
Cylindrical Algebraic Decomposition in the
RegularChains Library

Changbo Chen1 and Marc Moreno Maza2

1 Chongqing Key Laboratory of Automated Reasoning and Cognition, Chongqing
Institute of Green and Intelligent Technology, Chinese Academy of Sciences, China

changbo.chen@hotmail.com,
http://www.orcca.on.ca/∼cchen

2 ORCCA, University of Western Ontario, Canada
moreno@csd.uwo.ca,

http://www.csd.uwo.ca/∼moreno

Abstract. Cylindrical algebraic decomposition (CAD) is a fundamen-
tal tool in computational real algebraic geometry and has been imple-
mented in several software. While existing implementations are all based
on Collins’ projection-lifting scheme and its subsequent ameliorations,
the implementation of CAD in the RegularChains library is based on
triangular decomposition of polynomial systems and real root isolation of
regular chains. The function in the RegularChains library for computing
CAD is called CylindricalAlgebraicDecompose. In this paper, we illustrate
by examples the functionality, the underlying theory and algorithm, as
well the implementation techniques of CylindricalAlgebraicDecompose. An
application of it is also provided.

Keywords: Cylindrical algebraic decomposition, triangular decomposi-
tion, RegularChains

1 Introduction

Cylindrical Algebraic Decomposition (CAD) was introduced by Collins [6] for
solving the real quantifier elimination (QE) problem. A CAD is a partition of
the real space Rn into finitely many connected semi-algebraic subsets, called
cells, such that any two cells are cylindrically arranged, that is the projection of
them onto any low dimensional space are either disjoint or identical. Let F be a
set of polynomials with real number coefficients in n variables. A CAD is called
F -invariant if any polynomial of F is sign-invariant on any cell of the CAD.
The rich properties of CAD make it become a fundamental tool in studying real
algebraic geometry. Despite of the doubly exponential running time complexity
in the worst case, the practical performance of CAD has been improved by
many researchers [1]. Accompanying with these improvements, many software
have been implemented to compute CADs, among which the best known are
QEPCAD, Mathematica and Reduce.

Most of the implementations for computing CADs are based on the original
projection-lifting framework of Collins. In the projection phase, starting from an

2 Chen-Moreno Maza

input set F of polynomials in n variables, one applies a pre-defined projection
operator P to F and obtains a set P (F) of polynomials in n− 1 variables. This
process is recursively done for P (F) until a set of univariate polynomials are
computed. Let A be the set of all polynomials generated in such process. The
projection phase guarantees that the zero sets of polynomials in A naturally
defines a CAD of Rn. The work of the lifting phase is to compute an explicit
representation from such an implicitly defined CAD. In the base case, the real
zeros of univariate polynomials in A are isolated, which divides the real line into
disjoint open intervals. The real zeros and the intervals together form a CAD of
R1. Assume a CAD of Rn−1 is computed. For each cell C of it, one evaluates the
polynomials of A in n variables at a sample point of the cell and obtains a set
of univariate polynomials. Isolating the real roots of them allows one to deduce
all the cells of the CAD of Rn whose projection are C.

In [4], a different method for computing CADs was proposed. It first pro-
duces a cylindrical decomposition of the complex space (CCD) through the
computation of regular GCDs, and then refines the CCD into a CAD of the
real space by isolating real roots of univariate polynomials with real algebraic
number coefficients encoded by regular chains and isolating boxes. The efficiency
of it was greatly improved in [2], where the computation of CCD is replaced by
a new incremental algorithm. Both algorithms are based on triangular decom-
position of polynomial systems and real root isolation of regular chains. For
this reason, we call the CAD as computed in [4, 3] RC-CAD. The algorithm
of [4] was firstly implemented in the RegularChains library of Maple 14. The
implementation was revised in Maple 16 and has remained the same in the
subsequent versions of Maple. The algorithm of [3] was implemented in the
RegularChains library, but not shipped with Maple. Any update of the im-
plementation of both algorithms are now available through the RegularChains

library (http://www.regularchains.org).
The purpose of this paper is to lift the veil of the implementation of RC-CAD.

In the RegularChains library, the function for computing CCD and CAD are re-
spectively CylindricalDecompose and CylindricalAlgebraicDecompose. In Section 2,
we illustrate by examples how to use the two functions. In Section 3, we explain
the underlying theory and algorithms of RC-CAD. The technical challenges for
implementing the algorithms and our solutions are also discussed. Finally, in
Section 4, we report on an application of our software.

2 Functionality

A cylindrical decomposition of the complex space, or complex cylindrical decom-
position (CCD) is a partition of the complex space into cylindrically arranged
constructible sets, each of which is the zero set of a regular system. Figure 1
shows a CCD represented in a piecewise format. Here the variable order is x < y.
The “1’s” in the formula are placeholders having no meanings. Such format can
be interpreted as a tree shown in Figure 2, where each branch in the piecewise
format corresponds to a path of the tree. The constraints on a path of the tree

RC-CAD 3

Fig. 1. Compute complex cylindrical decomposition by CylindricalDecompose.

Fig. 2. A complex cylindrical tree.

form a regular system. Such a CCD is sign-invariant w.r.t. f := x2 +y2−1, that
is for a given path of the tree from the root to a leaf, either f vanishes at all
points of the path or f vanishes at none of the points of the path.

An F -sign invariant CAD is depicted in Figure 3. The CylindricalAlgebraicDe-
compose command supports several different input and output formats. The
input can be a list of polynomials, as shown in Figure 1, as well as a list of poly-
nomial constraints, as shown in Figure 5. The format ‘output’=‘cadcell’ allows
only true cells satisfying the input constraints are displayed. To get a sample
point of a CAD cell, the function SamplePoints can be called. Here no cost occurs
since sample points are computed along the computation of the CAD and are
stored in the type cad cell. A sample point is encoded by the type box, which
is represented by a regular chain and an isolation cube. Such a representation
allows one to easily test if the sign of a polynomial at the sample point by calling
the function SignAtBox.

Due to the intrinsic doubly exponential complexity of CAD, it is not un-
common that the number of CAD cells is numerous. To get a compact output
for the purpose of “solving” the input semi-algebraic system, the option ‘out-
put’=‘rootof’ can be used. In this case, the solver will try to merge the adjacent
CAD cells as much as possible in order to get a simple formula. See Figure 4 for
an example.

4 Chen-Moreno Maza

Fig. 3. Compute CAD by CylindricalAlgebraicDecompose.

Fig. 4. Solve semi-algebraic systems by CylindricalAlgebraicDecompose.

Fig. 5. Compute CAD of a semi-algebraic system.

RC-CAD 5

3 Underlying theory and technical contribution

In this section, we explain the algorithms and theory underlying RC-CAD as
well as a universe tree data structure for implementing RC-CAD. There are two
important ingredients in RC-CAD, namely a routine for computing CCD, and
a routine for turning a CCD into a CAD.

Two algorithms have been proposed for computing CCD. The first one was
proposed in [4]. It has two phases: InitialPartition and MakeCylindrical. Let F
be a set of polynomials in n variables. InitialPartition partitions Cn into a family
C of constructible sets, called cells, each of which is the zero set of a regular sys-
tem. Moreover, for a given cell C and any polynomial f ∈ F , either f vanishes at
all points of C or f vanishes at no points of C. The cells in the output of Initial-
Partition are not necessarily cylindrically arranged. The cylindricity is achieved
in a top-down fashion. The collection C of constructible sets is refined into a new
family D of disjoint constructible sets, such that the projection of any two cells
of D onto Cn−1 are either identically equal or disjoint. By making a recursive
call to MakeCylindrical on the projection of D on Cn−1, one finally deduces a
collection of cylindrically arranged cells. If the option ‘method’=‘recursive’ is
enabled, CylindricalDecompose will use such an algorithm.

A second one was proposed in [3]. Let F be a set of m polynomials in n
variables. The algorithm first builds an initial CCD C0, which consists of only
one cell Cn. It then pops a polynomial f1 from F and refines C0 into C1 such that
C1 is sign-invariant w.r.t. f1. If F is not empty, a new polynomial f2 is popped
and C1 is refined w.r.t. f2. This process is repeated until F gets empty. Making
a CCD sign-invariant w.r.t. a polynomial is reduced to making every cell of the
CCD sign-invariant w.r.t. a polynomial. This process has to preserve cylindricity,
which is achieved by a refinement operation called IntersectPath in [3].

Let’s illustrate this incremental algorithm by an example. Let F := {y2 −
x, x2 + y2 − 1}, where f1 = y2 − x, f2 = x2 + y2 − 1. The evolution of the
CCD tree during the computation is depicted by Figure 6. The first one is the
initial tree. In the second tree, the node “any x” splits into two nodes to make
the discriminant of f1 w.r.t. y sign-invariant. In the third tree, the nodes “any
y” split to make f1 sign-invariant. Moreover, when x = 0, f1 is replaced by its
squarefree part modulo x = 0. In the fourth tree, the node y 6= 0 splits to make
f2 sign-invariant. In the fifth tree, the node x 6= 0 splits to make the resultant
of f1 and f2 w.r.t. y sign-invariant. In the sixth tree, the node x(x2 +x− 1) 6= 0
splits to make the discriminant of f2 w.r.t. y sign-invariant. Finally the nodes
f1 6= 0 splits to make f2 sign-invariant.

The operation turning a CCD into a CAD is called MakeSemiAlgebraic. It
is implemented in a recursive manner. For the base case n = 1, it collects all
the polynomials in the equational nodes of the CCD tree, does univariate real
root isolation, and picks sample points. Let Cn−1 be a CAD of Rn−1 derived
from a CCD T of Cn−1. Let C be a cell of Cn−1 derived from a cell D of
T . Let s be a sample point of C. Let P be the set of polynomials appearing
in the equational children of D. To compute the cells of a CAD of Rn whose
projection onto Rn−1 is C (these cells form a stack over C), one isolates the real

6 Chen-Moreno Maza

Fig. 6. The process of computing a CCD.

 0

1 2

3 4 5 6

 0

2

3 4 5 6

7 8

0

7 8 2

9 12 5 6

Split Deep Copy

10 11

Fig. 7. The universe tree and the Split operation.

 0

1

4

 0

4

7 8

4

 0

10 12

7 8

Fig. 8. A sub-tree evolves with the universe tree.

RC-CAD 7

roots of univariate polynomials p̃ := p([x1, . . . , xn−1] = s, xn), p ∈ P . Here the
substitution is carried with interval arithmetic since the coordinate of s may be
irrational real algebraic numbers. As a result, the coefficients of the univariate
polynomials p̃ are approximated by intervals whose width can be reduced to
arbitrarily small. If the width of the intervals are sufficiently small, the real roots
of p̃ can be deduced from its sleeve polynomials, which are univariate polynomials
with rational number coefficients, thanks to the fact that s is encoded by a
regular chain and a box [8, 9, 5].

The data structure supporting the implementations of CCD and CAD is a
universe tree [3]. It is a tree data structure equipped with a Split operation
(7). The Split operation is frequently used in the incremental algorithm [3]
for computed CCDs, where the nodes in a complex cylindrical tree are split to
make new added or generated polynomials sign-invariant and maintain the tree
cylindrical. This process is illustrated by Figure 6. As a result, the universe tree
is always kept to be updated. Suppose now we’d like to do several operations
on a sub-tree. In order to maintain data consistency, the sub-tree has to been
updated according to the universe. Note that it is fine to only update the node to
be immediately worked on. The update of the sub-tree is illustrated by Figure 8.

4 Application

In this section, we show the application of RC-CAD on solving two challenges [7].

Challenge 1 Demonstrate automatically the truth of Formula 1 over reals.

∀x1∀x2∀y1∀y2 (x2
1 + y21 > 1 ∧ x2

2 + y22 > 1 ∧ x1 + x1

x2
1+y2

1
= x2 + x2

x2
2+y2

2
∧

y1 − y1

x2
1+y2

1
= y2 − y2

x2
2+y2

2
=⇒ (x1 = x2 ∧ y1 = y2))

(1)

Challenge 2 Demonstrate automatically the truth of Formula 2 over reals.

∀x1∀x2∀y1∀y2 (y1 > 0 ∧ y2 > 0 ∧ x1 + x1

x2
1+y2

1
= x2 + x2

x2
2+y2

2
∧

y1 − y1

x2
1+y2

1
= y2 − y2

x2
2+y2

2
=⇒ (x1 = x2 ∧ y1 = y2))

(2)

The first challenge is solved by RC-CAD within one minute on a laptop
(Intel i7, 8Gb RAM, Ubuntu), as shown by Figure 9. The second challenge can
be solved in a similar way in about 20 seconds, which is not shown here limited to
space. Both answers are true. To achieve this, a universal quantifier elimination
problem is converted to an existential one using the following equivalence:

∀x(A =⇒ (B ∧ C)) iff ¬∃x¬(A =⇒ (B ∧ C)) iff ¬∃x ((A ∧ ¬B) ∨ (A ∧ ¬C))

As a result, Formula 1 is true if and only if none of the two semi-algebraic sys-
tems sys1 and sys2 in Figure 9 has solutions. To solve a semi-algebraic system,
the command CylindricalAlgebraicDecompose is called with three options. The
option ‘precondition’=‘TD’ allows to precondition the input system by means
of triangular decomposition. The option ‘partial’=‘true’ uses partial lifting.

Acknowledgements Supported by NSFC (11301524) and CSTC (cstc2013jjys0002).

8 Chen-Moreno Maza

Fig. 9. Use CAD to solve Problem Joukowski-a.

References

1. B. Caviness and J. Johnson, editors. Quantifier Elimination and Cylindrical Al-
gebraic Decomposition, Texts and Monographs in Symbolic Computation. Springer,
1998.

2. C. Chen and M. Moreno Maza. Algorithms for computing triangular decomposition
of polynomial systems. Journal of Symbolic Computation, 47(6):610 – 642, 2012.

3. C. Chen and M. Moreno Maza. An incremental algorithm for computing cylindrical
algebraic decompositions. Proc. ASCM ’12, Oct. 2012.

4. C. Chen, M. Moreno Maza, B. Xia, and L. Yang. Computing cylindrical algebraic
decomposition via triangular decomposition. In ISSAC’09, pages 95–102, 2009.

5. J. S. Cheng, X. S. Gao, and C. K. Yap. Complete numerical isolation of real zeros
in zero-dimensional triangular systems. In ISSAC, pages 92–99, 2007.

6. G. E. Collins. Quantifier elimination for real closed fields by cylindrical algebraic
decomposition. Springer Lecture Notes in Computer Science, 33:515–532, 1975.

7. J. H. Davenport, R. J. Bradford, M. England, and D. J. Wilson. Program verification
in the presence of complex numbers, functions with branch cuts etc. In SYNASC,
pages 83–88, 2012.

8. Z. Y. Lu, B. He, Y. Luo, and L. Pan. An algorithm of real root isolation for
polynomial systems. In D. M. Wang and L. Zhi, editors, Proceedings of Symbolic
Numeric Computation 2005, pages 94–107, 2005.

9. B. Xia and T. Zhang. Real solution isolation using interval arithmetic. Comput.
Math. Appl., 52(6-7):853–860, 2006.

