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Zero-divisors

In the whole section we consider a commutative ring R with units.

Definition
An element a ∈ R is a zero-divisor if a ≠ 0 and there exists b ∈ R such that
a b = 0 and b ≠ 0.
If R has no zero-divisors, we say that R is an integral domain.

Remark
Observe also the ring R may contain nonzero elements that are neither
zero divisor, nor units.
Let R = Z/6Z and let U = R[x] be the ring of univariate polynomials over
R. The ring U has units (for instance the constant polynomial 5), it has
zero divisors (for instance the polynomial 2x + 4 since 3(2x + 4) = 0) and
also elements like x + 1 which is not a unit nor a zero divisor.



Primitive roots of unity (1/2)

Definition
Let n be a positive integer and ω ∈ R.

1. ω is a n-th root of unity if ωn = 1.

2. ω is a primitive n-th root of unity if

2.1 ωn
= 1,

2.2 n is a unit in R,
2.3 for every prime divisor t of n the element ωn/t

− 1 is neither zero nor
a zero divisor.

Remark
When R is an integral domain the last condition becomes: for every
prime divisor t of n the element ωn/t ≠ 1. Observe also that a n-th root
of unity is necessarily a unit.

Example
Consider that R is the field C of complex numbers. The number
ω = e2 ıπ/8 is a primitive 8-th root of unity.



Primitive roots of unity (2/2)
Example
In R = Z/8Z we have 32 ≡ 1. However 3 is not a primitive 2-th of unity,
since n = 2 is not a unit in R.

Example
In R = Z/17Z we have the following computation in Axiom

(1) -> R := PF(17)

(1) PrimeField 17

Type: Domain

(2) -> w: R := 3

(2) 3

Type: PrimeField 17

(3) -> [w^i for i in 0..16]

(3) [1,3,9,10,13,5,15,11,16,14,8,7,4,12,2,6,1]

Type: List PrimeField 17

(4) -> u: R := 2

(4) 2

Type: PrimeField 17

(5) -> [u^i for i in 0..16]

(5) [1,2,4,8,16,15,13,9,1,2,4,8,16,15,13,9,1]

Type: List PrimeField 17

The first list shows that 3 is a primitive 16-th root of unity. However with
ω = 2 we have ω8 − 1 = 0 since (24 − 1)(24 + 1) = 15 × 17 ≡ 0.



Properties of primitive roots of unity (1/3)

Proposition
Let 1 < ` < n be integers and let ω be a primitive n-th root of unity. Then
we have

1. ω` − 1 is neither zero nor a zero divisor in R,

2. Σ0≤ j <n ω
j ` = 0.

Proof (1/3)
It relies on the formula

(c − 1) Σ0≤ j <m c j = cm − 1 (1)

which holds for every c ∈ R and every positive integer m.
Let us prove the first statement of the lemma. Let g be the gcd of ` and
n. Let u, v ∈ Z be such that

u ` + v n = g (2)

Since ` < n we have 1 ≤ g < n.



Properties of primitive roots of unity (2/3)
Proof (2/3)
Hence, there exists a prime factor t of n such that

g ∣ (n/t) (3)

Let
c = ωg and m = n/(tg) (4)

in Relation (1) leading to

(ωg − 1) a = (ωn/t − 1) (5)

for some a ∈ R. Hence if (ωg − 1) would be zero or a zero divisor then so
would be (ωn/t − 1) which is false. Now applying Relation (1) with c = ω`
and m = u implies that (ω` − 1) divides (ωu ` − 1). But with Relation (2)
we obtain

(ωu ` − 1) = (ωu ` ωv n − 1) = (ωg − 1) (6)

Hence
(ω` − 1) ∣ (ωg − 1) (7)

Therefore (ω` − 1) cannot be zero or a zero divisor.



Properties of primitive roots of unity (3/3)

Proof (3/3)
Now let us prove the second statement of the lemma. By applying
Relation (1) with c = ω` and m = n we have

(ω` − 1) Σ0≤ j <n ω
` j = ω`n − 1 = 0 (8)

Since (ω` − 1) is neither zero nor a zero divisor we otain the desired
formula.
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Discrete Fourier Transform (1/3)

Notations
Let n be a positive integer and ω ∈ R be a primitive n-th root of unity. In
what follows we identify every univariate polynomial

f = Σ0≤ i <n fi x
i ∈ R[x] (9)

of degree less than n with its coefficient vector (f0, . . . , fn−1) ∈ Rn.

Definition
The R-linear map

DFTω ∶ { Rn z→ Rn

f z→ (f (1), f (ω), f (ω2), . . . , f (ωn−1)) (10)

which evaluates a polynomial at the powers of ω is called the Discrete
Fourier Transform (DFT).

Proposition
The R-linear map DFTω is an isomorphism.



Discrete Fourier Transform (2/3)

Proof

▸ Since the R-linear map DFTω is an endomorphism (the source and
target spaces are the same) we only need to prove that DFTω is
bijective.

▸ Observe that the Vandermonde matrix VDM(1, ω, ω2, . . . , ωn−1) is
the matrix of the R-linear map DFTω.

▸ Then for proving that DFTω is bijective we need only to prove that
VDM(1, ω, ω2, . . . , ωn−1) is invertible which holds iff the values
1, ω, ω2, . . . , ωn−1 are pairwise different.

▸ A relation ωi = ωj for 0 ≤ i < j < n would imply ωi (1 − ωj−i) = 0.

▸ Since (1 − ωj−i) cannot be zero or a zero divisor then ωi and thus ω
must be zero.

▸ Then ω cannot be a root of unity. A contradiction.

▸ Therefore the values 1, ω, ω2, . . . , ωn−1 are pairwise different and
DFTω is an isomorphism.



Discrete Fourier Transform (3/3

Proposition
Let Vω denote the matrix of the isomorphism DFTω. Then ω−1 the
inverse of ω is also a primitive n-th root of unity and we have

Vω Vω−1 = nIn

where In denotes the unit matrix of order n.

Proof
Define ω′ = ω−1. Observe that ω′ = ωn−1. Thus ω′ is a root of unity, and,
in fact, a n-th root of unity. Consider the product of the matrix Vω and
Vω′ . The element at row i and column k is:

(Vω Vω′)ik = Σ0≤ j <n (Vω)ij(Vω′)jk
= Σ0≤ j <n ω

ij (ω′)jk
= Σ0≤ j <n ω

ij ω−jk

= Σ0≤ j <n (ωi−k)j

Observe that ωi−k is either a power of ω or a power of its inverse. Thus,
in any case this is a power of ω. If i = k this power is 1 and (Vω Vω′)ik is
equal to n. If i ≠ k , the previous section implies (Vω Vω′)ik = 0.
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n-th convolution of two polynomials (1/2)

Let n be a positive integer and ω ∈ R be a primitive n-th root of unity.

Definition
The convolution w.r.t. n of the polynomials f = Σ0≤ i <n fi x

i and
g = Σ0≤ j <n gj x

j in R[x] is the polynomial

h = Σ0≤ k <n hk x
k (11)

such that for every k = 0⋯n − 1 the coefficient hk is given by

hk = Σi+j≡k mod n fi gj (12)

The polynomial h is denoted by f ∗n g , or simply by f ∗ g if not
ambiguous.



n-th convolution of two polynomials (2/2)

Remark
Observe that the product of f by g is

p = Σ0≤ k < 2n−1 pk x
k (13)

where for every k = 0⋯2n − 2 the coefficient pk is given by

pk = Σi+j=k fi gj (14)

We can rearrange the polynomial p as follows.

p = Σ0≤ k <n (pk xk) + xn Σ0≤ k <n−1 (pk+n xk)
= Σ0≤ k <n (pk + pk+n x

n) xk
≡ Σ0≤ k <n hk x

k mod xn − 1
(15)

with p2n−1 = 0, since deg(p) = deg(f ) + deg(g) = 2n − 2.
Therefore we have

f ∗ g ≡ fg mod xn − 1 (16)



DFT and convolution

Proposition
For f ,g ∈ R[x] univariate polynomials of degree less than n we have

DFTω(f ∗ g) = DFTω(f )DFTω(g) (17)

where the product of the vectors DFTω(f ) and DFTω(g) is computed
component-wise.

Proof
Since f ∗ g and f g are equivalent modulo xn − 1, there exists a
polynomial q ∈ R[x] such that

f ∗ g = f g + q (xn − 1) (18)

Hence for i = 0⋯n − 1 we have

(f ∗ g)(ωi) = f (ωi)g(ωi) + q(ωi)(ωi n − 1)
= f (ωi)g(ωi) (19)

since ωn = 1.
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A divide-and-conquer strategy (1/4)

The Fast Fourier Transform computes the DFT quickly. This important
algorithm for computer science (not only computer algebra, but also
digital signal processing for instance) was (re)-discovered in 1965 by
Cooley and Tukey.

▸ Let n be a positive even integer, ω ∈ R be a primitive n-th root of
unity and f = Σ0≤ i <n fi x

i .

▸ In order to evaluate f at 1, ω, ω2, . . . , ωn−1, we follow a
divide-and-conquer strategy; more precisely, we consider the divisions
with remainder of f by xn/2 − 1 and xn/2 + 1.

▸ So let q0,q1, r0, r1 be polynomials such that

f = q0(xn/2 − 1) + r0 with { deg(r0) < n/2
deg(q0) < n/2

(20)

and

f = q1(xn/2 + 1) + r1 with { deg(r1) < n/2
deg(q1) < n/2

(21)



A divide-and-conquer strategy (2/4)

▸ The relations deg(q0) < n/2 and deg(q1) < n/2 hold because the
polynomial f has degree less than n.

▸ Observe that the computation of (q0, r0) and (q1, r1) can be done
very easily.

▸ Indeed, let F0,F1 ∈ R[x] be such that

f = F1 x
n/2 + F0 with { deg(F1) < n/2

deg(F0) < n/2
(22)

We have

f = F1(xn/2 − 1)+F0 +F1 and f = F1(xn/2 + 1)+F0 −F1 (23)

▸ Hence we obtain

r0 = F0 + F1 and r1 = F0 − F1 (24)



A divide-and-conquer strategy (3/4)

▸ Let i be an integer such that 0 ≤ i < n/2. By using Relation (20)
with x = ω2 i we obtain

f (ω2 i) = q0(ω2 i)(ωn i − 1) + r0(ω2 i) = r0(ω2 i) (25)

since ωn i = 1.

▸ Then, by using Relation (21) with x = ω2 i+1 we obtain

f (ω2 i+1) = q1(ω2 i+1)(ωn i ωn/2 + 1) + r1(ω2 i+1) = r1(ω2 i+1) (26)

since ωn/2 = −1.

▸ Indeed, this last equation follows from

0 = ωn − 1 = (ωn/2 − 1)(ωn/2 + 1) (27)

and the fact that ωn/2 − 1 is not zero nor a zero divisor.



A divide-and-conquer strategy (4/4)

Therefore we have proved the following.

Proposition
Evaluating f ∈ R[x] (with degree less than n) at 1, ω1, . . . , ωn−1 is
equivalent to

▸ evaluate r0 at the even powers ω2 i for 0 ≤ i < n/2, and

▸ evaluate r1 at the odd powers ω2 i+1 for 0 ≤ i < n/2.

▸ Since it is easy to show that ω2 is a primitive n/2-th root of unity we
can hope for a recursive algorithm.

▸ This algorithm would be easier if both r0 and r1 would be evaluated
at the same points. So we define

r1
∗(ω2 i) = r1(ω2 i+1). (28)



Algorithm

Input: n = 2k , f = Σ0≤ i <n fi x
i , and the powers

1, ω, ω2, . . . , ωn−1 of a primitive n-th root of unity
ω ∈ R.

Output: DTFω(f ) = (f (1), f (ω), f (ω2), . . . , f (ωn−1)).

if n = 1 return (f0)
r0 := Σ0≤ j <n/2 (fj + fj+n/2)x j
r∗1 := Σ0≤ j <n/2 ω

j (fj − fj+n/2)x j
call the algorithm recursively to evaluate r0 and r∗1
at the n/2 first powers of ω2

return(r0(1), r∗1 (1), r0(ω2), r∗1 (ω2), . . . , r0(ωn−2), r∗1 (ωn−2))



Complexity analysis

Proposition
Let n be a power of 2 and ω ∈ R be a primitive n-th root of unity. Then,
the previous FFT algorithm computes DTFω(f ) using

▸ n log(n) additions in R,

▸ (n/2) log(n) multiplications by powers of ω.

leading in total to 3/2n log(n) ring operations.

Proof
By induction on k = log2(n). Let S(n) and T (n) be the number of
additions and multiplications in R that the algorithms requires for an
input of size n. If k = 0 the algorithm returns (f0) whose costs is null
thus we have S(0) = 0 and T (0) = 0 which satisfies the formula since
log(n) = log(1) = 0. Assume k > 0. Just by looking at the algorithm we
that

S(n) = 2S(n/2) + n and T (n) = 2T (n/2) + n/2 (29)

leading to the result by plugging in the induction hypothesis.
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Algorithm

Input: f ,g ∈ R[x] with degree less than n = 2k , a primitive
n-th root of unity ω ∈ R.

Output: f ∗ g ∈ R[x]

compute 1, ω, ω2, . . . , ωn−1

α := DFTω(f )
β := DFTω(g)
γ := αβ
return (DFTω)−1(γ) = 1/nDFTω−1(γ)



Complexity analysis

Proposition
Let n be a power of 2 and ω ∈ R a primitive n-th root of unity. Then
convolution in R[x]/⟨xn − 1⟩ and multiplication in R[x] of polynomials
whose product has degree less than n can be performed using

▸ 3n log(n) additions in R,
▸ 3/2n log(n) + n − 2 multiplications by a power of ω,
▸ n multiplications in R,
▸ n divisions by n (as an element of R),

leading to 9/2n log(n) +O(n) operations in R.

Remark
To multiply two arbitrary polynomials of degree less than n ∈ N we only
need a primitive 2k -th root of unity where

2k−1 < 2n ≤ 2k (30)

Then we have decreased the cost of about O(n2) of the classical algorithm
to O(n log(n)).

The multivariate case is discussed here: http:

//www.csd.uwo.ca/~moreno/CS433-CS9624/BPAS-CS9624-2x2.pdf

http://www.csd.uwo.ca/~moreno/CS433-CS9624/BPAS-CS9624-2x2.pdf
http://www.csd.uwo.ca/~moreno/CS433-CS9624/BPAS-CS9624-2x2.pdf
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Computing primitive roots

Please read this section: http://www.csd.uwo.ca/~moreno//CS424/

Lectures/FastMultiplication.html/node7.html

In particular, the subsection: http://www.csd.uwo.ca/~moreno/

/CS424/Lectures/FastMultiplication.html/node10.html

http://www.csd.uwo.ca/~moreno//CS424/Lectures/FastMultiplication.html/node7.html
http://www.csd.uwo.ca/~moreno//CS424/Lectures/FastMultiplication.html/node7.html
http://www.csd.uwo.ca/~moreno//CS424/Lectures/FastMultiplication.html/node10.html
http://www.csd.uwo.ca/~moreno//CS424/Lectures/FastMultiplication.html/node10.html
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Efficient implementation of FFT

Please read this section: http://www.csd.uwo.ca/~moreno//CS424/

Lectures/FastMultiplication.html/node11.html

http://www.csd.uwo.ca/~moreno//CS424/Lectures/FastMultiplication.html/node11.html
http://www.csd.uwo.ca/~moreno//CS424/Lectures/FastMultiplication.html/node11.html
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Algorithm

Input: univariate polynomials a = Σn
0 aix

i and b = Σm
0 bix

i

in R[x] with respective degrees n and m such that
n ≥ m ≥ 0 and bm is a unit.

Output: the quotient q and the remainder r of a w.r.t. b.
Hence a = bq + r and deg r < m.

r := a
for i = n −m,n −m − 1, . . . ,0 repeat
if deg r = m + i then
qi := leadingCoefficient(r) /bm
r := r − qix

ib
else qi := 0

q := Σn−m
0 qix

i

return (q, r)



Complexity analysis (1/2)

Proposition
Let a and b two univariate polynomials in R[x] with respective degrees n
and m such that n ≥ m ≥ 0 and the leading coefficient of b is a unit.
Then, there exist unique polynomials q and r such that a = bq + r and
deg r < m. The polynomials q and r are called the quotient and the
remainder of a w.r.t. to b. Moreover, the previous algorithm compute
them in (2m + 1)(n −m + 1) ∈ O(nm) operations in R.

Proof

▸ Consider an iteration of the for loop where deg r = m + i holds at the
begining of the loop.

▸ Observe that r and qix
ib have the same leading coefficient. Since

deg b = m, computing the reductum of qix
ib requires m operations.

▸ Then subtracting the reductum of qix
ib to that of r requires again m

operations.
▸ Hence each iteration of the for loop requires at most 2m+1 operations

in R, since we need also to count 1 for the computation of qi .
▸ The number of for loops is n −m + 1. Therefore, the algorithm

requires (2m + 1)(n −m + 1).



Complexity analysis (2/2)

Remark

▸ One can derive from the previous algorithm a bound for the
coefficients of q and r , which is needed for performing a modular
version (based for instance on the CRT).

▸ Let ∣∣a∣∣, ∣∣b∣∣ and ∣∣r ∣∣ be the max-norm of a, b and r . Let ∣ bm ∣ be
the absolute value (over Z) or the norm (over C) of the leading
coefficient of b.

▸ Then we have

∣∣r ∣∣ ≤ ∣∣a∣∣ (1 + ∣∣b∣∣
∣ bm ∣ )

n−m+1

(31)
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Prelimianries
▸ We shall see now that the previous complexity result can be improved.
▸ To do so, we will show that q can be computed from a and b by

performing essentially one multiplication in R[x].
▸ We start with the equation

a(x) = q(x)b(x) + r(x) (32)

where a, b, q and r are in the statement of the previous proposition.
▸ Replacing x by 1/x and multiplying the equation by xn leads to the

new equation:

xn a(1/x) = (xn−mq(1/x)) (xm b(1/x)) + xn−m+1 (xm−1 r(1/x))
(33)

▸ In Equation (33) each of the rational fractions a(1/x), b(1/x), q(1/x)
and r(1/x) is multiplied by xe such that e is an upper bound for the
degree of its denominator.

▸ So Equation (33) is in fact an equation in R[x].



Using reversals (1/2)

Definition
For a univariate polynomial p = Σd

0 pix
i in R[x] with degree d and an

integer k ≥ d , the reversal of order k of p is the polynomial denoted by
revk(p) and defined by

revk(p) = xk p(1/x) = Σk
k−d pk−ix

i . (34)

When k = d the polynomial revk(p) is simply denoted by rev(p). Hence
we have

rev(p) = pd + pd−1x +⋯ + p1x
d−1 + p0x

d . (35)

Proposition
With a, b, q and r as abovce, we have

revn(a) ≡ revn−m(q) revm(b) mod xn−m+1 (36)



Using reversals (2/2)

Proof
Indeed with the above definition, Equation (33) reads

revn(a) = revn−m(q) revm(b) + xn−m+1 revm−1(r) (37)

leading to the desised result.

Remark

▸ If R is a field then we know that revn−m(q) is invertible modulo
xn−m+1.

▸ Indeed, revn−m(q) has constant coefficient 1 and thus the gcd of
revn−m(q) and xn−m+1 is 1.

▸ The case where R is not a field leads also to a simple and surprising
solution as we shall see in the next section.
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Objective

▸ Let R be a commutative ring with identity element.

▸ Given f ∈ R[x] and ` ∈ N such that f (0) = 1 compute the
polynomials g ∈ R[x] such that

f g ≡ 1 mod x` and deg (g) < `. (38)

First, we observe that if there is a solution, then it is unique.



Unicity result

Proposition
If Equation (38) has a solution g ∈ R[x] with degree less than ` then it is
unique.

Proof

▸ Indeed, let g1 and g2 be solutions of Equation (38).

▸ Then the product f (g1 − g2) is a multiple of x`. Since f (0) = 1 then
g1(0) − g2(0) must be 0.

▸ Hence there is a constant c ∈ R and polynomials h1,h2 with degree
less than ` − 1 such that

g1(x) = h1(x) x + c and g2(x) = h2(x) x + c (39)

▸ It follows that f (h1 − h2) is a multiple of x`−1. By repeating the
same argument we show that h1(0) = h2(0).

▸ Then by induction on ` we obtain g1 = g2.



Relation to Newton iteration
▸ Since Equation (38) is an equation in R[x]/⟨x`⟩, a solution of this

equation can be viewed as an approximation of a more general
problem.

▸ Think of truncated Taylor expansions!

▸ So let us recall from numerical analysis the celebrated Newton
iteration and let φ(g) = 0 be an equation that we want to solve,
where φ ∶ Rz→ R is a differentiable function.

▸ From a suitable initial approximation g0, the sequence, called
Newton iteration step,

gi+1 = gi −
φ(gi)
φ′(gi)

(40)

allows to compute subsequent approximations and converge toward
a desired solution.

▸ In our case we have φ(g) = 1/g − f and the Newton iteration step is

gi+1 = gi −
1/gi − f

−1/gi 2
= 2gi − f gi

2. (41)



Existence result (1/2)

Proposition
Let R be a commutative ring with identity element. Let f be a
polynomial in R[x] such that f (0) = 1. Let g0,g1,g2, . . . be the sequence
of polynomials defined for all i ≥ 0 by

{ g0 = 1

gi+1 ≡ 2gi − f gi
2 mod x2

i+1

.
(42)

Then for i ≥ 0 we have

f gi ≡ 1 mod x2
i

. (43)



Existence result (2/2)

Proof
By induction on i ≥ 0. For i = 0 we have x2

i = x and thus

f gi ≡ f (0)g0 ≡ 1 × 1 ≡ 1 mod x2
i

. (44)

For the induction step we have

1 − f gi+1 ≡ 1 − f (2gi − f gi
2) mod x2

i+1

≡ 1 − 2 f gi + f 2 gi
2 mod x2

i+1

≡ (1 − f gi)2 mod x2
i+1

≡ 0 mod x2
i+1

.

(45)

Indeed f gi ≡ 1 mod x2
i

means that x2
i

divides 1 − f gi . Thus

x2
i+1 = x2

i
+2i = x2

i

x2
i

divides (1 − f gi)2.



Algorithm

Input: f ∈ R[x] such that f (0) = 1 and ` ∈ N.

Output: g ∈ R[x] such that f g ≡ 1 mod x`

g0 := 1
r := ⌈log2(`)⌉
for i = 1⋯r repeat

gi := (2gi−1 − f gi−1
2) mod x2

i

return gr



Multiplication time (1/2)

Definition

▸ A multiplication time is a function M ∶ NÐ→ R such that for any
commutative ring R with a 1, for every n ∈ N, any pair of
polynomials in R[x] of degree less than n can be multiplied in at
most M(n) operations of R.

▸ In addition, M must satisfy M(n)/n ≥M(m)/m, for every m,n ∈ N,
with n ≥ m.

▸ This implies the super-linearity properties, that is, for every m,n ∈ N

M(nm) ≥ mM(n), M(n+m) ≥M(m)+M(n) and M(n) ≥ n. (46)



Multiplication time (2/2)

Examples

▸ Classical: d z→ 2d2;

▸ Karatsuba: d z→ C d log 2(3) with some C that can be taken equal to
9;

▸ FFT over an arbitrary ring: d z→ C d log(d) log(log(d)) for some C
that can taken equal to 64.

Note that the FFT-based multiplication in degree d over a ring that
supports the FFT (that is, possessing primitive n-th root of unity, where
n is a power of 2 greater than 2d) can run in C d log(d) operations in R,
with some C ≥ 18.

To learn about Karatsuba’s multiplication algorithm:
https://en.wikipedia.org/wiki/Karatsuba_algorithm

To learn about multiplication times and the complexity of algebraic
operations https://en.wikipedia.org/wiki/Computational_

complexity_of_mathematical_operations

https://en.wikipedia.org/wiki/Karatsuba_algorithm
https://en.wikipedia.org/wiki/Computational_complexity_of_mathematical_operations
https://en.wikipedia.org/wiki/Computational_complexity_of_mathematical_operations


Complexity analysis (1/4)
Proposition
The above algorithm computes the inverse of f modulo x` in
3M(`) + 0(`) operations in R.

Proof (1/3)

▸ Since x` divides x2
r

, the result is also valid modulo x`.

▸ Before proving the complexity result, we point out the following
relation for i = 1⋯r .

gi ≡ gi−1 mod x2
i−1

(47)

▸ Indeed, we have

gi ≡ 2gi−1 − f gi−1
2 mod x2

i

≡ 2gi−1 − f gi−1
2 mod x2

i−1

≡ gi−1(2 − f gi−1) mod x2
i−1

≡ gi−1(2 − 1) mod x2
i−1

≡ gi−1 mod x2
i−1

(48)



Complexity analysis (2/4)

Proof (2/3)
Therefore when computing gi we only care about powers of x in the

range x2
i−1⋯x2

i

. This says that

▸ half of the computation of gr is made during the last iteration of the
for loop,

▸ a quarter is made when computing gr−1 etc.

Now recall that
1

2
+ 1

4
+ 1

8
+⋯ = 1 (49)

So roughly the cost of the algorithm is in the order of magnitude of the
cost of the last iteration. which consists of

▸ two multiplications of polynomials with degree less than 2r ,

▸ a multiplication of a polynomial (with degree less than 2r ) by a
constant,

▸ truncations modulo x2
r

▸ a subtraction of polynomials with degree less than 2r .

leading to 2M(2r) +O(2r) operations in R.



Complexity analysis (3/4)

Proof (3/3)
But this was not a formal proof, although the principle was correct. Let
us give a more formal proof.
The cost for the i-th iteration is

▸ M(2i−1) for the computation of gi−1
2,

▸ M(2i) for the product f gi−1
2 mod x2

i

,

▸ and then the opposite of the upper half of f gi−1
2 modulo x2

i

(which
is the upper half gi ) takes 2i−1 operations.

Thus we have M(2i) +M(2i−1) + 2i−1 ≤ 3
2
M(2i) + 2i−1, resulting in a

total running time:

∑
1≤i≤r

3

2
M(2i) + 2i−1 ≤ (3

2
M(2r) + 2r−1) ∑

1≤i≤r

2i−r < 3M(2r) + 2r = 3M(`) + `

(50)
since M(n) ≤ 1

2
M(2n) for all n ∈ N



Complexity analysis (4/4)

Remark
Once again for i = 1⋯r we have

gi ≡ gi−1 mod x2
i−1

(51)

So when implementing the above algorithm, one should be extremely
careful in not recomputing the low terms of gi that come from gi−1.

Remark

▸ The above can be adapted to the case where f (0) is a unit different
from 1 by initializing g0 to the inverse of f (0) instead of 1.

▸ If f (0) is not a unit, then no inverse of f modulo x` exists.

▸ Indeed f g ≡ 1 mod x` implies f (0)g(0) = 1 which says that f (0) is
a unit.

Learn about the Middle Product Technique at:
http://www.csd.uwo.ca/~moreno//CS424/Lectures/

FastDivisionAndGcd.html/node4.html (see the last remark in that
section)

http://www.csd.uwo.ca/~moreno//CS424/Lectures/FastDivisionAndGcd.html/node4.html
http://www.csd.uwo.ca/~moreno//CS424/Lectures/FastDivisionAndGcd.html/node4.html
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Algorithm

Input: a,b ∈ R[x] with b ≠ 0 monic.

Output: q, r such that a = b q + r and deg r < deg b.

n := deg a
m := deg b
if n < m then

q := 0
r := a

else
f := revm(b)
g := inverse of f modulo xn−m+1

q := revn(a)g mod xn−m+1

q := revn−m(q)
r := a − b q

return (q, r)



Complexity analysis (1/2)

Proposition

▸ Let R be a commutative ring with identity element. Let a and b be
univariate polynomials over R with respective degrees n and m such
that n ≥ m ≥ 0 and b ≠ 0 monic.

▸ The above algorithm computes the quotient and the remainder of a
w.r.t. b in 4M(n −m) +M(max(n −m,m)) +O(n) operations in R

Proof
Indeed, this algorithm consists essentially in

▸ 3 multiplications in degree n −m + 1, plus operations in O(n −m + 1)
operations in R, in order to compute g (by virtue of the previous
section),

▸ one multiplication in degree n −m + 1 to compute q,

▸ one multiplication in degree max(n −m,n), and one subtraction in
degree n to compute r .



Complexity analysis (2/2)

Remark

▸ If several divisions by a given b needs to be performed then we may
precompute the inverse of revm(b) modulo some powers x , x2, . . . of
x .

▸ Assuming that R possesses suitable primitive roots of unity, we can
also save their DFT.

Remark

▸ In the above result, the complexity estimate becomes
3M(n −m) +M(max(n −m,n)) +O(n) if the middle product
technique applies.

▸ Moreover, if n −m ≤ n holds, the O(n) can be replaced by O(m).
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Fast EEA

Please read this section: http://www.csd.uwo.ca/~moreno//CS424/

Lectures/FastDivisionAndGcd.html/node6.html

http://www.csd.uwo.ca/~moreno//CS424/Lectures/FastDivisionAndGcd.html/node6.html
http://www.csd.uwo.ca/~moreno//CS424/Lectures/FastDivisionAndGcd.html/node6.html
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