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Abstract. Quantifier elimination (QE) over real closed fields has found
numerous applications. Cylindrical algebraic decomposition (CAD) is
one of the main tools for handling quantifier elimination of nonlinear
input formulas. Despite of its worst case doubly exponential complexity,
CAD-based quantifier elimination remains interesting for handling gen-
eral quantified formulas and producing simple quantifier-free formulas.

In this paper, we report on the implementation of a QE procedure, called
QuantifierElimination, based on the CAD implementations in the Regu-
larChains library. This command supports both standard quantifier-free
formula and extended Tarski formula in the output. The use of the QE
procedure is illustrated by solving examples from different applications.
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1 Introduction

In the 1930’s, A. Tarski [11] proved that quantifier elimination over the reals is
possible and provided the first algorithm for real quantifier elimination, although
the complexity of his algorithm is not even elementary recursive. In 1975, G. E.
Collins [7] invented cylindrical algebraic decomposition, which opens the door for
solving quantifier elimination practically. The worst case complexity for solving
QE by means of CAD is doubly exponential in the number of variables. In
the 1990’s, QE algorithms, whose worst complexity are doubly exponential in
the number of alternative quantifier blocks instead of variables, emerged [1].
Although QE based on CAD is not favorable in terms of complexity, it remains
a practical tool for solving general QE problems and obtaining simple quantifier
free formula.

Many authors have improved the practical efficiency of CAD based on the
original projection-lifting scheme proposed by Collins. In [6], with B. Xia and L.
Yang, we introduced an alternative way of computing CADs based on triangular
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decompositions. In this new method, one first computes a complex cylindrical
decomposition (CCD), which partitions the complex space into cylindrically ar-
ranged cells, each of which is the complex zero set of a regular system. In a
second stage, the real connected components of each regular system are com-
puted, which all together form a CAD of the real space. A CAD computed in
this way is called an RC-CAD. The efficiency of RC-CAD was substantially im-
proved in [5], where an incremental algorithm was proposed to compute CCDs.
Moreover, in the same paper, a systematic way for making use of equational
constraints is presented.

In [4], an RC-CAD based quantifier elimination algorithm was proposed.
A preliminary implementation of it in the RegularChains library is available
through the function QuantifierElimination. The goal of this paper is to present
the implementation details of such an algorithm. Several important optimiza-
tions are also discussed. The paper is organized as follows. In Section 2, we
illustrate the user interface of QuantifierElimination by some simple examples. In
Section 3, we present some non-trivial applications of it. In Section 4, we explain
the underlying theory and algorithm as well as some optimizations realized in
the implementation.

2 Functionality

In this section, we explain the usage of QuantifierElimination by some simple
examples.

In Figure 1, the user interface of QuantifierElimination is illustrated by the
famous Davenport-Heintz example.

Solve the Davenport-Heintz problem by QuantifierElimination.

Jce,Vha ((a=dab=c¢v(ia=cAb=1))=ar2 =bh,

> f 'z &E([c]), &A([b, a]), ((a=d) &and (b=c)) &or
((a=c) &and (b=1)) &implies (ar2=b);
fi=&E([c]), &A([ b, a]), a= d&and b= c &or a= c &nd b =1 &implies a
=b
‘> out := QuantifierElimination(f);
out:i=d—1=0&ord+1=0

Fig. 1. The user interface of QuantifierElimination.

The user interface of QuantifierElimination is implemented on top of the Logic
package of MAPLE. This package supports usual logical operators, such as A,
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V, -, = , <= , and represent them respectively by &and, &or, &not,
&implies, &iff. There is also a function called Normalize, which can convert a
given logical formula into its disjunctive normal form or conjunctive normal
form. However, the quantifiers are missing in the Logic package. We create the
symbol &FE and &A to represent respectively the existential quantifier 3 and
the universal quantifier V. To use them, the quantified variables have to been
put in a list, as shown in Figure 1. Note that all operators in the Logic package
have the same precedence. Parentheses should be used to correctly specify the
precedence.

In Figure 1, the order of variables is not specified. In such case, QuantifierE-
limination calls the function SuggestVariableOrder of RegularChains library to
pick a “good” order by some heuristic strategy. It is also possible for the user to
choose her favorable order, as shown in Figure 2, where the variables supplied
to the function PolynomialRing are in descending order.

> R := PolynomialRing([x, a, b, cl);
f 1= & ([x]), a*xA2+b¥x+c=0;
out := QuantifierElimination(f, R);
R := pobhmomial ring
N [:=&E([x]),x" a+xb+c=0

0L1I:=((4 acfb2<0&0r4acfb2=0&anda<0) &ordac— b

—0&and0 < a) &r (4 ac— »* =0 &nd a=0) &nd c=0

Fig. 2. The default output of QuantifierElimination is quantifier free formula.

The default output of QuantifierElimination is a quantifier free formula formed
by polynomial constraints and logical connectives, which is the same as the de-
fault output of QEPCAD. Such formulas are called Tarski formulas. An alterna-
tive output format, called extended Tarski formula, is also available, when the
option ‘output’=‘rootof’ is specified. An extended Tarski formula extends Tarski
formula by allowing indexed roots of polynomials to appear. This is illustrated
by Figure 3 and Figure 4. Such an output format is the same as the default
output of Mathematica.

The users who are familiar with MAPLE’s RootOf may be surprised to see
the real index there. Indeed, it is a new feature we added to Rootof, which is
currently supported by the evalf function of MAPLE as shown in Figure 4.

3 Application

In this section, we present how QuantifierElimination is applied to solve several
applications.
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> f := & ([x]), a*xA2+b*x+c=0;
out := QuantifierElimination(f, 'output'="rootof');

b fi= &E([x]), ax’ + bx+c=0

2
out = ([a<0&and}llzl£ c&or a=0&and b < o} &or (a=0 &and b

2
=0) &and c=o} &or a=0 &and 0 < b] &or 0 < a&and ¢ < %

»-lk‘»—‘

Fig. 3. The output of QuantifierElimination in extended Tarski formula.

The first application is on the verification and synthesis of switched and
hybrid dynamical systems [10]. A common problem studied in this field is to
determine if a system remains in the safe state if it starts in an initial safe state.
A typical approach to solve this problem is to find a certificate, or an invariant
set, such that the following are satisfied simultaneously:

— the initial states satisfy the invariant set
— any states that satisfy the invariant set are safe
— the system dynamics cannot force the system to leave the invariant set

Finding such a certificate can be casted into a real quantifier elimination problem.

In Figure 5, we show how to use QuantifierElimination to solve the quantifier
elimination problem casted from an 1-D robot model [10], where the details
of the casting are explained. This problem was originally solved in [10] by a
combination of Reduce and QEPCAD.

The second application is on computing control Lyapunov function. Suppose
we are given a dynamical system & = f(z,u), where z € R"” and v € R are
respectively the state variables and the control input implicitly depending on t.

Definition 1 A function V(z) : R* — R is called a control Lyapunov function
of the dynamical system & = f(x,u) if the following are satisfied:

— V(x) is positive definite, that is V(0) =0 and Vx # 0, V(x) > 0.
— V(0) =0 and Vz # 0, Ju, such that V < 0, where V. =VV(z)- f(x,u).
— V is radically unbounded, that is ||x|| — oo implies that V — oo.

Suppose one wants to know if there exists a control Lyapunov function of a
given template V (a,x), where a are parameters. The equivalent QE problem is:

(Vz,Fu)(x #£0) = (V>0AVV(x)- f(z,u) <0).

If one also wants to find out if there exists u of a given template g(b, z), then
the equivalent QE problem is:

(Vz,3u) (u=gb,2)AN(z#0 = (V>0AVV(2)- f(z,u) <0))).
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> f := &E([y]), yA2+xA2=2;
out := QuantifierElimination(f, output=rootof);
fi= &E([Y]), X" +y* =2
. out’= -2 <x&mndx<2
_> f := &([y]), yM+xA4=2;
out := QuantifierElimination(f, output=rootof);
fi= &E([y]), x' +y* =2
out:= RootOf(_Z4 — 2, index = reall) <x&ndx< RootOf(_Z4 — 2, index

= realz)

> eval f(op(1l, out)); evalf(op(2, out));
-1.189207115 < x

x < 1.189207115

Fig. 4. Solve QuantifierElimination in extended Tarski formula.

Let’s illustrate this application by a bivariate dynamical system.

doy —Tr1+u

at = T Ty
We aim to find control Lyapunov function of the form V := ale +a2x§ and con-
trol input of the form u := byz1+boxs. Figure 6 shows how to call QuantifierElimi-
nation to find parameters a1, as, b1, by such that control Lyapunov function exists.
The computation takes several seconds. To verify the result, let a; = as = by =1
and by = 0, we obtain u = @y, V = 2? + 23 and V = —227 — 423. Clearly V is a
control Lyapunov function.

4 Underlying theory

Let PF := (Qr4+1Tk+1,- - - Qnn)FF(21,...,2,), where F'F is a logical formula
formed by polynomial constraints with real number coefficients and logical con-
nectives and each @;, k+1 <1 < n, is an existential or universal quantifier. The
problem of quantifier elimination looks for an equivalent quantifier free formula
SF involving only the free variables z1,--- ,z. Let F' be the set of polynomials
appearing in F'F.

The QE algorithm based on RC-CAD consists of the following steps:

1. Compute an F-sign invariant CCD of C", that is a CCD such that above
any given cell of it, each polynomial in F' either vanishes at all points of the
cell or no points of the cell.
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>phil := ( (74 <= x ) &nd ( x <= 76 ) &Qnd (v = 0 )
&implies ( -vA2 - a * (x-75)A2 + b >=0) ):

>phiR = ( ( -vA2 - a * (x-75)A2 + b >=0)
&implies (( 80 >= x ) &nd ( x >= 70 )) ):

> phi3 = ( ( -vA2 - a* (x-75)A2 + b =0)
&implies (( -2% - a * 2 % (x-75)% v >=0) &or ( 2% - a
¥ 2% (x-75)% v >=0)) ):

> phi := phil &and phi2 &and phi3:

> t0 := time():
psi := QuantifierElimination(&A([x,v]),phi,output=rootof);
tl := time() - tO;

yi=((0<a&mnda<l)&nda<h)&ndb=< min(%, 25 a]
ti:=15.094

Fig. 5. Solve a QE problem related to 1-D robot model

2. Produce an F-invariant CAD of R" from the CCD by real root isolation.

3. For each cell ¢ of the CAD, evaluate F'F' at a sample point of ¢ and attach
the resulting truth value to c.

4. Propagate the truth value according to the quantifiers until each cell in the
the induced CAD of R* is attached with a truth value, see Figure 7.

5. Each true cell has a defining extended Tarski formula representation. If only
extended Tarski formula output is required, then the disjunction of the rep-
resentation of all true cells, with possible simplification, gives the solution
formula SF. If Tarski formula is required, one tests if the signs of polynomi-
als in the CCD are enough to distinguish true and false cells of the CAD. If
yes, a representation of the true cells by the signs of these polynomials gives
SF'. If no, the CCD is refined and the algorithm resumes from Step 2.

It was proved in [4] that the above process terminates in finitely many steps.

We explain now briefly a few optimizations that have been implemented in
QuantifierElimination. Let PF := (Qx+1Tk+1,- - -, Qnn)FF(z1,...,x,). If FF is
a conjunctive formula having equational constraints, then truth-invariant CCDs
and CADs are computed instead of sign-invariant ones using techniques proposed
in [5]. If F'F is in disjunctive normal form and has equational constraints, then
truth table invariant CCDs and CADs are computed using algorithm presented
in [2]. If there exists m, k+1 < m < n, such that Q,, =--- = Q,, =V, then PF
is converted to its equivalent form

(Qr+1Thy1, -+ s Quo1Tim—1, 73T, Ig1, - -, I20) " FF (21, ..., 2p).
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[> f1 1= -x_1+u: £2 := -x_1-x_2"3:
V i= a_1¥x_1"2+a_2*x_2"2;
Vt := diff(V, x_1)*fl + diff(V, x_2)*f2;
Vi=x 2 az+x1"al

Vi=2alx1(u—x1)+2a2x2 (—x_23 — x_l)

> QuantifierElimination{ &A{[x 1,x 2]), &E([u]), (x 1<>0)
&or (x_2<>0) &implies ((V>0) &and (Vt<0)) );
O<al&ndd<al

> QuantifierElimination( &A([x 1, x_21), &E([ul), (u=b_1*
X_1+b_2*x 2) &and (a_1>0) &and (a_2>0) &and ((x_1<>0) &or
(x_2<>0) &implies ((Vt<0))) );
((h2al—a2=0&nd0<al)&nd0<al &ndbl<l

Fig. 6. Compute control Layapunov function.

This trick is particular useful if FF is of the foorm A = B, where A has
equational constraints, as —=F'F is equivalent to A A =B, which can benefit from
the techniques for making use of equational constraints in [5, 2].

We have also implemented some simple partial lifting techniques when F'F' is
a conjunctive formula. Exploiting systematically the partial lifting techniques as
in [8] is working in progress. In [4], some simplification strategies for the Tarski
formula output of QuantifierElimination was proposed. The simplification remains
to be enhanced by integrating techniques as in [9, 3]. For the extended Tarski
formula, a better technique for merging true cells is working in progress.
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