Polynomials over Power Series and their Applications to Symbolic Analysis

Marc Moreno Maza

University of Western Ontario

May 12, 2021

Formal power series (1/4)

Notations

- $\bullet~\mathbb{K}$ is a complete field, that is, every Cauchy sequence in \mathbb{K} converges.
- $\mathbb{K}[[X_1, \ldots, X_n]]$ denotes the set of formal power series in X_1, \ldots, X_n with coefficients in \mathbb{K} .
- These are expressions of the form $\Sigma_e a_e X^e$ where e is a multi-index with n coordinates (e_1, \ldots, e_n) , X^e stands for $X_1^{e_1} \cdots X_n^{e_n}$, $|e| = e_1 + \cdots + e_n$ and $a_e \in \mathbb{K}$ holds.
- For $f = \Sigma_e a_e X^e$ and $d \in \mathbb{N}$, we define

$$f_{(d)} = \sum_{|e|=d} a_e X^e$$
 and $f^{(d)} = \sum_{k \le d} f_{(k)}$,

which are the *homogeneous part* and *polynomial part* of f in degree d.

Addition and multiplication

For $f,g \in \mathbb{K}[[X_1,\ldots,X_n]]$, we define

$$f + g = \sum_{d \in \mathbb{N}} \left(f_{(d)} + g_{(d)} \right)$$
 and $fg = \sum_{d \in \mathbb{N}} \left(\sum_{k+\ell=d} \left(f_{(k)}g_{(\ell)} \right) \right)$.

Formal power series (2/4)

Order of a formal power series

For $f \in \mathbb{K}[[X_1, \dots, X_n]]$, we define its *order* as

$$\operatorname{ord}(f) = \begin{cases} \min\{d \mid f_{(d)} \neq 0\} & \text{if } f \neq 0, \\ \infty & \text{if } f = 0. \end{cases}$$

Remarks

For $f,g \in \mathbb{K}[[X_1,\ldots,X_n]]$, we have

 $\operatorname{ord}(f+g) \geq \min\{\operatorname{ord}(f), \operatorname{ord}(g)\} \text{ and } \operatorname{ord}(fg) = \operatorname{ord}(f) + \operatorname{ord}(g).$

Consequences

- $\mathbb{K}[[X_1, \dots, X_n]]$ is an integral domain.
- $\mathcal{M} = \{f \in \mathbb{K}[[X_1, \dots, X_n]] \mid \operatorname{ord}(f) \ge 1\}$ is the only maximal ideal of $\mathbb{K}[[X_1, \dots, X_n]]$.
- We have $\mathcal{M}^k = \{f \in \mathbb{K}[[X_1, \dots, X_n]] \mid \operatorname{ord}(f) \ge k\}$ for all $k \in \mathbb{N}$.

Formal power series (3/4)

Krull Topology

Recall $\mathcal{M} = \{f \in \mathbb{K}[[X_1, \dots, X_n]] \mid \operatorname{ord}(f) \ge 1\}$. Let $(f_n)_{n \in \mathbb{N}}$ be a sequence of elements of $\mathbb{K}[[X]]$ and let $f \in \mathbb{K}[[X]]$. We say that

- $(f_n)_{n \in \mathbb{N}}$ converges to f if for all $k \in \mathbb{N}$ there exists $N \in \mathbb{N}$ s.t. for all $n \in \mathbb{N}$ we have $n \ge N \implies f f_n \in \mathcal{M}^k$,
- $(f_n)_{n \in \mathbb{N}}$ is a Cauchy sequence if for all $k \in \mathbb{N}$ there exists $N \in \mathbb{N}$ s.t. for all $n, m \in \mathbb{N}$ we have $n, m \ge N \Rightarrow f_m - f_n \in \mathcal{M}^k$.

Proposition 1

- We have $\bigcap_{k\in\mathbb{N}}\mathcal{M}^k \;=\; \langle 0
 angle$,
- If every Cauchy sequence in \mathbb{K} converges, then every Cauchy sequence of $\mathbb{K}[[\underline{X}]]$ converges too.

Formal power series (4/4)

Proposition 2

For all $f \in \mathbb{K}[[X_1, \dots, X_n]]$, the following properties are equivalent:

- (i) f is a unit,
- $(ii) \operatorname{ord}(f) = 0,$
- (*iii*) $f \notin \mathcal{M}$.

Sketch of proof

This follows from the classical observation that for $g \in \mathbb{K}[[X_1, \ldots, X_n]]$, with $\operatorname{ord}(g) > 0$, the following holds in $\mathbb{K}[[X_1, \ldots, X_n]]$

$$(1-g)(1+g+g^2+\cdots) = 1$$

Since $(1+g+g^2+\cdots)$ is in fact a sequence of elements in $\mathbb{K}[[X_1,\ldots,X_n]]$, proving the above relation formally requires the use of Krull Topology.

Abel's Lemma (1/2)

Geometric series

From now on, the field \mathbb{K} is equipped with an absolute value. The *geometric* series $\Sigma_e X^e$ is absolutely convergent provided that $|x_1| < 1, \ldots, |x_n| < 1$ all hold. Then we have

$$\Sigma_e x_1^{e_1} \cdots x_n^{e_n} = \frac{1}{(1-x_1)\cdots(1-x_n)}.$$

Abel's Lemma

Let $f = \sum_e a_e X^e \in \mathbb{K}[[\underline{X}]]$, let $x = (x_1, \ldots, x_n) \in \mathbb{K}^n$, let $M \in \mathbb{R}_{>0}$ and Let ρ_1, \ldots, ρ_n be real numbers such that

(i)
$$|a_e x^e| \leq M$$
 holds for all $e \in \mathbb{N}^n$,

(*ii*)
$$0 < \rho_j < |x_j|$$
 holds for all $j = 1 \cdots n$.

Then f is uniformly and absolutely convergent in the polydisk

$$D = \{ z \in \mathbb{K}^n \mid |z_j| < \rho_j \}.$$

In particular, the limit of the sum is independent of the summand order.

Abel's Lemma (2/2)

Corollary 1

Let $f = \Sigma_e a_e X^e \in \mathbb{K}[[\underline{X}]]$. Then, the following properties are equivalent:

- (i) There exists $x = (x_1, \ldots, x_n) \in \mathbb{K}^n$, with $x_j \neq 0$ for all $j = 1 \cdots n$, s.t. $\Sigma_e a_e x^e$ converges.
- (ii) There exists $\rho = (\rho_1, \dots, \rho_n) \in \mathbb{R}_{>0}{}^n$ s.t. $\Sigma_e a_e \rho^e$ converges.
- (*iii*) There exists $\sigma = (\sigma_1, \ldots, \sigma_n) \in \mathbb{R}_{>0}^n$ s.t. $\Sigma_e |a_e| \sigma^e$ converges.

Definition

A power series $f \in \mathbb{K}[[\underline{X}]]$ is said *convergent* if it satisfies one of the conditions of the above corollary. The set of the convergent power series of $\mathbb{K}[[\underline{X}]]$ is denoted by $\mathbb{K}\langle \underline{X} \rangle$.

Remark

It can be shown that, within its domain of convergence, a formal power series is a multivariate holomorphic function. Conversely, any multivariate holomorphic function can be expressed locally as the sum of a power series.

$\rho\text{-norm}$ of a power series

Notation

Let
$$\rho = (\rho_1, \dots, \rho_n) \in \mathbb{R}_{>0}^n$$
. For all $f = \Sigma_e a_e X^e \in \mathbb{K}[[\underline{X}]]$, we define
 $\| f \|_{\rho} = \Sigma_e |a_e| \rho^e$.

Proposition 3

For all $f, g \in \mathbb{K}[[\underline{X}]]$ and all $\lambda \in \mathbb{K}$, we have

•
$$\| f \|_{\rho} = 0 \quad \Longleftrightarrow \quad f = 0,$$

•
$$\|\lambda f\|_{\rho} = |\lambda| \|f\|_{\rho}$$
,

•
$$\| f + g \|_{\rho} \le \| f \|_{\rho} + \| g \|_{\rho}$$

- If $f = \sum_{k \leq d} f_{(d)}$ is the decomposition of f into homogeneous parts, then $|| f ||_{\rho} = \sum_{k \leq d} || f_{(d)} ||_{\rho}$ holds.
- If f,g are polynomials, then $\parallel fg \parallel_{\rho} \leq \parallel f \parallel_{\rho} \parallel f \parallel_{\rho}$,

•
$$\lim_{\rho \to 0} || f ||_{\rho} = |f(0)|.$$

Convergent power series form a ring (1/5)

Notation

Let $\rho = (\rho_1, \dots, \rho_n) \in \mathbb{R}_{>0}^n$. We define $B_\rho = \{ f \in \mathbb{K}[[\underline{X}]] \mid \| f \|_\rho < \infty \}$

Cauchy's estimate

Observe that for all $f = \Sigma_e a_e X^e \in \mathbb{K}[[\underline{X}]]$, we have for all $e \in \mathbb{N}^e$

$$|a_e| \le \frac{\|f\|_{\rho}}{\rho^e}.$$

Convergent power series form a ring (2/5)

Theorem 1

The set B_{ρ} is a Banach algebra. Moreover,

() if
$$\rho \leq \rho'$$
 holds then we have $B_{\rho'} \subseteq B_{\rho}$,

2 we have $\bigcup_{\rho} B_{\rho} = \mathbb{K} \langle \underline{X} \rangle$.

Proof (1/3)

- From Proposition 3, we know that B_{ρ} is a normed vector space.
- Proving that $\| fg \|_{\rho} \leq \| f \|_{\rho} \| g \|_{\rho}$ holds for all $f, g \in \mathbb{K}[[\underline{X}]]$ is routine. Thus, B_{ρ} is a normed algebra.
- It remains to show that B_{ρ} is complete.
- Let $(f_j)_{j \in \mathbb{N}}$ be a Cauchy sequence in B_{ρ} . We write $f_j = \sum_e a_e^{(j)} X^e$.
- From Cauchy's estimate, for each $e \in \mathbb{N}^n$, for all $i, j \in \mathbb{N}$ we have $|a_e^{(j)} a_e^{(i)}| \leq \frac{\|f_j f_i\|_{\rho}}{\rho^e}.$

Convergent power series form a ring (3/5)

Proof (2/3)

- Since \mathbb{K} is complete, for each $e \in \mathbb{N}^n$, the sequence $(a_e^{(j)})_{j \in \mathbb{N}}$ converges to an element $a_e \in \mathbb{K}$.
- We define $f = \Sigma_e a_e X^e$. It must be shown that
 - $(i) \ f \in B_
 ho$ holds and
 - (*ii*) $\lim_{j\to\infty} f_j = f$ holds in the metric topology induced by the ρ -norm of the normed vector space B_{ρ} .
- Hence we must show that
 - $\begin{array}{ll} (i) & \parallel f \parallel_{\rho} < \infty \text{ holds, and} \\ (ii) & \text{for all } \varepsilon > 0 \text{ there exists } j_0 \in \mathbb{N} \text{ s.t. for all } j \in \mathbb{N} \text{ we have} \\ & j \ge j_0 \quad \Rightarrow \quad \parallel f f_j \parallel_{\rho} \le \varepsilon. \end{array}$
- Let $\varepsilon > 0$. Since $(f_j)_{j \in \mathbb{N}}$ is a Cauchy sequence in B_{ρ} , there exists $j_0 \in \mathbb{N}$ s.t. for all $j \ge j_0$ and all $i \ge 0$ we have

$$\sum_{e} |a_{e}^{(j+i)} - a_{e}^{(j)}| \rho^{e} = ||f_{j+i} - f_{j}||_{\rho} < \frac{\varepsilon}{2}.$$

Convergent power series form a ring (4/5)

Proof (3/3)

• Let $s \in \mathbb{N}$ be fixed. Since for each $e \in \mathbb{N}^n$ the sequence $(a_e - a_e^{(i)})_{i \in \mathbb{N}}$ converges to 0 in \mathbb{K} , there exists $i_0 \in \mathbb{N}$ s.t. for all $j \ge j_0$ and all $i \ge i_0$ we have

$$\sum_{|e|=0}^{s} |a_e - a_e^{(j+i)}| \rho^e < \frac{\varepsilon}{2}.$$

• Therefore, for all $j \ge j_0$ and all $i \ge i_0$ we have

$$\sum_{|e|=0}^{s} |a_e - a_e^{(j)}| \rho^e \le \sum_{|e|=0}^{s} |a_e - a_e^{(j+i)}| \rho^e + \sum_e |a_e^{(j+i)} - a_e^{(i)}| \rho^e < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

• Since the above holds for all s, we deduce that for all $j\geq j_0$

$$\| f - f_j \|_{\rho} = \sum_e |a_e - a_e^{(j)}| \rho^e \le \varepsilon,$$

• which proves (ii). Finally, (i) follows from

$$\parallel f \parallel_{\rho} \leq \parallel f - f_{j_0} \parallel_{\rho} + \parallel f_{j_0} \parallel_{\rho} \leq \varepsilon + \parallel f_{j_0} \parallel_{\rho} < \infty.$$

Convergent power series form a ring (5/5)

Corollary 2 $\mathbb{K}\langle \underline{X} \rangle$ is a subring of $\mathbb{K}[[\underline{X}]]$.

Proof

For $f, g \in \mathbb{K}\langle \underline{X} \rangle$, there exists $\rho \in \mathbb{R}_{>o}^n$ s.t. $f, g \in B_\rho$. While proving the previous theorem we proved $fg \in B_\rho$. Moreover, $f + g \in B_\rho$ clearly holds.

Corollary 3

Let $f \in \mathbb{K}\langle \underline{X} \rangle$. If f is a unit in $\mathbb{K}[[\underline{X}]]$, then f is also a unit in $\mathbb{K}\langle \underline{X} \rangle$.

Sketch of Proof

W.l.o.g. we can assume f(0) = 1 and we define g = 1 - f. We know that f^{-1} is the limit of the sequence $1 + g + g^2 + \cdots$ in Krull's topology. Since g(0) = 0, there exists $\rho \in \mathbb{R}_{>o}{}^n$ s.t. $\Theta := \parallel g \parallel_{\rho} < 1$. It follows that $\parallel f^{-1} \parallel_{\rho} \leq \sum_{k \in \mathbb{N}} \Theta^k = \frac{1}{1 - \Theta}$ holds, thus we have $f^{-1} \in B_{\rho}$.

Substitution of power series (1/4)

Remark

If $g_1, \ldots, g_n \in \mathbb{K}[\underline{Y}]$ then $\Phi_g : \begin{array}{ccc} \mathbb{K}[\underline{X}] & \longrightarrow & \mathbb{K}[\underline{Y}] \\ f & \longmapsto & f(g_1(\underline{Y}), \ldots, g_n(\underline{Y})) \end{array}$ defines a homomorphism of \mathbb{K} -algebras. This is not always true of convergent power series, e.g. $\mathbb{K}[[\underline{X}]] \longrightarrow \mathbb{K}[[\underline{Y}]], X_1, \ldots, X_n \longmapsto 1.$

Theorem 2

For $g_1, \ldots, g_n \in \mathbb{K}[[\underline{Y}]]$, with $\operatorname{ord}(g_i) \geq 1$, there is a \mathbb{K} -algebra homomorphism

$$\overline{\Phi_g}: \begin{array}{ccc} \mathbb{K}[[\underline{X}]] & \longrightarrow & \mathbb{K}[[\underline{Y}]] \\ f & \longmapsto & f(g_1(\underline{Y}), \dots, g_n(\underline{Y})) \end{array}$$

with the following properties

If g₁,..., g_n are polynomials, then Φ_g is an extension of Φ_g
 If g₁,..., g_n are convergent power series, then we have Φ_g(K(<u>X</u>)) ⊆ K(<u>Y</u>).

Substitution of power series (2/4)

Proof (1/3)

- Let $f \in \mathbb{K}[[\underline{X}]]$. To define $\overline{\Phi_g}(f)$, we consider the polynomial part $f^{(k)}$ of f, for all $k \in \mathbb{N}$.
- Since $\mathbb{K}[[\underline{Y}]]$ is a ring, we observe that $f^{(k)}(g_1, \ldots, g_n) \in \mathbb{K}[[\underline{Y}]]$ holds.
- Let $k, \ell \in \mathbb{N}$ with $k < \ell$. Observe that we have $\operatorname{ord}(f^{(\ell)} f^{(k)}) \ge k + 1$.
- Since $\operatorname{ord}(g_i) \ge 1$ holds, we deduce $\operatorname{ord}(f^{(\ell)}(g) f^{(k)}(g)) \ge k + 1$.
- It follows that $(f^{(k)}(g))_{k\in\mathbb{N}}$ is a Cauchy sequence in Krull Topology and thus converges to an element $f(g)\in\mathbb{K}[[\underline{X}]]$. Therefore, $\overline{\Phi_g}(f)$ is well defined.
- Of the properties asserted for the map $\overline{\Phi_g}$ only the second one requires some care.

Substitution of power series (3/4)

Proof (2/3)

- Let $\rho = (\rho_1, \dots, \rho_n) \in \mathbb{R}_{>0}^n$.
- It suffices to prove the following: there exists $\sigma = (\sigma_1, \dots, \sigma_n) \in \mathbb{R}_{>0}$ ⁿ such that we have $\overline{\Phi_g}(B_\rho) \subseteq B_\sigma$.
- Since $g_j(0) = 0$ for all $j = 1 \cdots n$, there exists $\sigma_j \in \mathbb{R}_{>0}$ n such that we have $\|g_j\|_{\sigma_j} \leq \rho_j$ for all $j = 1 \cdots n$.
- Taking the "component-wise min" of these $\sigma_j \in \mathbb{R}_{>0}$ ⁿ, we deduce the existence of a $\sigma \in \mathbb{R}_{>0}$ ⁿ such that we have

$$\|g_j\|_{\sigma} \leq \rho_j$$

for all $j = 1 \cdots n$.

• It turns out that this σ has the desired property.

Substitution of power series (4/4)

Proof (3/3)

• Indeed, writing $f = \Sigma_e a_e X^e$, we have

$$\| f^{(k)}(g) \|_{\sigma} = \| \sum_{d \le k} f_{(k)}(g) \|_{\sigma} \le \sum_{d \le k} \| f_{(k)}(g) \|_{\sigma} \le \sum_{d \le k} \sum_{|e|=k} |a_e| \| g_1 \|_{\sigma}^{e_1} \cdots \| g_n \|_{\sigma}^{e_n} \le \sum_{d \le k} \sum_{|e|=k} |a_e| \rho_1^{e_1} \cdots \rho_n^{e_n} = \| f^{(k)} \|_{\rho}.$$

• Thus, we have

$$\| f(g) \|_{\sigma} = \lim_{k \to \infty} \| f^{(k)}(g) \|_{\sigma}$$

$$\leq \lim_{k \to \infty} \| f^{(k)} \|_{\rho}$$

$$\leq \| f \|_{\rho}.$$

• Finally, we have

$$f \in B_{\rho} \Rightarrow f(g) \in B_{\sigma}.$$