
Cache Friendly Sparse Matrix-vector Multiplication

[Extended Abstract]

Sardar Anisul Haque
University of Western Ontario

ON N6A 5B7, Canada
shaque4@csd.uwo.ca

Shahadat Hossain
University of Lethbridge
AB T1K 3M4, Canada

shahadat.hossain@uleth.ca

Marc Moreno Maza
University of Western Ontario

ON N6A 5B7, Canada
moreno@csd.uwo.ca

1. INTRODUCTION
Sparse matrix-vector multiplication or SpMXV is an im-

portant kernel in scientific computing. For example, the con-
jugate gradient method (CG) is an iterative linear system
solving process where multiplication of the coefficient ma-
trix A with a dense vector x is the main computational step
accounting for as much as 90% of the overall running time.
Though the total number of arithmetic operations (involving
nonzero entries only) to compute Ax is fixed, reducing the
probability of cache misses per operation is still a challeng-
ing area of research. This preprocessing is done once and
its cost is amortized by repeated multiplications. Comput-
ers that employ cache memory to improve the speed of data
access rely on reuse of data that are brought into the cache
memory. The challenge is to exploit data locality especially
for unstructured problems: modeling data locality in this
context is hard.

Pinar and Heath [8] propose column reordering to make
the nonzero entries in each row contiguous. However, column
reordering for arranging the nonzero entries in contiguous
location is NP-hard [8]. In a considerable volume of work
[2, 6, 8, 9, 10] on the performance of SpMXV on modern
processors, researchers propose optimization techniques such
as reordering of the columns or rows of A to reduce, for
example, indirect access and improving data locality, and
blocking for reducing memory load and loop overhead.

In this extended abstract, we present a new column order-
ing algorithm, based on the binary reflected Gray codes, that
runs in linear time with respect to the number of nonzero
entries. We analyze the cache complexity of SpMXV when
the sparse matrix is ordered by our technique. The results
from numerical experiments, with very large test matrices,
clearly demonstrate the performance gains rendered by our
proposed technique.

Categories and Subject Descriptors
F.2.1 [Numerical Algorithms and Problems]: Compu-
tations on matrices; G.1.3 [Numerical Linear Algebra]:

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PASCO 2010, 21–23 July 2010, Grenoble, France.
Copyright 2010 ACM 978-1-4503-0067-4/10/0007 ...$10.00.

Sparse, structured, and very large systems (direct and iter-
ative methods)

General Terms
Algorithms

Keywords
Sparse Matrix, Cache Complexity, Binary reflected Gray
Code

2. BINARY REFLECTED GRAY CODE OR-
DERING

We develop a new column ordering algorithm based on bi-
nary reflected Gray code (BRGC for short) for sparse matri-
ces. We will call it BRGC ordering. A p-bit binary reflected
Gray code [3] is a Gray code denoted by Gp and defined by
G1 = [0, 1] and

Gp = [0Gp−1
0 , . . . , 0Gp−1

2p−1−1
, 1Gp−1

2p−1−1
, . . . , 1Gp−1

0],

where Gpi is the i-th binary string of Gp. We call i the
rank of Gpi in Gp. For example the rank of 011 in G3 is
2. We consider each column of a m× n sparse matrix A as
a binary string of length m where each nonzero is treated
as 1. Hence, we have n binary strings of length m, say
{b0, b1, . . . , bn−1}. Let Π be the permutation of these strings
satisfying the following property. For any pair of indices i, j
with i 6= j, the rank of bΠ(j) in Gm is less than that of bΠ(i)

if and only if Π(i) < Π(j) holds. We refer to Abrgc as our
sparse matrix A after its columns have been permuted by Π.
One can check that the BRGC ordering sorts the columns of
A according to their ranks in Gm in descending order.

On average, our sorting algorithm proceeds in ρ (the av-
erage number of nonzeros in a column) successive phases,
which are described below. During the first phase, we sort
the columns by increasing position of their first nonzero en-
tries from above, creating equivalence classes where any two
columns are uncomparable for this ordering. During the
second phase, in each equivalence class, we sort the columns
by decreasing position of their second nonzero entries from
above, thus, refining the equivalence classes of the first phase
into new classes where again any two columns are uncom-
parable for this second ordering. More generally, during the
k-th phase, in each equivalence class obtained at the (k−1)-
th phase, we sort the columns by increasing position (resp.
decreasing position) of their k-th nonzero entry from above,
if k is odd, (resp. if k is even) thus, refining again the equiv-
alence classes. Continuing in this manner, we obtain the

desired sorted matrix. Observe that whenver an equivalence
class is a singleton, it no longer participates to the next sort-
ing phases.

Based on the above procedure and the counting sort algo-
rithm [4], the matrix Abrgc is obtained from A using O(τ) in-
teger comparisons (on average) and O(n+ τ) data-structure
updates, where τ is the total nonzero entries in A [7].

Let C be an equivalence class obtained after the `-th phase
and before the (` + 1)-th phase. We call nonzero stream at
level (`+1) in C the set of the (`+1)-th nonzero entries from
above in the columns of C. In the nonzero stream at level
(`+ 1) in C, a set of nonzeros having the same row index is
called a step.

3. CACHE COMPLEXITY
Consider the ideal cache [5] of Z words, with cache line of

L words. Assume that n is large enough such that the vector
x does not fit into the cache. During SpMXV, the total num-
ber of accesses in x is τ . These accesses are usually irregular.
Note that n of those accesses are cold misses. Each of the
other τ − n accesses creates a cache miss with probability
(n−Z/L)/n, since no spatial locality should be expected in
accessing x. Therefore, the total number of expected cache
misses in accessing x is computed as follows.

Q1 = Z/L+ (τ − Z/L)n−Z/L
n

.

We claim that Abrgc has at least nonzero streams at level
1 and 2. Indeed, each column has at least some nonze-
ros, which implies that Abrgc has nonzero stream at level
1. Observe that each step of the nonzero stream at level 1
is expected to have ρ entries. Moreover, we assume ρ ≥ 2.
This leads to the formation of the nonzero stream at level 2.
Therefore, the total number of nonzeros, in all the nonzero
streams of level 1 and 2, is 2n. Due to the LRU replace-
ment policy, one can expect that the n multiplications with
the nonzeros in the nonzero stream at level 1 incur the
same amount of cache misses as if x was scanned in a reg-
ular manner during SpMXV. Next, we observe that each
of the accesses in x for multipliying with nonzeros in the
nonzero streams at level 2 creates cache misses with proba-

bility n/ρ−Z/L
n/ρ

. More generally, each of the other access in x

creates cache miss with probability cn/ρ−Z/L
cn/ρ

, where, c is the

average number of nonzero streams under one step of first
level nonzero stream and 1 ≤ c ≤ ρ. Therefore, the expected
cache misses in accessing x is given by:

Q2 = n/L+ Z/L+ (n− Z/L)n/ρ−Z/L
n/ρ

+ (τ − 2n) cn/ρ−Z/L
cn/ρ

.

We apply the computer algebra system MAPLE to ana-
lyze the difference between Q1 and Q2. For the large matri-
ces of [1], the equality n = O(Z2) holds for level 2 cache and
our calculations show that we have, Q1 - Q2 ≈ n.

4. EXPERIMENTAL RESULTS
We selected 10 matrices from [1] for our experimentation.

The basic information for each test matrix is given in Ta-
ble 4. We run our experiments on an intel core 2 processor
Q6600. It has L2 cache of 8MB and the CPU frequency is
2.40 GHz [11]. We measure the CPU time (given in sec-
onds) for 1000 SpMXV s for three variants reported in Ta-
ble 4: with BRGC ordering, without any preprocessing and
after a random re-ordering of the columns. It shows that

Matrix name m n τ
fome21 67748 216350 465294

lp ken 18 105127 154699 358171
barrier2-10 115625 115625 3897557

rajat23 110355 110355 556938
hcircuit 105676 105676 513072
GL7d24 21074 105054 593892
GL7d17 1548650 955128 25978098
GL7d19 1911130 1955309 37322725

wikipedia-20051105 1634989 1634989 19753078
wikipedia-20070206 3566907 3566907 45030389

Table 1: Test matrices.

Matrix name BRGC no random
ordering ordering ordering

fome21 3.6 3.9 4.8
lp ken 18 2.7 3.1 3.3

barrier2-10 19.0 19.1 23.2
rajat23 3.0 3.0 3.4
hcircuit 2.6 2.5 2.9
GL7d24 3.0 3.2 3.1
GL7d17 484.6 625.0 580.7
GL7d19 784.6 799.0 899.2

wikipedia-20051105 258.9 321.0 411.5
wikipedia-20070206 731.5 859.0 1046.0

Table 2: CPU time for 1000 SpMXV s.

the cost of BRGC ordering is amortized by 1000 SpMXV s
for all of the matrices. Our experimental results also show
that the cost of BRGC ordering algorithm, as a preprocess-
ing step, can be much less than

√
n SpMXV s and thus can

improve the performances of CG-type algorithms in practice.
Note that other column ordering algorithms reported in [8]
and their performances are compared with BRGC ordering
algorithm in [6]. As reported in [6], BRGC algorithm out-
performs these other column ordering algorithms on three
different computer architectures.

5. REFERENCES
[1] T. Davis, Uni. of florida sparse matrix collection.

http://www.cise.ufl.edu/research/sparse/

[2] E. Im, Optimizing the performance of sparse matrix-vector
multiplication. PhD Thesis, Uni. of California Berkeley, 2000.

[3] D. Kreher and D. Stinson, Combinatorial Algorithms :Gen.,
Enum., and Search. CRC Press, 1999.

[4] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,
Introduction to Algorithms. 2nd Edition McGraw-Hill, 2001.

[5] M. Frigo, C. E. Leiserson, Prokop, Harald, Ramachandran, and
Sridhar, Cache-Oblivious algorithms. FOCS ’99: Proc. of the
40th Annual Symp. on Foundations of Comp. Sc., 1999

[6] S. Haque, A computational study of sparse matrix storage
scheme M.Sc. Thesis, Uni. of Lethbridge , 2008.

[7] S. Haque, and M. Moreno Maza, Algorithms for sorting large
objects, Tech. Report, Uni. of Western Ontario, 2010.

[8] A. Pinar and M. Heath, Improving performance of sparse
matrix-vector multiplication. In Supercomputing ’99: Proc. of
the 1999 ACM/IEEE conf. on Supercomputing (CDROM),
New York, USA, 1999.

[9] S. Toledo, Improving the memory-system performance of
sparse-matrix vector multiplication, In IBM J. Res. Dev., vol.
41, num. 6, 1997.

[10] R. Vuduc, Automatic performance tuning of sparse matrix
kernels. PhD Thesis, Uni. of California Berkeley, 2003.

[11] Intel Webpage, Intel core 2 quad processor q6600.
http://ark.intel.com/Product.aspx?id=29765

