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Abstract. We propose parallel algorithms for operations on univariate
polynomials (multi-point evaluation, interpolation) based on subproduct
tree techniques and targeting many-core GPUs. On those architectures,
we demonstrate the importance of adaptive algorithms, in particular the
combination of parallel plain arithmetic and parallel FFT-based arith-
metic. Experimental results illustrate the benefits of our algorithms.

1 Introduction

We investigate the use of Graphics Processing Units (GPUs) in the problems
of evaluating and interpolating polynomials. Many-core GPU architectures were
considered in [17] and [18] in the case of numerical computations, with the pur-
pose of obtaining better support, in terms of accuracy and running times, for
the development of polynomial system solvers.

Our motivation, in this work, is also to improve the performance of poly-
nomial system solvers. However, we are targeting symbolic, thus exact, compu-
tations. In particular, we aim at providing GPU support for solvers of polyno-
mial systems with coefficients in finite fields, such as the one presented in [14].
This case handles problems from cryptography and serves as a base case for the
so-called modular methods [4], since those methods reduce computations with
rational number coefficients to computations with finite field coefficients.

Finite fields allow the use of asymptotically fast algorithms for polynomial
arithmetic, based on Fast Fourier Transforms (FFTs) or, more generally, sub-
product tree techniques1, which have the advantage of providing a more general
setting than FFTs. More precisely, evaluation points do not need to be succes-
sive powers of a primitive root of unity. Evaluation and interpolation based on
subproduct tree techniques have “essentially” (up to log factors) the same al-
gebraic complexity estimates as their FFT-based counterparts. However, their
implementation is known to be challenging.

In this work, we report on the first GPU implementation (using CUDA [16])
of subproduct tree techniques for multi-point evaluation and interpolation of uni-
variate polynomials. The parallelization of those techniques raises the following
challenges on hardware accelerators:

1 Chapter 10 of [5] and the paper [1] contain overviews of those techniques.



1. The divide-and-conquer formulation of operations on subproduct-trees is not
sufficient to provide enough parallelism and one must also parallelize the
underlying polynomial arithmetic operations, in particular multiplication.

2. Algorithms based on FFT (such as subproduct tree techniques) are memory
bound since the ratio of work to memory access is essentially constant, which
makes those algorithms not well suited for multi-core architectures.

3. During the course of the execution of a subproduct tree operation (con-
struction, evaluation, interpolation) the degrees of the involved polynomials
vary greatly, thus so does the work load of the tasks, which makes those
algorithms complex to implement on many-core GPUs.

The contributions of this work are summarized below. We propose parallel al-
gorithms for performing subproduct tree construction, evaluation and interpola-
tion. We also report on their implementation on many-core GPUs. See Sections 3,
5 and 6, respectively. We enhance the traditional algorithms for polynomial eval-
uation and interpolation based on subproduct tree techniques, by introducing
the data-structure of a subinverse tree, which we use to implement both evalu-
ation and interpolation, see Section 4. For subproduct tree operations targeting
many-core GPUs, we demonstrate the importance of adaptive algorithms2 That
is, algorithms that adapt their behavior according to the available computing
resources. In particular, we combine parallel plain arithmetic and parallel fast
arithmetic. For the former we rely on [7] and, for the latter we extend the work
of [13]. The span and parallelism overhead of our algorithm are measured con-
sidering the many-core machine model of [8]. The paper [15] briefly discusses the
parallelization of FFT-based multi-point evaluation without considering paral-
lelism overhead, adaptive algorithms nor reporting on an implementation.

To evaluate our implementation, we measure the effective memory bandwidth
of our GPU code for parallel multi-point evaluation and interpolation on a card
with a theoretical maximum memory bandwidth of 148 GB/S, our code reaches
peaks at 64 GB/S. Since the arithmetic intensity of our algorithms is high, we
believe that this is a promising result.

All implementation of subproduct tree techniques that we are aware of are
serial only. This includes [3] for GF (2)[x], the FLINT library[9] and the Modpn

library [10]. Hence we compare our code against probably the best serial C code
(the FLINT library) for the same operations. For sufficiently large input data and
on NVIDIA Tesla C2050, our code outperforms its serial counterpart by a factor
ranging between 20 to 30. Experimental data are provided in Section 7. Our code
is freely available in source, under GPL license, as part of the project CUDA
Modular Polynomial (CUMODP) whose web site is http://www.cumodp.org.

2 Background

We refer to [16] for notions related to GPU programming. We review below
the notion of a subproduct tree and specify costs for the underlying polynomial

2 A famous example of adaptive algorithm usage was for computing 2,700 billion
decimal digits of π on a desktop computer by F. Bellard http://bellard.org/pi/.

http://www.cumodp.org
http://bellard.org/pi/


arithmetic used in our implementation. Notations and hypotheses introduced in
this section are used throughout this paper. Let n = 2k for some positive integer
k and let K be a finite field. Let u0, . . . , un−1 ∈ K. Define mi = x−ui, for 0 ≤ i < n.
We assume that each ui ∈ K can be stored in one machine word.

Subproduct tree. The subproduct tree Mn ∶= SubproductTree(u0, . . . , un−1) is
a complete binary tree of height k = log2 n. The j-th node of the i-th level of
Mn is denoted by Mi,j , where 0 ≤ i ≤ k and 0 ≤ j < 2k−i, and is defined by
Mi,j = mj⋅2i ⋅mj⋅2i+1⋯mj⋅2i+(2i−1) = ∏0≤`<2i mj⋅2i+`. Each Mi,j can be defined
recursively by M0,j = mj and Mi+1,j =Mi,2j ⋅Mi,2j+1. The i-th level of Mn has
2k−i polynomials with degree of 2i. Since each element of K fits a machine word,
storing the subproduct tree Mn requires at most n log2 n + 3n − 1 words.

Algorithm 1: SubproductTree(m0, . . . ,mn−1)

Input: m0 = (x − u0), . . . ,mn−1 = (x − un−1) ∈ K[x] with ui ∈ K, n = 2k, k ∈ N.
Output: The subproduct-tree Mn.
for j = 0 to n − 1 do

M0,j =mj ;

for i = 1 to k do

for j = 0 to 2k−i − 1 do
Mi,j =Mi−1,2jMi−1,2j+1;

return Mn;

Multi-point evaluation and interpolation. Given a univariate polynomial f ∈
K[x] of degree less than n, we define χ(f) = (f(u0), . . . , f(un−1)). The map χ
is called the multi-point evaluation map at u0, . . . , un−1. When u0, . . . , un−1 are
pairwise distinct, then it realizes an isomorphism of K-vector spaces K[x]/⟨m⟩
and Kn, where m = ∏0≤i<n(x − ui). The inverse map χ−1 can be computed via
Lagrange interpolation. Given values v0, . . . , vn−1 ∈ K, the unique polynomial
f ∈ K[x] of degree less than n which takes the value vi at the point ui for all
0 ≤ i < n is: f = ∑n−1

i=0 visim/(x − ui) where si =∏i≠j,0≤j<n 1/(ui − uj).
Complexity measures. Since we are targeting GPU implementation, our parallel
algorithms are analyzed using an appropriate model of computation introduced
in [8]. The complexity measures are the work (i.e. algebraic complexity estimate)
the span (i.e. running time on infinitely many processors) and the parallelism
overhead. This latter is the total time for transferring data between the global
memory and the local memories of the streaming multi-processors (SMs).

Plain multiplication. The number of arithmetic operations for multiplying two
polynomials with degree less than d using the plain (schoolbook) multiplication is
Mplain(d) = 2d2−2d+1. In our GPU implementation, when d is small enough, each
polynomial product is computed by a single thread-block and thus within the
local memory of a single SM. In this case, we use 2d+2 threads for one polynomial



multiplication. Each thread copies one coefficient from global memory to the
local memory. Each of these threads, except one, is responsible for computing
one coefficient of the output polynomial and writes that coefficient back to global
memory. So the span and parallelism overhead are d + 1 and 2U respectively,
where 1/U is the throughput measured in word per second, see [8].

FFT-based multiplication. The number of operations for multiplying two poly-
nomials with degree less than d using Cooley-Tukey’s FFT algorithms is MFFT(d) =
9/2 d∢ log2(d∢)+4d∢ [11]. Here d∢ = 2⌈log2 (2d−1)⌉. In our GPU implementation,
which relies on Stockham FFT algorithm, this number of operations becomes:
MFFT(d) = 15d∢ log2(d∢) + 2d∢, see [13]. The span and parallelism overhead of
our FFT-based multiplication are 15d∢ + 2d∢ and (36d∢ − 21)U respectively.

Polynomial division. Given a, b ∈ K[x], with deg(a) ≥ deg(b) we denote by
Remainder(a, b) the remainder in the Euclidean division of a by b. The num-
ber of arithmetic operations for computing Remainder(a, b), by plain division,
is (deg(b) + 1)(deg(a) − deg(b) + 1). In our GPU implementation, we perform
plain division for small degree polynomials, in which case a, b are stored into the
local memory of an SM. For larger polynomials, we use an FFT-based algorithm
to be discussed later. Returning to plain division, we use deg(b) + 1 threads to
implement this operation. Each thread reads one coefficient of b and at most

⌈deg(a)+1
deg(b)+1

⌉ coefficients of a from the global memory. For the output, at most

deg(b) threads write the coefficients of the remainder to the global memory. The

span and parallelism overhead are 2(deg(a) − deg(b) + 1) and (2 + ⌈deg(a)+1
deg(b)+1

⌉)U .

Reversal of a polynomial. For f ∈ K[x] of degree d > 0 and for e ≥ d, the
reversal of order e of f is the polynomial denoted by reve(f) and defined as
reve(f) = xef(1/x). In our implementation, we use one thread for each coefficient
of the input and output. So the span and overhead are 1 and 2U , respectively.

Inverse modulo a power of x. For f ∈ K[x], with f(0) = 1, and ` ∈ N the
modular inverse of f modulo x` is denoted by Inverse(f, `) and is uniquely defined
by Inverse(f, `) f ≡ 1 mod (x`). One can compute Inverse(f, `) by Newton
iteration, see [5, Chapter 10] for details in sequential time O(MFFT(`)).

To help the reader following the complexity analysis presented in the sequel of
this paper, a Maple worksheet can be found at http://cumodp.org/links.html.
It provides estimates for space allocation, work (total of number of arithmetic
operations), span (parallel running time) and parallelism overhead for construct-
ing subproduct tree and sub-inverse tree (our proposed data structure). Recall
that the parallelism overhead measures the time for transferring data between
the device global memory and the SMs’ shared memories. The estimates that
we provide follow our CUDA implementation available at http://cumodp.org.

3 Subproduct tree construction

We propose an adaptive algorithm for constructing the subproduct tree Mn ∶=
SubproductTree(u0, . . . , un−1). We fix an integer H with 1 ≤ H ≤ k. We call the
following procedure an adaptive algorithm for computing Mn with threshold H:

http://cumodp.org/links.html
http://cumodp.org


1. for each level h, with 1 ≤ h ≤H, nodes are computed via plain multiplication,
2. for each level h, with H + 1 ≤ h ≤ k, nodes are computed via FFT-based

multiplication.

This algorithm is adaptive in the sense that it takes into account the amount
of available resources, as well as the input data size. Indeed, as specified in
Section 2, each plain multiplication is performed by a single SM, while each
FFT-based multiplication is computed by a kernel call, thus using several SMs.
In fact, this kernel computes a number of FFT-based products concurrently.

Before analyzing this adaptive algorithm, we recall that, if the subproduct
treeMn is computed by means of a single multiplication algorithm, with multipli-
cation time3 M(n), Lemma 10.4 in [5] states that the total number of operations
for constructing Mn is at most M(n) log2 n operations in K. We also note that
the leading coefficient of each polynomial in Mn is one. Thus this coefficient
does not need to be stored in memory. Moreover, this allows us to multiply two
polynomials at level i, for H + 1 ≤ i ≤ k − 1, via FFTs of size 2i+1 (instead of 2i+2

with a naive approach that would ignore that leading coefficients are one).
Another implementation trick is the so-called FFT doubling. At a level H +

2 ≤ i ≤ k, for 0 ≤ j ≤ 2k−i − 1, consider how to compute Mi,j from Mi−1,2j

and Mi−1,2j+1. Since the values of Mi−1,2j and Mi−1,2j+1 at 2i−1 points have
already been computed (via FFT), it is sufficient, in order to determine Mi,j ,
to evaluate Mi−1,2j and Mi−1,2j+1 at 2i−1 additional points. To do this, we write

f ∈ {Mi−1,2j ,Mi−1,2j+1} as f = f0 + x2
i−2

f1, with deg(f0) < 2i−2, and evaluate
each of f0, f1 at those 2i−1 additional points. While this trick brings savings in
terms of work, it increases memory footprint, in particular parallelism overheads.
Integrating this trick in our implementation is work in progress and, in the rest
of this paper, the theoretical and experimental results do not rely on it.

Proposition 1 The number of arithmetic operations of the adaptive algorithm
for computing Mn with threshold H is

n (15

2
log2(n)

2 + 19

2
log2(n) + 2H − 15

2
H2 − 17

2
H − 1

2H
) .

Proposition 2 The number of machine words required for storing Mn, with
threshold H is given below

n (log2(n) −H + 5) + (−H − 2) (n + n

2H+1
) + 2nH (1 + 1

2H+2
)

Proposition 3 Span and overhead for constructing Mn with threshold H using
our adaptive method are spanMn

and overheadMn respectively, where

spanMn
= 15

2
(log2(n) + 1)2 − 7

2
log2(n) + 2H+1 − 15

2
(H + 1)2 + 9

2
H − 2

and

overheadMn
= ((18 (log2(n) + 1)2 − 35 log2(n) − 18 (H + 1)2 + 35H) + 2H)U.

3 This notion is defined in [5, Chapter 8]



The proof of Propositions 1, 2 and 3 are based on the hypotheses stated in
Section 2 and elementary calculations, which, to the interest of space, can be
found in our Maple worksheet at http://cumodp.org/links.html.

Propositions 1 and 3 imply that for a fixed a H, the parallelism (ratio work
to span) is in Θ(n) which is very satisfactory. We stress the fact that this result
could be achieved because both our plain and FFT-based multiplications are
parallelized. Observe also that, for a fixed n, parallelism overhead decreases as
H increases: that is, plain multiplication suffers less parallelism overheads than
FFT-based multiplication on GPUs.

It is natural to ask how to choose H so as to minimize work and span. Ele-
mentary calculations, using our Maple worksheet suggest 6 ≤H ≤ 7. However, in
degrees 26 and 27, parallelism overhead is too high for FFT-based multiplication
and, experimentally, the best choice appeared to be H = 8.

4 Subinverse tree construction

For f ∈ K[x] of degree less than n, evaluating f on the point set {u0, . . . , un−1} is
done by Algorithm 2 by calling TopDownTraverse(f, k,0,Mn, F ). An array F of
length n is passed to this procedure such that F [i] receives f(ui) for 0 ≤ i ≤ n−1.
The function call Remainder(f,Mi,j) relies on plain division whenever i < H
holds, where H is the threshold of Section 3. Fast division is applied when

Algorithm 2: TopDownTraverse(f, i, j,Mn, F )

Input: f ∈ K[x] with deg(f) < 2i , i and j are integers such that 0 ≤ i ≤ k,
0 ≤ j < 2k−i and F is an array of length n.

if i == 0 then
F [j] = f ;
return;

f0 = Remainder(f,Mi−1,2j);
f1 = Remainder(f,Mi−1,2j+1);
TopDownTraverse(f0, i − 1,2j,Mn, F );
TopDownTraverse(f1, i − 1,2j + 1,Mn, F );

polynomials are large enough and, actually, can not be stored within the local
memory of a streaming multiprocessor.

Fast division requires computing Inverse(rev2i(Mi,j),2i), for H ≤ i ≤ k and
0 ≤ j < 2k−i, see Chapter 9 in [5]. However, this latter calculation has, in principle,
to be done via Newton iteration. As mentioned in Section 2, this latter provides
little opportunities for concurrent execution. To overcome this performance issue,
we introduce a strategy that relies on a new data structure called subinverse tree.
In this section, we first define subinverse trees and describe their implementation.
Then, we analyze the complexity of constructing a subinverse tree.

http://cumodp.org/links.html


Definition 1 For the subproduct tree Mn ∶= SubproductTree(u0, . . . , un−1), the
subinverse tree associated with Mn, denoted by InvMn, is a complete binary tree
of the same format as Mn, defined as follows. For 0 ≤ i ≤ k, for 0 ≤ j < 2k−i, the
j-th node of level i in InvMn contains the univariate polynomial InvMi,j of less
than degree 2i and defined by

InvMi,j rev2i(Mi,j) ≡ 1 mod x2
i

.

Note that we do not store the polynomials of the subinverse tree InvMn below
level H. Indeed, for those levels, we rely on plain division for the function calls
Remainder(f,Mi,j) in Algorithm 2.

Proposition 4 Let InvMn be the subinverse tree associated with the subproduct
tree Mn, with the threshold H < k. Then, the amount of space required for storing
InvMn, is (k −H)n.

The following lemma is a simple observation from which we derive Proposi-
tion 5 and, thus, the principle of subinverse tree construction.

Lemma 1 Let R be a commutative ring with identity element. Let a, b, c ∈ R[x]
be univariate polynomials such that c = a b and a(0) = b(0) = 1 hold. Let d =
deg(c) + 1. Then, we have c(0) = 1 and Inverse(c, d) mod xd can be computed
from a and b as follows: Inverse(c, d) ≡ Inverse(a, d) ⋅ Inverse(b, d) mod xd.

Proposition 5 Let InvMi,j be the jth polynomial (from left to right) of the
subinverse tree at level i, where 0 < i < k and 0 ≤ j < 2k−i. We have:

InvMi,j ≡ Inverse(rev2i−1(Mi−1,2j),2i) ⋅ Inverse(rev2i−1(Mi−1,2j+1),2i) mod x2
i

where InvMi,j = Inverse(rev2i(Mi,j),2i) from Definition 1.

We observe that computing InvMi,j requires Inverse(rev2i−1(Mi−1,2j),2i) and
Inverse(rev2i−1(Mi−1,2j+1),2i). However, at level i − 1, the nodes InvMi−1,2j and
InvMi−1,2j+1 are Inverse(rev2i−1(Mi−1,2j),2i−1) and Inverse(rev2i−1(Mi−1,2j+1),2i−1)
respectively. To take advantage of this observation, we call OneStepNewtonItera-
tion(rev2i−1(Mi−1,2j), InvMi−1,2j , i−1) and OneStepNewtonIteration(rev2i−1(Mi−1,2j+1),
InvMi−1,2j+1, i − 1), see Algorithm 3, so as to obtain Inverse(Mi−1,2j ,2

i) and
Inverse(Mi−1,2j+1,2

i) respectively. Algorithm 3 performs a single iteration of
Newton iteration’s algorithm. Finally, we perform one truncated polynomial mul-
tiplication, as stated in Proposition 5, to obtain InvMi,j . We apply this technique
to compute all the polynomials of level i of the subinverse tree, for H +1 ≤ i ≤ k.

Since we do not store the leading coefficients of the polynomials in the sub-
product tree, our implementation relies on a modified version of Algorithm 3,
namely Algorithm 4.

Let f = rev2i(Mi,j) and g = InvMi,j . From Definition 1, we have fg ≡
1 modx2

i

. Note that deg(fg) ≤ 2i+1 − 1 holds. Let e∢ = −fg + 1. Thus e∢ is a
polynomial of degree at most 2i+1 − 1. Moreover, from the definition of a subin-

verse tree, we know its least significant 2i coefficients are zeros. Let e = e∢/x2i .



Algorithm 3: OneStepNewtonIteration(f, g, i)

Input: f, g ∈ R[x] such that f(0) = 1, where deg(g) =≤ 2i and fg ≡ 1 mod x2
i

.

Output: g∢ ∈ R[x] such that fg∢ ≡ 1 mod x2
i+1

.

g∢ = (2g − fg2) mod x2
i+1

;

return g∢;

So deg(e) ≤ 2i − 1. In Algorithm 3, we have g∢ ≡ g mod x2
i

. We can com-
pute g∢ from eg and g. The advantage of working with e instead of e∢ is that
the degree of e∢ is twice the degree of e. In Algorithm 4, we compute e as

e = −rev2i(Mi,j ⋅ rev2i−1(InvMi,j) − x2
i+1

−1).

Algorithm 4: EfficientOneStep(M∢

i,j ,InvMi,j , i)

Input: M∢

i,j =Mi,j − x2
i

, InvMi,j .

Output: g, such that g rev2i(Mi,j) ≡ 1 mod x2
i+1

.
a =rev2i−1(InvMi,j);
b = a − x2

i
−1;

c =convolution(a,M∢

i,j ,2
i);

d =rev2i(c + b);
e = −d;

h = e InvMi,j mod x2
i

;

g = hx2
i

+InvMi,j ;
return g;

The Middle product technique [6] is used in Algorithm 3 for computing c.
For a given i, with H < i ≤ k, and for 0 ≤ j < 2k−i, Algorithm 5 computes the

polynomial InvMi,j . Algorithm 5 calls Algorithm 4 twice to increase the accuracy
of InvMi−1,2j and InvMi−1,2j+1 to x2i. Then it multiplies those latter polynomials
and applies a mod operation. Algorithm 6 is the top level algorithm which creates
the subinverse tree InvMn using a bottom-up approach and calling Algorithm 5
for computing each node InvMi,j for H ≤ i ≤ k and 0 ≤ j < 2k−i.

Propositions 6 and 7 imply that for a fixed a H, the parallelism (ratio work
to span) is in Θ(n) which is satisfactory.

Proposition 6 For the subproduct tree Mn, with threshold H, the number of
arithmetic operations for constructing the subinverse tree InvMn using Algo-
rithm 6 is:

n
⎛
⎝

10 (3 log2(n)
2 + log2(n) − 3H2 − 7H − 4) + 16 42

H

3 ⋅ 2H + 2 − 1

3 ⋅ 2H −
2

2H−2H

⎞
⎠
.



Algorithm 5: InvPolyCompute(Mn,InvM, i, j)

Input: Mn and InvM are the subproduct tree and subinverse tree respectively.

Output: c such that c rev2i(Mi,j) ≡ 1 mod x2
i

.

M∢

i−1,2j =Mi−1,2j − x2
i−1

;

M∢

i−1,2j+1 =Mi−1,2j+1 − x2
i−1

;

a = EfficientOneStep(M∢

i−1,2j ,InvMi−1,2j , i − 1) ;

b = EfficientOneStep(M∢

i−1,2j+1,InvMi−1,2j+1, i − 1) ;

c = ab mod x2
i

;
return c;

Algorithm 6: SubinverseTree(Mn,H)

Input: Mn is the subproduct tree and H ∈ N.
Output: the subinverse tree InvMn

for j = 0 . . .2k−H − 1 do
InvMH,j = Inverse(MH,j ,deg(MH,j));

for i = (H + 1) . . . k do

for j = 0 . . .2k−i − 1 do
InvMi,j = InvPolyCompute(Mn,InvMi,j);

return InvMn;

Proposition 7 For the subproduct tree Mn with threshold H, the span and over-
head of constructing the subinverse tree InvMn by Algorithm 6 are spanInvMn

and
overheadInvMn respectively, where

spanInvMn
= 75

2
log2(n)

2 − 107

2
log2(n) + 2 ⋅ 4H + 4 ⋅ 2H − 75

2
H2 − 43

2
H + 14

and

overheadInvMn = U (90 log2(n)
2 − 255 log2(n) + 2H+1 − 90H2 + 75H + 166) .

5 Polynomial evaluation

Algorithm 2 solves the multi-point evaluation problem using subproduct tree
technique. To do so, we construct the subproduct tree Mn with threshold H
and the corresponding subinverse tree InvMn. Then, we run Algorithm 2, which
requires polynomial division. We implement both plain and fast division. For the
latter, we rely on the subinverse tree, as described in Section 4

Proposition 8 For the subproduct tree Mn with threshold H and its correspond-
ing subinverse tree InvMn, the number of arithmetic operations of Algorithm 2
is:

30n log2(n)
2 + 106n log2(n) + n2H+1 − 30nH2 − 46nH + 74n + 16

n

2H
− 8.



In [12], the algebraic complexity estimate for performing multi-point evalua-
tion (which only considers multiplication cost and ignores other coefficient oper-
ations) is 7M(n/2) log2(n) +O(M(n)). Considering for M(n) a multiplication
time like the one based on Cooley-Tukey’s algorithm (see Section 2) the running
time estimate of [12] becomes similar to the estimate of Proposition 8. Since our
primary goal is paralllelization, we view this comparison as satisfactory. Fur-
thermore, Propositions 8 and 9 imply that for a fixed a H, the parallelism (ratio
work to span) is in Θ(n) which is satisfactory as well.

Proposition 9 Given a subproduct tree Mn with threshold H and the corre-
sponding subinverse tree InvMn, span and overhead of Algorithm 2 are spaneva

and overheadeva respectively, where

spaneva = 15 log2(n)
2 + 23 log2(n) + 6 × 2H − 15H2 − 22H − 2

and
overheadeva = (36 log2(n)

2 + 3 log2(n) − 36H2 + 2H)U.

6 Polynomial interpolation

As recalled in Section 2, we rely on Lagrange interpolation. Our interpolation
procedure, inspired by the recursive algorithm in [5, Chapter 10], relies on Al-
gorithm 7 below, which proceeds in a bottom-up traversal fashion.

Algorithm 7: LinearCombination(Mn, c0, . . . , cn−1)

Input: Precomputed subproduct tree Mn for the evaluation points u0, . . . , un−1,
and c0, . . . , cn−1 ∈ K, with n = 2k for k ∈ N

Output: ∑
0≤i<n

cim/(x − ui) ∈ K[x], where m =∏0≤i<n(x − ui)

for j = 0 to n − 1 do
I0,j = cj ;

for i = 1 to k do

for j = 0 to 2k−i − 1 do
Ii,j =Mi−1,2jIi−1,2j+1 +Mi−1,2j+1Ii−1,2j ;

return Ik,0;

Algorithm 7 computes a binary tree such that the j-th node from the left
at level i is a polynomial Ii,j of degree 2i − 1, for 0 ≤ i ≤ k, 0 ≤ j ≤ 2k−i − 1.
The root Ik,0 is the desired polynomial. We use the same threshold H as for the
construction of the subproducttree tree:

1. for each node Ii,j where 1 ≤ i ≤ H and 0 ≤ j < 2k−i, we compute Ih,j using
plain multiplication.



2. for each node Ii,j , with H + 1 ≤ i ≤ k, we compute the Ii,j using FFT-based
multiplication.

In Theorem 10.10 in [5], the complexity estimate for the Linear Combination
is (M(n) +O(n)) log(n). In Proposition 10, we present a more precise estimate.

Proposition 10 For the subproduct tree Mn with threshold H, the number of
arithmetic operations Algorithm 7 is given below

15n log2(n)
2 + 20n log2(n) + 11n + 13nH − 15nH2 + n2H+1 − n21−H .

Proposition 11 For the subproduct tree Mn with threshold H and the corre-
sponding subinverse tree InvMn, the span and overhead of Algorithm 7 are spanlc

and overheadlc respectively, where

spanlc =
15

2
log2(n)

2 + 25

2
log2(n) + 2H+1 − 15

2
H2 − 21

2
H − 2

and
overheadlc = 18 log2(n)

2 + log2(n) − 18H2 + 4H.

Finally we use Algorithm 8 in which we first compute c0, . . . , cn−1, and then
we call Algorithm 7. Algorithm 8 is adapted from Algorithm 10.11 in [5].

Algorithm 8: FastInterpolation(u0, . . . , un−1, v0, . . . , vn−1)

Input: u0, . . . , un−1 ∈ K such that ui − uj is a unit for i ≠ j, and v0, . . . , vn−1 ∈ K,
and n = 2k for k ∈ N

Output: The unique polynomial P ∈ K[x] of degree less than n such that
P (ui) = vi for 0 ≤ i < n

Mn ∶= SubproductTree(u0, . . . , un−1);
Let m be the root of Mn;

Compute m∢(x) the derivative of m;
InvMn ∶= SubinverseTree(Mn,H);
TopDownTraverse(m∢(x), i, j,Mn, F );
return LinearCombination(Mn, v0/F [0], . . . , vn−1/F [n − 1]);

From the different propositions of this paper, it follows that, for a fixed H, the
parallelism (ratio work to span) of Algorithm 8 is in Θ(n) which is satisfactory.

7 Experimentation

The algorithms presented in this paper have been implemented in CUDA [16] as
part of the CUMODP library. The FFT-based algorithms of this library are de-
scribed [13,14] while those based on plain arithmetic are presented in [7]. As men-
tioned before, our FFT computations use Stockham algorithms which is known



Table 1: Effective memory bandwidth
(in GB/S). The input size is n = 2k.

k Evaluation Interpolation

11 0.2554 0.3403
12 0.5596 0.7054
13 1.2947 1.6182
14 2.5838 3.1445
15 5.2702 6.3464
16 9.6193 11.4143
17 16.4358 18.7800
18 22.6172 26.7590
19 32.3230 38.7674
20 40.4644 49.0012
21 46.7343 57.0978
22 50.8830 62.4516
23 52.9413 64.2464

Table 2: Multiplication timings (in
sec.) for polynomials of size 2k: CU-
MODP vs FLINT.

k CUMODP (s) FLINT (s) Ratio

11 0.0019 0.002 1.029
12 0.0032 0.003 0.917
13 0.0023 0.008 3.441
14 0.0039 0.013 3.346
15 0.0032 0.023 7.216
16 0.0065 0.045 6.942
17 0.0084 0.088 10.475
18 0.0122 0.227 18.468
19 0.0198 0.471 23.738
20 0.0266 1.011 27.581
21 0.0718 2.086 29.037
22 0.1451 4.419 30.454
23 0.3043 9.043 29.717

to be more appropriate for many-core GPUs thah the one of Cooley-Tukey. We
focus on radix-2 FFTs [13] and rely on an optimized version of Montgomery’s
trick [12] for modular multipoint [4]

We run our CUDA codes on a NVIDIA Tesla M2050 GPU card and we
run the other codes on the same machine equipped with an Intel Xeon X5650
CPU at 2.67GHz. Our test cases use random points or random polynomials with
coefficients in a prime field whose characteristic is a 30-bit prime number.

With Table 1 we evaluate the intrinsic quality of this implementation while
with Tables 2, 3 and Figures 1, 2 we provide comparative benchmark results.

One of the major factors of performance in GPU applications is of memory
bandwidth. For our implementation of multi-point evaluation and interpolation,
this factor is presented for various input sizes in the Table 1. The maximum
memory bandwidth for our GPU card is 148 GB/S. Since our code has a high
arithmetic intensity, we believe that our experimental results are promising,
while leaving room for improvement.

In Table 2, we compare two implementations of FFT-based polynomial multi-
plication. The first one is that the CUMODP library, presented [13]. The second
one is from the FLINT library [9]. From the experimental data, it is clear that,
our CUDA code for FFT-based multiplication outperforms its FLINT counter-
part only in size larger than 213. Thus, we need to implement another multipli-
cation algorithm to have better performance in low-to-average degrees. This is
work in progress.

In Table 3 we compare our implementation of multi-point polynomial evalua-
tion and polynomial interpolation with that of the FLINT library. These timings
are also available in the form of plots with Figures 1 and 2 where radix-2 log-
scales are used on both axes.



Fig. 1: Multi-point timings (using
radix-2 log-scales on both axes): CU-
MODP vs FLINT.
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Fig. 2: Interpolation timings (using
radix-2 log-scales on both axes): CU-
MODP vs FLINT.
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We found that our implementation does not perform well until degree 215.
In degree 223, we achieve a 21 times speedup factor w.r.t. FLINT, which is a
satisfactory result. Nevertheless, we believe that by improving our multiplication
routine for polynomials of degrees 29 to 213, we would have better performance
in both polynomial evaluation and interpolation in these middle ranges.

8 Conclusion

We discussed fast multi-point evaluation and interpolation of univariate polyno-
mials over a finite field on GPU architectures. We have combined algorithmic
techniques like subproduct trees, subinverse trees, plain polynomial arithmetic,
FFT-based polynomial arithmetic. Up to our knowledge, this is the first re-
port on a parallel implementation of subproduct tree techniques. The source
code of our algorithms is freely available in CUMODP-Library website http:

//cumodp.org/.
The experimental results are promising. Room for improvement, however,

still exists, in particular for efficiently multiplying polynomials in the range of
degrees from 29 to 213. Filling this gap is work in progress.
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