
Cache Friendly Sparse Matrix Vector Multiplication

Sardar Anisul Haque†, Shahadat Hossain⋆, Marc Moreno Maza†
†Ontario Research Centre of Computer Algebra, University of Western Ontario, London, Canada

⋆ Department of Computer Science, University of Lethbridge, Lethbridge, Alberta, Canada.

Overview

Sparse matrix-vector multiplication or SpMxV is an important ker-

nel in scientific computing. For example, in the conjugate gradient

method, where SpMxV is the main computational step. Though

the total number of arithmetic operations to compute Ax is fixed,

reducing the probability of cache misses per operation is still a

challenging area of research. This preprocessing is done once and

its cost is amortized by repeated multiplications. In this work, we

present a new column ordering algorithm for sparse matrices. We

analyze the cache complexity of SpMxV when A is ordered by our

technique. The numerical experiments, with very large test ma-

trices, clearly demonstrate the performance gains rendered by our

proposed technique.

Sparsity and Cache Misses

Consider the following SpMxV problem:











a0,0 0 0 0 a0,4 0

0 0 a1,2 0 0 a1,5

0 a2,1 0 a2,3 0 0











×





























x0

x1

x2

x3

x4

x5





























Assume that the cache has 2 lines each of 2 words. Assume also

that the cache is dedicated to store the entries from x. During

SpMxV, the successive states of the cache are:




ø ø

ø ø









x0 x1

ø ø









x0 x1

x4 x5









x0 x1

x2 x3









x4 x5

x2 x3









x4 x5

x0 x1









x2 x3

x0 x1





So, the number of cache misses is 6. Reordering of columns or rows

might improve data locality. If we permute the columns as below,

the number of cache misses becomes 3, which is optimal.











a0,0 a0,4 0 0 0 0

0 0 a1,2 a1,5 0 0

0 0 0 0 a2,1 a2,3











×





























x0

x4

x2

x5

x1

x3

































ø ø

ø ø









x0 x4

ø ø









x0 x4

ø ø









x0 x4

x2 x5









x0 x4

x2 x5









x0 x4

x1 x3









x0 x4

x1 x3





Binary Reflected Gray Code Ordering

We develop a new column ordering algorithm based on binary re-

flected Gray code (BRGC for short) for sparse matrices. We will

call it BRGC ordering. A p-bit binary reflected Gray code is a

Gray code denoted by Gp and defined by G1 = [0, 1] and

Gp = [0Gp−1
0 , . . . , 0Gp−1

2p−1−1, 1G
p−1
2p−1−1, . . . , 1G

p−1
0 ],

where Gp
i is the i-th string of Gp. We call i the rank of Gp

i in Gp.

We consider each column of a m × n sparse matrix A as a binary

string of length m where each nonzero is treated as 1. Hence, we

have n binary strings of length m, say {b0, b1, . . . , bn−1}.
Let Π be the permutation of these strings satisfying the following

property. For any pair of indices i, j with i 6= j, the rank of bΠ(j)

in Gm is less than that of bΠ(i) if and only if Π(i) < Π(j) holds. We

refer to Abrgc as our sparse matrix A after its columns have been

permuted by Π. This procedure is illustrated below.

Below, the matrix fome21 from the University of Florida sparse

matrix collection is shown before (left picture) and after (right

picture) our BRGC ordering.

0 0.5 1 1.5 2

x 10
5

0

2

4

6

x 10
4

nz = 465294

Time and Cache Complexity

The matrix Abrgc is obtained from A using O(τ ) integer compar-

isons (on average) and O(n + τ ) data-structure updates, where τ

is the total nonzero entries in A.

For an ideal cache of Z words with L cache lines, the total num-

ber of expected cache misses in accessing x, where A is not BRGC

ordered, is given by:

Q1 = Z/L + (τ − Z/L)n−Z/L
n .

When A is BRGC ordered, the expected number of cache misses

in accessing x becomes:

Q2 = n/L + Z/L + (n − Z/L)n/ρ−Z/L
n/ρ + (τ − 2n)cn/ρ−Z/L

cn/ρ ,

where 1 ≤ c ≤ ρ holds.

For our large test matrices and today’s L2 cache sizes, the following

conditions hold: n ∈ O(Z2) and Z > 210. Using MAPLE, we

could prove the following relation: Q1 - Q2 ≈ n.

Experimental Results and Conclusion

Matrix m n τ SPMxV SPMxV

name with BRGC without any

ordering ordering

fome21 67748 216350 465294 3.6 3.9

lp ken 18 105127 154699 358171 2.7 3.1

barrier2-10 115625 115625 3897557 19.0 19.1

rajat23 110355 110355 556938 3.0 3.0

hcircuit 105676 105676 513072 2.6 2.5

GL7d24 21074 105054 593892 3.0 3.2

matrix 9 103430 103430 2121550 8.4 8.0

GL7d17 1548650 955128 25978098 484.6 625.0

GL7d19 1911130 1955309 37322725 784.6 799.0

wiki-20051105 1634989 1634989 19753078 258.9 321.0

wiki-20070206 3566907 3566907 45030389 731.5 859.0

For each test matrix 1000 SpMxVs are performed. Our timing

results are in seconds. In conclusion, BRGC re-ordering runs in

linear time with respect to the number of nonzero entries. More-

over, it improves SpMxV, so that its cost can be amortized before√
n iterations in conjugate gradient type algorithms.


