

Overview

Sparse matrix-vector multiplication or $S p M x V$ is an important kernel in scientific computing. For example, in the conjugate gradient method, where $S p M x V$ is the main computational step. Though the total number of arithmetic operations to compute $A x$ is fixed, reducing the probability of cache misses per operation is still a challenging area of research. This preprocessing is done once and its cost is amortized by repeated multiplications. In this work, we present a new column ordering algorithm for sparse matrices. We analyze the cache complexity of $S p M x V$ when A is ordered by our technique. The numerical experiments, with very large test matrices, clearly demonstrate the performance gains rendered by our proposed technique.

Sparsity and Cache Misses

Consider the following $S p M x V$ problem

$$
\left(\begin{array}{cccccc}
a_{0,0} & 0 & 0 & 0 & a_{0,4} & 0 \\
0 & 0 & a_{1,2} & 0 & 0 & a_{1,5} \\
0 & a_{2,1} & 0 & a_{2,3} & 0 & 0
\end{array}\right) \times\left(\begin{array}{l}
x_{0} \\
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right)
$$

Binary Reflected Gray Code Ordering

We develop a new column ordering algorithm based on binary reflected Gray code (BRGC for short) for sparse matrices. We will call it BRGC ordering. A p-bit binary reflected Gray code is a Gray code denoted by G^{p} and defined by $G^{1}=[0,1]$ and

$$
G^{p}=\left[0 G_{0}^{p-1}, \ldots, 0 G_{2^{p-1}-1}^{p-1}, 1 G_{2^{p-1}-1}^{p-1}, \ldots, 1 G_{0}^{p-1}\right],
$$

where G_{i}^{p} is the i-th string of G^{p}. We call i the rank of G_{i}^{p} in G^{p}. We consider each column of a $m \times n$ sparse matrix A as a binary string of length m where each nonzero is treated as 1 . Hence, we have n binary strings of length m, say $\left\{b_{0}, b_{1}, \ldots, b_{n-1}\right\}$. Let Π be the permutation of these strings satisfying the following property. For any pair of indices i, j with $i \neq j$, the rank of $b_{\Pi(j)}$ in G^{m} is less than that of $b_{\Pi(i)}$ if and only if $\Pi(i)<\Pi(j)$ holds. We refer to $A_{\text {brgc }}$ as our sparse matrix A after its columns have been permuted by Π. This procedure is illustrated below

Below, the matrix fome21 from the University of Florida sparse matrix collection is shown before (left picture) and after (right picture) our BRGC ordering.

Time and Cache Complexity

The matrix $A_{\text {brgc }}$ is obtained from A using $O(\tau)$ integer comparisons (on average) and $O(n+\tau)$ data-structure updates, where τ is the total nonzero entries in A.

For an ideal cache of Z words with L cache lines, the total number of expected cache misses in accessing x, where A is not BRGC ordered, is given by:

$$
\overline{Q_{1}}=Z / L+(\tau-Z / L) \frac{n-Z / L}{n} .
$$

When A is BRGC ordered, the expected number of cache misses in accessing x becomes

$$
\overline{Q_{2}}=n / L+Z / L+(n-Z / L) \frac{n / \rho-Z / L}{n / \rho}+(\tau-2 n) \frac{c n / \rho-Z / L}{c n / \rho},
$$

where $1 \leq c \leq \rho$ holds.
For our large test matrices and today's L2 cache sizes, the following conditions hold: $n \in O\left(Z^{2}\right)$ and $Z>2^{10}$. Using MAPLE, we could prove the following relation: $\overline{Q_{1}}-\overline{Q_{2}} \approx n$.

Experimental Results and Conclusion					
Matrix	m	n	τ	SPMxV	SPMxV
name				with BRGC ordering	without any ordering
fome21	67748	216350	465294	3.6	3.9
1p ken 18	105127	154699	358171	2.7	3.1
barrier2-10	115625	115625	3897557	19.0	19.1
rajat23	110355	110355	556938	3.0	3.0
hcircuit	105676	105676	513072	2.6	2.5
GLId24	21074	105054	593892	3.0	3.2
matrix 9	103430	103430	2121550	8.4	8.0
GLTd17	1548650	955128	25978098	484.6	625.0
GLTd19	1911130	1955309	37322725	784.6	799.0
wik-20051105	1634989	1634989	19753078	258.9	321.0
wiki-20070206	3566907	3566907	45030389	731.5	859.0

For each test matrix $1000 S p M x V s$ are performed. Our timing results are in seconds. In conclusion, BRGC re-ordering runs in linear time with respect to the number of nonzero entries. Moreover, it improves $S p M x V$, so that its cost can be amortized before \sqrt{n} iterations in conjugate gradient type algorithms.

