

▸ Let ∣∣a∣∣, ∣∣b∣∣ and ∣∣r ∣∣ be the max-norm of a, b and r . Let ∣ bm ∣ be
the absolute value (over Z) or the norm (over C) of the leading
coefficient of b.

▸ Then we have

∣∣r ∣∣ ≤ ∣∣a∣∣ (1 + ∣∣b∣∣
∣ bm ∣ )

n−m+1

(31)
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Prelimianries
▸ We shall see now that the previous complexity result can be improved.
▸ To do so, we will show that q can be computed from a and b by

performing essentially one multiplication in R[x].
▸ We start with the equation

a(x) = q(x)b(x) + r(x) (32)

where a, b, q and r are in the statement of the previous proposition.
▸ Replacing x by 1/x and multiplying the equation by xn leads to the

new equation:

xn a(1/x) = (xn−mq(1/x)) (xm b(1/x)) + xn−m+1 (xm−1 r(1/x))
(33)

▸ In Equation (33) each of the rational fractions a(1/x), b(1/x), q(1/x)
and r(1/x) is multiplied by xe such that e is an upper bound for the
degree of its denominator.

▸ So Equation (33) is in fact an equation in R[x].



Using reversals (1/2)

Definition
For a univariate polynomial p = Σd

0 pix
i in R[x] with degree d and an

integer k ≥ d , the reversal of order k of p is the polynomial denoted by
revk(p) and defined by

revk(p) = xk p(1/x) = Σk
k−d pk−ix

i . (34)

When k = d the polynomial revk(p) is simply denoted by rev(p). Hence
we have

rev(p) = pd + pd−1x +⋯ + p1x
d−1 + p0x

d . (35)

Proposition
With a, b, q and r as abovce, we have

revn(a) ≡ revn−m(q) revm(b) mod xn−m+1 (36)



Using reversals (2/2)

Proof
Indeed with the above definition, Equation (33) reads

revn(a) = revn−m(q) revm(b) + xn−m+1 revm−1(r) (37)

leading to the desised result.

Remark

▸ If R is a field then we know that revn−m(q) is invertible modulo
xn−m+1.

▸ Indeed, revn−m(q) has constant coefficient 1 and thus the gcd of
revn−m(q) and xn−m+1 is 1.

▸ The case where R is not a field leads also to a simple and surprising
solution as we shall see in the next section.
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Objective

▸ Let R be a commutative ring with identity element.

▸ Given f ∈ R[x] and ` ∈ N such that f (0) = 1 compute the
polynomials g ∈ R[x] such that

f g ≡ 1 mod x` and deg (g) < `. (38)

First, we observe that if there is a solution, then it is unique.



Unicity result

Proposition
If Equation (38) has a solution g ∈ R[x] with degree less than ` then it is
unique.

Proof

▸ Indeed, let g1 and g2 be solutions of Equation (38).

▸ Then the product f (g1 − g2) is a multiple of x`. Since f (0) = 1 then
g1(0) − g2(0) must be 0.

▸ Hence there is a constant c ∈ R and polynomials h1,h2 with degree
less than ` − 1 such that

g1(x) = h1(x) x + c and g2(x) = h2(x) x + c (39)

▸ It follows that f (h1 − h2) is a multiple of x`−1. By repeating the
same argument we show that h1(0) = h2(0).

▸ Then by induction on ` we obtain g1 = g2.



Relation to Newton iteration
▸ Since Equation (38) is an equation in R[x]/⟨x`⟩, a solution of this

equation can be viewed as an approximation of a more general
problem.

▸ Think of truncated Taylor expansions!

▸ So let us recall from numerical analysis the celebrated Newton
iteration and let φ(g) = 0 be an equation that we want to solve,
where φ ∶ Rz→ R is a differentiable function.

▸ From a suitable initial approximation g0, the sequence, called
Newton iteration step,

gi+1 = gi −
φ(gi)
φ′(gi)

(40)

allows to compute subsequent approximations and converge toward
a desired solution.

▸ In our case we have φ(g) = 1/g − f and the Newton iteration step is

gi+1 = gi −
1/gi − f

−1/gi 2
= 2gi − f gi

2. (41)



Existence result (1/2)

Proposition
Let R be a commutative ring with identity element. Let f be a
polynomial in R[x] such that f (0) = 1. Let g0,g1,g2, . . . be the sequence
of polynomials defined for all i ≥ 0 by

{ g0 = 1

gi+1 ≡ 2gi − f gi
2 mod x2

i+1

.
(42)

Then for i ≥ 0 we have

f gi ≡ 1 mod x2
i

. (43)



Existence result (2/2)

Proof
By induction on i ≥ 0. For i = 0 we have x2

i = x and thus

f gi ≡ f (0)g0 ≡ 1 × 1 ≡ 1 mod x2
i

. (44)

For the induction step we have

1 − f gi+1 ≡ 1 − f (2gi − f gi
2) mod x2

i+1

≡ 1 − 2 f gi + f 2 gi
2 mod x2

i+1

≡ (1 − f gi)2 mod x2
i+1

≡ 0 mod x2
i+1

.

(45)

Indeed f gi ≡ 1 mod x2
i

means that x2
i

divides 1 − f gi . Thus

x2
i+1 = x2

i
+2i = x2

i

x2
i

divides (1 − f gi)2.



Algorithm

Input: f ∈ R[x] such that f (0) = 1 and ` ∈ N.

Output: g ∈ R[x] such that f g ≡ 1 mod x`

g0 := 1
r := ⌈log2(`)⌉
for i = 1⋯r repeat

gi := (2gi−1 − f gi−1
2) mod x2

i

return gr



Multiplication time (1/2)

Definition

▸ A multiplication time is a function M ∶ NÐ→ R such that for any
commutative ring R with a 1, for every n ∈ N, any pair of
polynomials in R[x] of degree less than n can be multiplied in at
most M(n) operations of R.

▸ In addition, M must satisfy M(n)/n ≥M(m)/m, for every m,n ∈ N,
with n ≥ m.

▸ This implies the super-linearity properties, that is, for every m,n ∈ N

M(nm) ≥ mM(n), M(n+m) ≥M(m)+M(n) and M(n) ≥ n. (46)



Multiplication time (2/2)

Examples

▸ Classical: d z→ 2d2;

▸ Karatsuba: d z→ C d log 2(3) with some C that can be taken equal to
9;

▸ FFT over an arbitrary ring: d z→ C d log(d) log(log(d)) for some C
that can taken equal to 64.

Note that the FFT-based multiplication in degree d over a ring that
supports the FFT (that is, possessing primitive n-th root of unity, where
n is a power of 2 greater than 2d) can run in C d log(d) operations in R,
with some C ≥ 18.

To learn about Karatsuba’s multiplication algorithm:
https://en.wikipedia.org/wiki/Karatsuba_algorithm

To learn about multiplication times and the complexity of algebraic
operations https://en.wikipedia.org/wiki/Computational_

complexity_of_mathematical_operations

https://en.wikipedia.org/wiki/Karatsuba_algorithm
https://en.wikipedia.org/wiki/Computational_complexity_of_mathematical_operations
https://en.wikipedia.org/wiki/Computational_complexity_of_mathematical_operations


Complexity analysis (1/4)
Proposition
The above algorithm computes the inverse of f modulo x` in
3M(`) + 0(`) operations in R.

Proof (1/3)

▸ Since x` divides x2
r

, the result is also valid modulo x`.

▸ Before proving the complexity result, we point out the following
relation for i = 1⋯r .

gi ≡ gi−1 mod x2
i−1

(47)

▸ Indeed, we have

gi ≡ 2gi−1 − f gi−1
2 mod x2

i

≡ 2gi−1 − f gi−1
2 mod x2

i−1

≡ gi−1(2 − f gi−1) mod x2
i−1

≡ gi−1(2 − 1) mod x2
i−1

≡ gi−1 mod x2
i−1

(48)



Complexity analysis (2/4)

Proof (2/3)
Therefore when computing gi we only care about powers of x in the

range x2
i−1⋯x2

i

. This says that

▸ half of the computation of gr is made during the last iteration of the
for loop,

▸ a quarter is made when computing gr−1 etc.

Now recall that
1

2
+ 1

4
+ 1

8
+⋯ = 1 (49)

So roughly the cost of the algorithm is in the order of magnitude of the
cost of the last iteration. which consists of

▸ two multiplications of polynomials with degree less than 2r ,

▸ a multiplication of a polynomial (with degree less than 2r ) by a
constant,

▸ truncations modulo x2
r

▸ a subtraction of polynomials with degree less than 2r .

leading to 2M(2r) +O(2r) operations in R.



Complexity analysis (3/4)

Proof (3/3)
But this was not a formal proof, although the principle was correct. Let
us give a more formal proof.
The cost for the i-th iteration is

▸ M(2i−1) for the computation of gi−1
2,

▸ M(2i) for the product f gi−1
2 mod x2

i

,

▸ and then the opposite of the upper half of f gi−1
2 modulo x2

i

(which
is the upper half gi ) takes 2i−1 operations.

Thus we have M(2i) +M(2i−1) + 2i−1 ≤ 3
2
M(2i) + 2i−1, resulting in a

total running time:

∑
1≤i≤r

3

2
M(2i) + 2i−1 ≤ (3

2
M(2r) + 2r−1) ∑

1≤i≤r

2i−r < 3M(2r) + 2r = 3M(`) + `

(50)
since M(n) ≤ 1

2
M(2n) for all n ∈ N



Complexity analysis (4/4)

Remark
Once again for i = 1⋯r we have

gi ≡ gi−1 mod x2
i−1

(51)

So when implementing the above algorithm, one should be extremely
careful in not recomputing the low terms of gi that come from gi−1.

Remark

▸ The above can be adapted to the case where f (0) is a unit different
from 1 by initializing g0 to the inverse of f (0) instead of 1.

▸ If f (0) is not a unit, then no inverse of f modulo x` exists.

▸ Indeed f g ≡ 1 mod x` implies f (0)g(0) = 1 which says that f (0) is
a unit.

Learn about the Middle Product Technique at:
http://www.csd.uwo.ca/~moreno//CS424/Lectures/

FastDivisionAndGcd.html/node4.html (see the last remark in that
section)

http://www.csd.uwo.ca/~moreno//CS424/Lectures/FastDivisionAndGcd.html/node4.html
http://www.csd.uwo.ca/~moreno//CS424/Lectures/FastDivisionAndGcd.html/node4.html
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Algorithm

Input: a,b ∈ R[x] with b ≠ 0 monic.

Output: q, r such that a = b q + r and deg r < deg b.

n := deg a
m := deg b
if n < m then

q := 0
r := a

else
f := revm(b)
g := inverse of f modulo xn−m+1

q := revn(a)g mod xn−m+1

q := revn−m(q)
r := a − b q

return (q, r)



Complexity analysis (1/2)

Proposition

▸ Let R be a commutative ring with identity element. Let a and b be
univariate polynomials over R with respective degrees n and m such
that n ≥ m ≥ 0 and b ≠ 0 monic.

▸ The above algorithm computes the quotient and the remainder of a
w.r.t. b in 4M(n −m) +M(max(n −m,m)) +O(n) operations in R

Proof
Indeed, this algorithm consists essentially in

▸ 3 multiplications in degree n −m + 1, plus operations in O(n −m + 1)
operations in R, in order to compute g (by virtue of the previous
section),

▸ one multiplication in degree n −m + 1 to compute q,

▸ one multiplication in degree max(n −m,n), and one subtraction in
degree n to compute r .



Complexity analysis (2/2)

Remark

▸ If several divisions by a given b needs to be performed then we may
precompute the inverse of revm(b) modulo some powers x , x2, . . . of
x .

▸ Assuming that R possesses suitable primitive roots of unity, we can
also save their DFT.

Remark

▸ In the above result, the complexity estimate becomes
3M(n −m) +M(max(n −m,n)) +O(n) if the middle product
technique applies.

▸ Moreover, if n −m ≤ n holds, the O(n) can be replaced by O(m).
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Fast EEA

Please read this section: http://www.csd.uwo.ca/~moreno//CS424/

Lectures/FastDivisionAndGcd.html/node6.html

http://www.csd.uwo.ca/~moreno//CS424/Lectures/FastDivisionAndGcd.html/node6.html
http://www.csd.uwo.ca/~moreno//CS424/Lectures/FastDivisionAndGcd.html/node6.html
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