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Formal power series (1/4)

Notations

K is a complete field, that is, every Cauchy sequence in K converges.

K[[X1, . . . , Xn]] denotes the set of formal power series in X1, . . . , Xn

with coefficients in K.

These are expressions of the form Σe aeX
e where e is a multi-index

with n coordinates (e1, . . . , en), Xe stands for Xe1
1 · · ·Xen

n ,
|e| = e1 + · · ·+ en and ae ∈ K holds.

For f = Σe aeX
e and d ∈ N, we define

f(d) =
∑
|e|=d aeX

e and f (d) =
∑

k≤d f(k),

which are the homogeneous part and polynomial part of f in degree d.

Addition and multiplication

For f, g ∈ K[[X1, . . . , Xn]], we define

f + g =
∑

d∈N (f(d) + g(d)) and fg =
∑

d∈N
(
Σk+`=d (f(k)g(`))

)
.



Formal power series (2/4)

Order of a formal power series

For f ∈ K[[X1, . . . , Xn]], we define its order as

ord(f) =

{
min{d | f(d) 6= 0} if f 6= 0,

∞ if f = 0.

Remarks

For f, g ∈ K[[X1, . . . , Xn]], we have

ord(f + g) ≥ min{ord(f), ord(g)} and ord(fg) = ord(f) + ord(g).

Consequences

K[[X1, . . . , Xn]] is an integral domain.

M = {f ∈ K[[X1, . . . , Xn]] | ord(f) ≥ 1} is the only maximal ideal
of K[[X1, . . . , Xn]].

We have Mk = {f ∈ K[[X1, . . . , Xn]] | ord(f) ≥ k} for all k ∈ N.



Formal power series (3/4)

Krull Topology

Recall M = {f ∈ K[[X1, . . . , Xn]] | ord(f) ≥ 1}. Let (fn)n∈N be a
sequence of elements of K[[X]] and let f ∈ K[[X]]. We say that

(fn)n∈N converges to f if for all k ∈ N there exists N ∈ N s.t. for all
n ∈ N we have n ≥ N ⇒ f − fn ∈Mk,

(fn)n∈N is a Cauchy sequence if for all k ∈ N there exists N ∈ N s.t.
for all n,m ∈ N we have n,m ≥ N ⇒ fm − fn ∈Mk.

Proposition 1

We have
⋂
k∈NMk = 〈0〉,

If every Cauchy sequence in K converges, then every Cauchy
sequence of K[[X]] converges too.



Formal power series (4/4)

Proposition 2

For all f ∈ K[[X1, . . . , Xn]], the following properties are equivalent:

(i) f is a unit,

(ii) ord(f) = 0,

(iii) f 6∈ M.

Sketch of proof

This follows from the classical observation that for g ∈ K[[X1, . . . , Xn]],
with ord(g) > 0, the following holds in K[[X1, . . . , Xn]]

(1− g)(1 + g + g2 + · · · ) = 1

Since (1 + g + g2 + · · · ) is in fact a sequence of elements in
K[[X1, . . . , Xn]], proving the above relation formally requires the use of
Krull Topology.



Abel’s Lemma (1/2)

Geometric series

From now on, the field K is equipped with an absolute value. The geometric
series ΣeX

e is absolutely convergent provided that |x1| < 1, . . . , |xn| < 1 all
hold. Then we have

Σe x
e1
1 · · ·xenn = 1

(1−x1)···(1−xn) .

Abel’s Lemma

Let f = Σe aeX
e ∈ K[[X]], let x = (x1, . . . , xn) ∈ Kn, let M ∈ R>0 and

Let ρ1, . . . , ρn be real numbers such that

(i) |aexe| ≤M holds for all e ∈ Nn,
(ii) 0 < ρj < |xj | holds for all j = 1 · · ·n.

Then f is uniformly and absolutely convergent in the polydisk

D = {z ∈ Kn | |zj | < ρj}.

In particular, the limit of the sum is independent of the summand order.



Abel’s Lemma (2/2)

Corollary 1

Let f = Σe aeX
e ∈ K[[X]]. Then, the following properties are equivalent:

(i) There exists x = (x1, . . . , xn) ∈ Kn, with xj 6= 0 for all j = 1 · · ·n, s.t.
Σe aex

e converges.
(ii) There exists ρ = (ρ1, . . . , ρn) ∈ R>0

n s.t. Σe aeρ
e converges.

(iii) There exists σ = (σ1, . . . , σn) ∈ R>0
n s.t. Σe |ae|σe converges.

Definition

A power series f ∈ K[[X]] is said convergent if it satisfies one of the
conditions of the above corollary. The set of the convergent power series of
K[[X]] is denoted by K〈X〉.

Remark

It can be shown that, within its domain of convergence, a formal power
series is a multivariate holomorphic function. Conversely, any multivariate
holomorphic function can be expressed locally as the sum of a power series.



ρ-norm of a power series

Notation

Let ρ = (ρ1, . . . , ρn) ∈ R>0
n. For all f = Σe aeX

e ∈ K[[X]], we define

‖ f ‖ρ = Σe |ae|ρe.

Proposition 3

For all f, g ∈ K[[X]] and all λ ∈ K, we have

‖ f ‖ρ = 0 ⇐⇒ f = 0,

‖ λf ‖ρ = |λ| ‖ f ‖ρ,

‖ f + g ‖ρ ≤ ‖ f ‖ρ + ‖ g ‖ρ,

If f = Σk≤d f(d) is the decomposition of f into homogeneous parts,
then ‖ f ‖ρ = Σk≤d ‖ f(d) ‖ρ holds.

If f, g are polynomials, then ‖ fg ‖ρ ≤ ‖ f ‖ρ‖ f ‖ρ,

limρ→0‖ f ‖ρ = |f(0)|.



Convergent power series form a ring (1/5)

Notation

Let ρ = (ρ1, . . . , ρn) ∈ R>0
n. We define

Bρ = {f ∈ K[[X]] | ‖ f ‖ρ <∞}

Cauchy’s estimate

Observe that for all f = Σe aeX
e ∈ K[[X]], we have for all e ∈ Ne

|ae| ≤
‖f‖ρ
ρe .



Convergent power series form a ring (2/5)

Theorem 1

The set Bρ is a Banach algebra. Moreover,

1 if ρ ≤ ρ′ holds then we have Bρ′ ⊆ Bρ,

2 we have
⋃
ρBρ = K〈X〉.

Proof (1/3)

From Proposition 3, we know that Bρ is a normed vector space.

Proving that ‖ fg ‖ρ ≤ ‖ f ‖ρ ‖ g ‖ρ holds for all f, g ∈ K[[X]] is
routine. Thus, Bρ is a normed algebra.

It remains to show that Bρ is complete.

Let (fj)j∈N be a Cauchy sequence in Bρ. We write fj = Σe a
(j)
e Xe.

From Cauchy’s estimate, for each e ∈ Nn, for all i, j ∈ N we have

|a(j)
e − a(i)

e | ≤
‖ fj − fi ‖ρ

ρe .



Convergent power series form a ring (3/5)

Proof (2/3)

Since K is complete, for each e ∈ Nn, the sequence (a
(j)
e )j∈N

converges to an element ae ∈ K.

We define f = Σe aeX
e. It must be shown that

(i) f ∈ Bρ holds and
(ii) limj→∞ fj = f holds in the metric topology induced by the ρ-norm of

the normed vector space Bρ.

Hence we must show that

(i) ‖ f ‖ρ <∞ holds, and
(ii) for all ε > 0 there exists j0 ∈ N s.t. for all j ∈ N we have

j ≥ j0 ⇒ ‖ f − fj ‖ρ ≤ ε.

Let ε > 0. Since (fj)j∈N is a Cauchy sequence in Bρ, there exists
j0 ∈ N s.t. for all j ≥ j0 and all i ≥ 0 we have∑

e |a
(j+i)
e − a(j)

e |ρe = ‖ fj+i − fj ‖ρ < ε
2 .



Convergent power series form a ring (4/5)

Proof (3/3)

Let s ∈ N be fixed. Since for each e ∈ Nn the sequence (ae − a(i)
e )i∈N

converges to 0 in K, there exists i0 ∈ N s.t. for all j ≥ j0 and all
i ≥ i0 we have ∑s

|e|=0 |ae − a
(j+i)
e |ρe < ε

2 .

Therefore, for all j ≥ j0 and all i ≥ i0 we have∑s
|e|=0 |ae − a

(j)
e |ρe ≤∑s

|e|=0 |ae − a
(j+i)
e |ρe +

∑
e |a

(j+i)
e − a(i)

e |ρe < ε
2 + ε

2 = ε.

Since the above holds for all s, we deduce that for all j ≥ j0
‖ f − fj ‖ρ =

∑
e |ae − a

(j)
e |ρe ≤ ε,

which proves (ii). Finally, (i) follows from

‖ f ‖ρ ≤ ‖ f − fj0 ‖ρ + ‖ fj0 ‖ρ ≤ ε+ ‖ fj0 ‖ρ <∞.



Convergent power series form a ring (5/5)

Corollary 2

K〈X〉 is a subring of K[[X]].

Proof

For f, g ∈ K〈X〉, there exists ρ ∈ R>on s.t. f, g ∈ Bρ. While proving the
previous theorem we proved fg ∈ Bρ. Moreover, f + g ∈ Bρ clearly holds.

Corollary 3

Let f ∈ K〈X〉. If f is a unit in K[[X]], then f is also a unit in K〈X〉.

Sketch of Proof

W.l.o.g. we can assume f(0) = 1 and we define g = 1− f . We know that
f−1 is the limit of the sequence 1 + g + g2 + · · · in Krull’s topology.
Since g(0) = 0, there exists ρ ∈ R>on s.t. Θ := ‖ g ‖ρ < 1. It follows

that ‖ f−1 ‖ρ ≤
∑

k∈N Θk = 1
1−Θ holds, thus we have f−1 ∈ Bρ.



Substitution of power series (1/4)

Remark

If g1, . . . , gn ∈ K[Y ] then Φg :
K[X] −→ K[Y ]

f 7−→ f(g1(Y ), . . . , gn(Y ))
defines

a homomorphism of K-algebras. This is not always true of convergent
power series, e.g. K[[X]] −→ K[[Y ]], X1, . . . , Xn 7−→ 1.

Theorem 2

For g1, . . . , gn ∈ K[[Y ]], with ord(gi) ≥ 1, there is a K-algebra
homomorphism

Φg :
K[[X]] −→ K[[Y ]]

f 7−→ f(g1(Y ), . . . , gn(Y ))

with the following properties

1 If g1, . . . , gn are polynomials, then Φg is an extension of Φg

2 If g1, . . . , gn are convergent power series, then we have
Φg(K〈X〉) ⊆ K〈Y 〉.



Substitution of power series (2/4)

Proof (1/3)

Let f ∈ K[[X]]. To define Φg(f), we consider the polynomial part
f (k) of f , for all k ∈ N.

Since K[[Y ]] is a ring, we observe that f (k)(g1, . . . , gn) ∈ K[[Y ]]
holds.

Let k, ` ∈ N with k < `. Observe that we have
ord(f (`) − f (k)) ≥ k + 1.

Since ord(gi) ≥ 1 holds, we deduce ord(f (`)(g)− f (k)(g)) ≥ k + 1.

It follows that (f (k)(g))k∈N is a Cauchy sequence in Krull Topology
and thus converges to an element f(g) ∈ K[[X]]. Therefore, Φg(f) is
well defined.

Of the properties asserted for the map Φg only the second one
requires some care.



Substitution of power series (3/4)

Proof (2/3)

Let ρ = (ρ1, . . . , ρn) ∈ R n
>0.

It suffices to prove the following: there exists
σ = (σ1, . . . , σn) ∈ R>0

n such that we have

Φg(Bρ) ⊆ Bσ.
Since gj(0) = 0 for all j = 1 · · ·n, there exists σj ∈ R>0

n such that
we have ‖ gj ‖σj ≤ ρj for all j = 1 · · ·n.

Taking the “component-wise min” of these σj ∈ R>0
n, we deduce

the existence of a σ ∈ R>0
n such that we have

‖ gj ‖σ ≤ ρj
for all j = 1 · · ·n.

It turns out that this σ has the desired property.



Substitution of power series (4/4)

Proof (3/3)

Indeed, writing f = Σe aeX
e, we have

‖ f (k)(g) ‖σ = ‖
∑

d≤k f(k)(g) ‖
σ

≤
∑

d≤k ‖ f(k)(g) ‖
σ

≤
∑

d≤k
∑
|e|=k |ae| ‖ g1 ‖σ

e1 · · · ‖ gn ‖σ
en

≤
∑

d≤k
∑
|e|=k |ae|ρ1

e1 · · · ρnen
= ‖ f (k) ‖ρ.

Thus, we have

‖ f(g) ‖σ = limk→∞ ‖ f (k)(g) ‖σ
≤ limk→∞ ‖ f (k) ‖ρ
≤ ‖ f ‖ρ.

Finally, we have

f ∈ Bρ ⇒ f(g) ∈ Bσ.


	From Formal to Convergent Power Series 

