
Efficient Evaluation of Large Polynomials

Charles E. Leiserson1, Liyun Li2, Marc Moreno Maza2, and Yuzhen Xie2

1 CSAIL, Massachussets Institute of Technology, Cambridge MA, USA
2 Department of Computer Science, University of Western Ontario, London ON, Canada

Abstract. Minimizing the evaluation cost of a polynomial expression is a funda-
mental problem in computer science. We propose tools that, for a polynomial P
given as the sum of its terms, compute a representation that permits a more effi-
cient evaluation. Our algorithm runs in d(nt)O(1) bit operations plus dtO(1) oper-
ations in the base field where d, n and t are the total degree, number of variables
and number of terms of P . Our experimental results show that our approach can
handle much larger polynomials than other available software solutions. More-
over, our computed representation reduce the evaluation cost of P substantially.

Keywords: Multivariate polynomial evaluation, code optimization, Cilk++.

1 Introduction

If polynomials and matrices are the fundamental mathematical entities on which com-
puter algebra algorithms operate, expression trees are the common data type that com-
puter algebra systems use for all their symbolic objects. In MAPLE, by means of
common subexpression elimination, an expression tree can be encoded as a directed
acyclic graph (DAG) which can then be turned into a straight-line program (SLP), if
required by the user. These two data-structures are well adapted when a polynomial (or
a matrix depending on some variables) needs to be regarded as a function and evaluated
at points which are not known in advance and whose coordinates may contain “sym-
bolic expressions”. This is a fundamental technique, for instance in the Hensel-Newton
lifting techniques [6] which are used in many places in scientific computing.

In this work, we study and develop tools for manipulating polynomials as DAGs.
The main goal is to be able to compute with polynomials that are far too large for being
manipulated using standard encodings (such as lists of terms) and thus where the only
hope is to represent them as DAGs. Our main tool is an algorithm that, for a polynomial
P given as the sum its terms, computes a DAG representation which permits to evaluate
P more efficiently in terms of work, data locality and parallelism. After introducing the
related concepts in Section 2, this algorithm is presented in Section 3.

The initial motivation of this study arose from the following problem. Consider
a = amxm + · · · + a1x + a0 and b = bnxn + · · · + b1x + b0 two generic uni-
variate polynomials of respective positive degrees m and n. Let R(a, b) be the resultant
of a and b. By generic polynomials, we mean here that am, . . . , a1, a0, bn, . . . , b1, b0

are independent symbols. Suppose that am, . . . , a1, a0, bn, . . . , b1, b0 are substituted to
polynomials αm, . . . , α1, α0, βn, . . . , β1, β0 in some other variables c1, . . . , cp. Let us
denote by R(α, β) the “specialized” resultant. If these αi’s and βj’s are large, then

K. Fukuda et al. (Eds.): ICMS 2010, LNCS 6327, pp. 342–353, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Efficient Evaluation of Large Polynomials 343

computing R(α, β) as a polynomial in c1, . . . , cp, expressed as the sum of its terms,
may become practically impossible. However, if R(a, b) was originally computed as a
DAG with am, . . . , a1, a0, bn, . . . , b1, b0 as input and if the αi’s and βj’s are also given
as DAGs with c1, . . . , cp as input, then one may still be able to manipulate R(α, β).

The techniques presented in this work do not make any assumptions about the input
polynomials and, thus, they are not specific to resultant of generic polynomials. We
simply use this example as an illustrative well-known problem in computer algebra.

Given an input polynomial expression, there are a number of approaches focusing on
minimizing its size. Conventional common subexpression elimination techniques are
typical methods to optimize an expression. However, as general-purpose applications,
they are not suited for optimizing large polynomial expressions. In particular, they do
not take full advantage of the algebraic properties of polynomials. Some researchers
have developed special methods for making use of algebraic factorization in eliminat-
ing common subexpressions [1,7] but this is still not sufficient for minimizing the size
of a polynomial expression. Indeed, such a polynomial may be irreducible. One eco-
nomic and popular approach to reduce the size of polynomial expressions and facilitate
their evaluation is the use of Horner’s rule. This high-school trick for univariate poly-
nomials has been extended to multivariate polynomials via different schemes [8,9,3,4].
However, it is difficult to compare these extensions and obtain an optimal scheme from
any of them. Indeed, they all rely on selecting an appropriate ordering of the variables.
Unfortunately, there are n! possible orderings for n variables.

As shown in Section 4, our algorithm runs in polynomial time w.r.t. the number of
variables, total degree and number of terms of the input polynomial expression. We have
implemented our algorithm in the Cilk++ concurrency platform. Our experimental
results reported in Section 5 illustrate the effectiveness of our approach compared to
other available software tools. For 2 ≤ n, m ≤ 7, we have applied our techniques to the
resultant R(a, b) defined above. For (n, m) = (7, 6), our optimized DAG representation
can be evaluated sequentially 10 times faster than the input DAG representation. For
that problem, none of code optimization software tools that we have tried produces a
satisfactory result.

2 Syntactic Decomposition of a Polynomial

Let K be a field and let x1 > · · · > xn be n ordered variables, with n ≥ 1. Define X =
{x1, . . . , xn}. We denote by K[X] the ring of polynomials with coefficients in K and
with variables in X . For a non-zero polynomial f ∈ K[X], the set of its monomials is
mons(f), thus f writes f =

∑
m∈mons(f) cm m, where, for all m ∈ mons(f), cm ∈ K

is the coefficient of f w.r.t. m. The set terms(f) = {cm m | m ∈ mons(f)} is the set
of the terms of f . We use �terms(f) to denote the number of terms in f .

Syntactic operations. Let g, h ∈ K[X]. We say that gh is a syntactic product, and we
write g�h, whenever �terms(g h) = �terms(g)·�terms(h) holds, that is, if no grouping
of terms occurs when multiplying g and h. Similarly, we say that g + h (resp. g − h)
is a syntactic sum (resp. syntactic difference), written g ⊕ h (resp. g � h), if we have
�terms(g+h) = �terms(g)+�terms(h) (resp. �terms(g−h) = �terms(g)+�terms(h)).

344 C.E. Leiserson et al.

Syntactic factorization. For non-constant f, g, h ∈ K[X], we say that g h is a syntactic
factorization of f if f = g � h holds. A syntactic factorization is said trivial if each
factor is a single term. For a set of monomials M ⊂ K[X] we say that g h is a syntactic
factorization of f with respect to M if f = g � h and mons(g) ⊆ M both hold.

Evaluation cost. Assume that f ∈ K[X] is non-constant. We call evaluation cost of f ,
denoted by cost(f), the minimum number of arithmetic operations necessary to eval-
uate f when x1, . . . , xn are replaced by actual values from K (or an extension field
of K). For a constant f we define cost(f) = 0. Proposition 1 gives an obvious upper
bound for cost(f). The proof, which is routine, is not reported here.

Proposition 1. Let f, g, h ∈ K[X] be non-constant polynomials with total degrees
df , dg, dh and numbers of terms tf , tg, th. Then, we have cost(f) ≤ tf (df + 1) − 1.
Moreover, if g � h is a nontrivial syntactic factorization of f , then we have:

min(tg, th)
2

(1 + cost(g) + cost(h)) ≤ tf (df + 1) − 1. (1)

Proposition 1 yields the following remark. Suppose that f is given in expanded form,
that is, as the sum of its terms. Evaluating f , when x1, . . . , xn are replaced by actual
values k1, . . . , kn ∈ K, amounts then to at most tf (df + 1) − 1 arithmetic operations
in K. Assume g � h is a syntactic factorization of f . Then evaluating both g and h at
k1, . . . , kn may provide a speedup factor in the order of min(tg, th)/2. This observation
motivates the introduction of the notions introduced in this section.

Syntactic decomposition. Let T be a binary tree whose internal nodes are the operators
+,−,× and whose leaves belong to K ∪ X . Let pT be the polynomial represented by
T . We say that T is a syntactic decomposition of pT if either (1), (2) or (3) holds:

(1) T consists of a single node which is pT ,
(2) if T has root + (resp. −) with left subtree T� and right subtree Tr then we have:

(a) T�, Tr are syntactic decompositions of two polynomials pT�
, pTr ∈ K[X],

(b) pT = pT�
⊕ pTr (resp. pT = pT�

� pTr) holds,
(3) if T has root ×, with left subtree T� and right subtree Tr then we have:

(a) T�, Tr are syntactic decompositions of two polynomials pT�
, pTr ∈ K[X],

(b) pT = pT�
� pTr holds.

We shall describe an algorithm that computes a syntactic decomposition of a polyno-
mial. The design of this algorithm is guided by our objective of processing polynomials
with many terms. Before presenting this algorithm, we make a few observations.

First, suppose that f admits a syntactic factorization f = g � h. Suppose also that
the monomials of g and h are known, but not their coefficients. Then, one can easily
deduce the coefficients of both g and h, see Proposition 3 hereafter.

Secondly, suppose that f admits a syntactic factorization g h while nothing is known
about g and h, except their numbers of terms. Then, one can set up a system of polyno-
mial equations to compute the terms of g and h. For instance with tf = 4 and tg = th =
2, let f = M +N +P +Q, g = X +Y , h = Z +T . Up to renaming the terms of f , the
following system must have a solution: XZ = M, XT = P, Y Z = N and Y T = Q.

Efficient Evaluation of Large Polynomials 345

This implies that M/P = N/Q holds. Then, one can check that (g, g′, M/g, N/g′) is
a solution for (X, Y, Z, T), where g = gcd(M, P) and g′ = gcd(N, Q).

Thirdly, suppose that f admits a syntactic factorization f = g � h while nothing is
known about g, h including numbers of terms. In the worst case, all integer pairs (tg, th)
satisfying tgth = tf need to be considered, leading to an algorithm which is exponential
in tf . This approach is too costly for our targeted large polynomials. Finally, in practice,
we do not know whether f admits a syntactic factorization or not. Traversing every
subset of terms(f) to test this property would lead to another combinatorial explosion.

3 The Hypergraph Method

Based on the previous observations, we develop the following strategy. Given a set of
monomials M, which we call base monomial set, we look for a polynomial p such that
terms(p) ⊆ terms(f), and p admits a syntactic factorization gh w.r.t M. Replacing f
by f − p and repeating this construction would eventually produce a partial syntactic
factorization of f , as defined below. The algorithm ParSynFactorization(f,M) states
this strategy formally. We will discuss the choice and computation of the set M at the
end of this section. The key idea of Algorithm ParSynFactorization is to consider a
hypergraph HG(f,M) which detects “candidate syntactic factorizations”.

Partial syntactic factorization. A set of pairs {(g1, h1), (g2, h2), . . . , (ge, he)} of poly-
nomials and a polynomial r in K[x1, . . . , xn] is a partial syntactic factorization of f
w.r.t. M if the following conditions hold:

1. ∀i = 1 · · · e, mons(gi) ⊆ M,
2. no monomials in M divides a monomial of r,
3. f = (g1 � h1) ⊕ (g2 � h2) ⊕ · · · ⊕ (ge � he) ⊕ r holds.

Assume that the above conditions hold. We say this partial syntactic factorization is
trivial if each gi�hi is a trivial syntactic factorization. Observe that all gi for 1 ≤ i ≤ e
and r do not admit any nontrivial partial syntactic factorization w.r.t. M, whereas it is
possible that one of hi’s admits a nontrivial partial syntactic factorization.

Hypergraph HG(f,M). Given a polynomial f and a set of monomials M, we construct
a hypergraph HG(f,M) as follows. Its vertex set is V = M and its hyperedge set E
consists of all nonempty sets Eq := {m ∈ M | m q ∈ mons(f)}, for an arbitrary
monomial q. Observe that if a term of f is not the multiple of any monomials in M,
then it is not involved in the construction of HG(f,M). We call such a term isolated.

Example. For f = ay + az + by + bz + ax + aw ∈
Q[x, y, z, w, a, b] and M = {x, y, z}, the hypergraph
HG(f,M) has 3 vertices x, y, z and 2 hyperedges Ea =
{x, y, z} and Eb = {y, z}. A partial syntactic factorization
of f w.r.t M consists of {(y + z, a + b), (x, a)} and aw.

y

z

b

a

x

We observe that a straightforward algorithm computes HG(f,M) in O(|M|n t) bit op-
erations. The following proposition, whose proof is immediate, suggests how HG(f,M)
can be used to compute a partial syntactic factorization of f w.r.t. M.

346 C.E. Leiserson et al.

Proposition 2. Let f, g, h ∈ K[X] such that f = g � h and mons(g) ⊆ M both hold.
Then, the intersection of all Eq , for q ∈ mons(h), contains mons(g).

Before stating Algorithm ParSynFactorization, we make a simple observation.

Proposition 3. Let F1, F2, . . . , Fc be the monomials and f1, f2, . . . , fc be the coeffi-
cients of a polynomial f ∈ K[X], such that f =

∑c
i=1fiFi. Let a, b > 0 be two inte-

gers such that c = ab. Given monomials G1, G2, . . . , Ga and H1, H2, . . . , Hb such that
the products GiHj are all in mons(f) and are pairwise different. Then, within O(ab)
operations in K and O(a2b2n) bit operations, one can decide whether f = g � h,
mons(g) = {G1, G2, . . . , Ga} and mons(h) = {H1, H2, . . . , Hb} all hold. Moreover,
if such a syntactic factorization exists it can be computed within the same time bound.

Proof. Define g =
∑a

i=1giGi and h =
∑b

i=1hiHi where g1, . . . , ga and h1, . . . , hb

are unknown coefficients. The system to be solved is gihj = fij , for all i = 1 · · ·a
and all j = 1 · · · b where fij is the coefficient of GiHj in p. To set up this system
gihj = fij , one needs to locate each monomial GiHj in mons(f). Assuming that
each exponent of a monomial is a machine word, any two monomials of K[x1, . . . , xn]
are compared within O(n) bit operations. Hence, each of these ab monomials can be
located in {F1, F2, . . . , Fc} within O(cn) bit operations and the system is set up within
O(a2b2n) bit operations. We observe that if f = g � h holds, one can freely set g1

to 1 since the coefficients are in a field. This allows us to deduce h1, . . . , hb and then
g2, . . . , ga using a + b − 1 equations. The remaining equations of the system should
be used to check if these values of h1, . . . , hb and g2, . . . , ga lead indeed to a solution.
Overall, for each of the ab equations one simply needs to perform one operation in K.

Remark on Algorithm 1. Following the property of the hypergraph HG(f,M) given by
Proposition 2, we use a greedy strategy and search for the largest hyperedge intersection
in HG(f,M). Once such intersection is found, we build a candidate syntactic factoriza-
tion from it. However, it is possible that the equality in Line 12 does not hold. For exam-
ple, when M = Q = {a, b}, we have |N | = 3 �= 2× 2 = |M | · |Q|. When the equality
|N | = |M | · |Q| holds, there is still a possibility that the system set up as in the proof of
Proposition 3 does not have solutions. For example, when M = {a, b}, Q = {c, d} and
p = ac + ad + bc + 2 bd. Nevertheless, the termination of the while loop in Line 10 is
ensured by the following observation. When |Q| = 1, the equality |N | = |M | · |Q| al-
ways holds and the system set up as in the proof of Proposition 3 always has a solution.
After extracting a syntactic factorization from the hypergraph HG(f,M), we update
the hypergraph by removing all monomials in the set N and keep extracting syntactic
factorizations from the hypergraph until no hyperedges remain.

Example. Consider f = 3ab2c + 5abc2 + 2ae + 6b2cd + 10bc2d + 4de + s. Our base
monomial set M is chosen as {a, bc, e, d}. Following Algorithm 1, we first construct
the hypergraph HG(f,M) w.r.t. which the term s is isolated.

e

a

d ac

a d

bc^2

b^2c

bc cd

ab

 e

bd

Efficient Evaluation of Large Polynomials 347

Input : a polynomial f given as a sorted set terms(f), a monomial setM
Output : a partial syntactic factorization of f w.r.tM

1 T ← terms(f), F ← ∅;
2 r ←

∑
t∈I t where I = {t ∈ terms(f) | (∀m ∈ M) m � t} ;

3 compute the hypergraph HG(f,M) = (V, E) ;
4 while E is not empty do
5 if E contains only one edge Eq then Q← {q}, M ← Eq;
6 else
7 find q, q′ such that Eq ∩Eq′ has the maximal cardinality;
8 M ← Eq ∩Eq′ , Q← ∅;
9 if |M | < 1 then find the largest edge Eq, M ← Eq, Q← {q};

10 else for Eq ∈ E do if M ⊆ Eq then Q← Q ∪ {q} ;

11 while true do
12 N = {mq | m ∈M, q ∈ Q};
13 if |N | = |M | · |Q| then
14 let p be the polynomial such that mons(p) = N and terms(p) ⊆ T ;
15 if p = g 	 h with mons(g) = M and mons(h) = Q then
16 compute g, h (Proposition 3); break;

17 else randomly choose q ∈ Q, Q← Q \ {q}, M ← ∩q∈QEq;

18 for Eq ∈ E do
19 for m′ ∈ N do
20 if q |m′ then Eq ← Eq \ {m′/q} ;

21 if Eq = ∅ then E ← E \ {Eq};
22 T ← T \ terms(p), F ← F ∪ {g 	 h};
23 return F , r

Algorithm 1. ParSynFactorization

The largest edge intersection is M = {a, d} = Eb2c ∩ Ebc2 ∩ Ee yielding Q =
{b2c, bc2, e}. The set N is {mq | m ∈ M, q ∈ Q} = {ab2c, abc2, ae, b2cd, bc2d, de}.
The cardinality of N equals the product of the cardinalities of M and of Q. So we keep
searching for a polynomial p with N as monomial set and with terms(p) ⊆ terms(f).
By scanning terms(f) we obtain p = 3ab2c + 5abc2 + 2ae + 6b2cd + 10bc2d + 4de.
Now we look for polynomials g, h with respective monomial sets M, Q and such that
p = g � h holds. The following equality yields a system of equations whose unknowns
are the coefficients of g and h: (g1a + g2d)(h1b

2c + h2bc
2 + h3e) = 3ab2c + 5abc2 +

2ae + 6b2cd + 10bc2d + 4de. As described in Proposition 3, we can freely set g1 to 1
and then use 4 out of the 6 equations to deduce h1, h2, h3, g2; these computed values
must verify the remaining equations for p = g � h to hold, which is the case here.

⎧
⎪⎪⎨

⎪⎪⎩

g1h1 = 3
g1h2 = 5
g1h3 = 2
g2h1 = 6

g1=1
=⇒

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

g1 = 1
g2 = 2
h1 = 3
h2 = 5
h3 = 2

⇒
{

g2h2 = 10
g2h3 = 4

348 C.E. Leiserson et al.

Now we have found a syntactic factorization of p. We update each edge in the
hypergraph, which, in this example, will make the hypergraph empty. After adding
(a + 2d, 3b2c + 5bc2 + 2e) to F , the algorithm terminates with F , s as output.

One may notice that in Example 3, h = 3b2c + 5bc2 + 2e also admits a nontrivial
partial syntactical factorization. Computing it will produce a syntactic decomposition
of f . When a polynomial which does not admit any nontrivial partial syntactical fac-
torizations w.r.t M is hit, for instance, gi or r in a partial syntactic factorization, we
directly convert it to an expression tree. To this end, we assume that there is a proce-
dure ExpressionTree(f) that outputs an expression tree of a given polynomial f . Algo-
rithm 2, which we give for the only purpose of being precise, states the most straight
forward way to implement ExpressionTree(f). Then, Algorithm 3 formally states how
to produce a syntactic decomposition of a given polynomial.

Input : a polynomial f given as terms(f) = {t1, t2, . . . , ts}
Output : an expression tree whose value equals f

1 if �terms(f) = 1 say f = c · xd1
1 xd2

2 · · ·x
dk
k then

2 for i← 1 to k do
3 Ti ← xi;
4 for j ← 2 to di do
5 Ti,� ← Ti, root(Ti)← ×, Ti,r ← xi;

6 T ← empty tree, root(T)← ×, T� ← c, Tr ← T1;
7 for i← 2 to k do
8 T� ← T, root(T)← ×, Tr ← Ti;

9 else
10 k← s/2, f1 ←

∑k
i=1 ti, f2 ←

∑s
i=k+1 ti;

11 T1 ← ExpressionTree(f1);
12 T2 ← ExpressionTree(f2);
13 root(T)← +, T� ← T1, Tr ← T2;

Algorithm 2. ExpressionTree

We have stated all the algorithms that support the construction of a syntactic
decomposition except for the computation of the base monomial set M. Note that in
Algorithm 1 our main strategy is to keep extracting syntactic factorizations from the hy-
pergraph HG(f,M). For all the syntactic factorizations g�h computed in this manner,
we have mons(g) ⊆ M. Therefore, to discover all the possible syntactic factorizations
in HG(f,M), the base monomial set should be chosen so as to contain all the monomi-
als from which a syntactic factorization may be derived. The most obvious choice is to
consider the set G of all non constant gcds of any two distinct terms of f . However, |G|
could be quadratic in #terms(f), which would be a bottleneck on large polynomials
f . Our strategy is to choose for M as the set of the minimal elements of G for the
divisibility relation. A straightforward algorithm computes this set M within O(t4n)
operations in K; indeed |M| fits in |G| = O(t2). In practice, M is much smaller than G

Efficient Evaluation of Large Polynomials 349

Input : a polynomial f given as terms(f)
Output : a syntactic decomposition of f

1 compute the base monomial setM for f ;
2 ifM = ∅ then return ExpressionTree(f);
3 else
4 F , r ← ParSynFactorization(f,M);
5 for i← 1 to |F| do
6 (gi, hi)← Fi, Ti ← empty tree, root(Ti)← ×;
7 Ti,� ← ExpressionTree(gi);
8 Ti,r ← SyntacticDecomposition(hi);

9 T ← empty tree, root(T)← +, T� ← ExpressionTree(r), Tr ← T1;
10 for i← 2 to |F| do
11 T� ← T, root(T)← +, Tr ← Ti;

Algorithm 3. SyntacticDecomposition

(for large dense polynomials,M = X holds) and this choice is very effective. However,
since we aim at manipulating large polynomials, the set G can be so large that its size
can be a memory bottleneck when computing M. In [2] we address this question: we
propose a divide-and-conquer algorithm which computes M directly from f without
storing the whole set G in memory. In addition, the parallel implementation in Cilk+
shows linear speed-up on 32 cores for sufficiently large input.

4 Complexity Estimates

Given a polynomial f of t terms with total degree d in K[X], we analyze the running
time for Algorithm 3 to compute a syntactic decomposition of f . Assuming that each
exponent in a monomial is encoded by a machine word, each operation (GCD, division)
on a pair of monomials of K[X] requires O(n) bit operations. Due to the different man-
ners of constructing a base monomial set, we keep μ := |M| as an input complexity
measure. As mentioned in Section 3, HG(f,M) is constructed within O(μtn) bit oper-
ations. This hypergraph contains μ vertices and O(μt) hyperedges. We first proceed by
analyzing Algorithm 1. To do so, we follow its steps.

– The “isolated” polynomial r can be easily computed by testing the divisibility of
each term in f w.r.t each monomial in M, i.e. in O(μ · t · n) bit operations.

– Each hyperedge in HG(f,M) is a subset of M. The intersection of two hyperedges
can then be computed in μ · n bit operations. Thus we need O((μt)2 · μn) =
O(μ3t2n) bit operations to find the largest intersection M (Line 7).

– If M is empty, we traverse all the hyperedges in HG(f,M) to find the largest one.
This takes no more than μt · μn = μ2tn bit operations (Line 9).

– If M is not empty, we traverse all the hyperedges in HG(f,M) to test if M is a
subset of it. This takes at most μt · μn = μ2tn bit operations (Line 10).

– Line 6 to Line 10 takes O(μ3t2n) bit operations.

350 C.E. Leiserson et al.

– The set N can be computed in μ · μt · n bit operations (Line 12).
– by Proposition 3, the candidate syntactic factorization can be either computed or

rejected in O(|M |2 · |Q|2n) = O(μ4t2n) bit operations and O(μ2t) operations in
K (Lines 13 to 16).

– If |N | �= |M | · |Q| or the candidate syntactic factorization is rejected, we remove
one element from Q and repeat the work in Line 12 to Line 16. This while loop ends
before or when |Q| = 1, hence it iterates at most |Q| times. So the bit operations of
the while loop are in O(μ4t2n · μt) = O(μ5t3n) while operations in K are within
O(μ2t · μt) = O(μ3t2) (Line 11 to Line 17).

– We update the hypergraph by removing the monomials in the constructed syntactic
factorization. The two nested for loops in Line 18 to Line 21 take O(|E| · |N | ·n) =
O(|E| · |M | · |Q| · n) = O(μt · μ · μt · n) = O(μ3t2n) bit operations.

– Each time a syntactic factorization is found, at least one monomial in mons(f) is
removed from the hypergraph HG(f,M). So the while loop from Line 4 to Line
22 would terminate in O(t) iterations.

Overall, Algorithm 1 takes O(μ5t4n) bit operations and O(μ3t3) operations in K. One
easily checks from Algorithm 2 that an expression tree can be computed from f (where
f has t terms and total degree d) within in O(ndt) bit operations. In the sequel of this
section, we analyze Algorithm 3. We make two preliminary observations. First, for the
input polynomial f , the cost of computing a base monomial set can be covered by the
cost of finding a partial syntactic factorization of f . Secondly, the expression trees of
all gi’s (Line 7) and of the isolated polynomial r (Line 9) can be computed within
O(ndt) operations. Now, we shall establish an equation that rules the running time of
Algorithm 3. Assume that F in Line 4 contains e syntactic factorizations. For each gi, hi

such that (gi, hi) ∈ F , let the number of terms in hi be ti and the total degree of hi be
di. By the specification of the partial syntactic factorization, we have

∑e
i=1 ti ≤ t. It is

easy to show that di ≤ d− 1 holds for 1 ≤ i ≤ e as total degree of each gi is at least 1.
We recursively call Algorithm 3 on all hi’s. Let Tb(t, d, n)(TK(t, d, n)) be the number
of bit operations (operations in K) performed by Algorithm 3. We have the following
recurrence relation,

Tb(t, d, n) =
e∑

i=1

Tb(ti, di, n) + O(μ5t4n), TK(t, d, n) =
e∑

i=1

TK(ti, di, n) + O(μ3t3),

from which we derive that Tb(t, d, n) is within O(μ5t4nd) and TK(t, d, n) is within
O(μ3t3d). Next, one can verify that if the base monomial set M is chosen as the
set of the minimal elements of all the pairwise gcd’s of monomials of f , where μ =
O(t2), then a syntactic decomposition of f can be computed in O(t14nd) bit op-
erations and O(t9d) operations in K. If the base monomial set is simply set to be
X = {x1, x2, . . . , xn}, then a syntactic decomposition of f can be found in O(t4n6d)
bit operations and O(t3n3d) operations in K.

5 Experimental Results

In this section we discuss the performances of different software tools for reducing the
evaluation cost of large polynomials. These tools are based respectively on a multivari-
ate Horner’s scheme [3], the optimize function with tryhard option provided by

Efficient Evaluation of Large Polynomials 351

the computer algebra system Maple and our algorithm presented in Section 3. As de-
scribed in the introduction, we use the evaluation of resultants of generic polynomials
as a driving example. We have implemented our algorithm in the Cilk++ program-
ming language. We report on different performance measures of our optimized DAG
representations as well as those obtained with the other software tools.

Evaluation cost. Figure 1 shows the total number of internal nodes of a DAG repre-
senting the resultant R(a, b) of two generic polynomials a = amxm + · · · + a0 and
b = bnxn + · · · + b0 of degrees m and n, after optimizing this DAG by different ap-
proaches. The number of internal nodes of this DAG measures the cost of evaluating
R(a, b) after specializing the variables am, . . . , a0, bn . . . , b0. The first two columns of
Figure 1 gives m and n. The third column indicates the number of monomials appearing
in R(a, b). The number of internal nodes of the input DAG, as computed by MAPLE,
is given by the fourth column (Input). The fifth column (Horner) is the evaluation cost
(number of internal nodes) of the DAG after MAPLE’s multivariate Horner’s rule is ap-
plied. The sixth column (tryhard) records the evaluation cost after MAPLE’s optimize
function (with the tryhard option) is applied. The last two columns reports the evaluation
cost of the DAG computed by our hypergraph method (HG) before and after removing
common subexpressions. Indeed, our hypergraph method requires this post-processing
(for which we use standard techniques running in time linear w.r.t. input size) to produce
better results. We note that the evaluation cost of the DAG returned by HG + CSE is
less than the ones obtained with the Horner’s rule and MAPLE’s optimize functions.

m n #Mon Input Horner tryhard HG HG + CSE
4 4 219 1876 977 721 899 549
5 4 549 5199 2673 1496 2211 1263
5 5 1696 18185 7779 4056 7134 3543
6 4 1233 13221 6539 3230 4853 2547
6 5 4605 54269 22779 10678 18861 8432
6 6 14869 190890 69909 31760 63492 24701
7 4 2562 30438 14948 6707 9862 4905
7 5 11380 146988 61399 27363 45546 19148
7 6 43166 601633 219341 - 179870 65770

Fig. 1. Cost to evaluate a DAG by different approaches

Figure 2 shows the timing in seconds that each approach takes to optimize the DAGs
analyzed in Figure 1. The first three columns of Figure 2 have the same meaning as in
Figure 1. The columns (Horner), (tryhard) show the timing of optimizing these DAGs.
The last column (HG) shows the timing to produce the syntactic decompositions with
our Cilk++ implementation on multicores using 1, 4, 8 and 16 cores. All the sequen-
tial benchmarks (Horner, tryhard) were conducted on a 64bit Intel Pentium VI Quad
CPU 2.40 GHZ machine with 4 MB L2 cache and 3 GB main memory. The parallel
benchmarks were carried out on a 16-core machine at SHARCNET (www.sharcnet.ca)
with 128 GB memory in total and 8×4096 KB of L2 cache (each integrated by 2 cores).
All the processors are Intel Xeon E7340 @ 2.40GHz.

352 C.E. Leiserson et al.

As the input size grows, the timing of the MAPLE Optimize command (with try-
hard option) grows dramatically and takes more than 40 hours to optimize the resultant
of two generic polynomials with degrees 6 and 6. For the generic polynomials with
degree 7 and 6, it does not terminate after 5 days. For the largest input (7, 6), our algo-
rithm completes within 5 minutes on one core. Our preliminary implementation shows
a speedup around 8 when 16 cores are available. The parallelization of our algorithm
is still work in progress (for instance, in the current implementation Algorithm 3 has
not been parallelized yet). We are further improving the implementation and leave for
a future paper reporting the parallelization of our algorithms.

m n #Mon Horner tryhard HG (# cores = 1, 4, 8, 16)

4 4 219 0.116 7.776 0.017 0.019 0.020 0.023
5 4 549 0.332 49.207 0.092 0.073 0.068 0.067
5 5 1696 1.276 868.118 0.499 0.344 0.280 0.250
6 4 1233 0.988 363.970 0.383 0.249 0.213 0.188
6 5 4605 4.868 8658.037 3.267 1.477 1.103 0.940
6 6 14869 24.378 145602.915 29.130 9.946 6.568 4.712
7 4 2562 4.377 1459.343 1.418 0.745 0.603 0.477
7 5 11380 24.305 98225.730 22.101 7.687 5.106 3.680
7 6 43166 108.035 >136 hours 273.963 82.497 49.067 31.722

Fig. 2. Timing to optimize large polynomials

Evaluation schedule. Let T be a syntactic decomposition of an input polynomial f . Tar-
geting multi-core evaluation, our objective is to decompose T into p sub-DAGs, given
a fixed parameter p, the number of available processors. Ideally, we want these sub-
DAGs to be balanced in size such that the “span” of the intended parallel evaluation can
be minimized. These sub-DAGs should also be independent to each other in the sense
that the evaluation of one does not depend on the evaluation of another. In this manner,
these sub-DAGs can be assigned to different processors. When p processors are avail-
able, we call “p-schedule” such a decomposition. We report on the 4 and 8-schedules
generated from our syntactic decompositions. The column “T ” records the size of a
syntactic decomposition, counting the number of nodes. The column “#CS” indicates
the number of common subexpressions. We notice that the amount of work assigned to
each sub-DAG is balanced. However, scheduling the evaluation of the common subex-
pressions is still work in progress.

Benchmarking generated code. We generated 4-schedules of our syntactic decomposi-
tions and compared with three other methods for evaluating our test polynomials on a

m n T #CS 4-schedule 8-schedule
6 5 8432 1385 1782, 1739, 1760, 1757 836, 889, 884, 881, 892, 886, 886, 869
6 6 24701 4388 4939, 5114, 5063, 5194 2436, 2498, 2496, 2606, 2535, 2615, 2552, 2555
7 5 19148 3058 3900, 4045, 4106, 4054 1999, 2049, 2078, 1904, 2044, 2019, 1974, 2020
7 6 65770 10958 13644, 13253, 14233, 13705 6710, 6449, 7117, 6802, 6938, 7025, 6807, 6968

Fig. 3. Parallel evaluation schedule

Efficient Evaluation of Large Polynomials 353

large number of uniformly generated random points over Z/pZ where p = 2147483647
is the largest 31-bit prime number. Our experimental data are summarized in Figure 4.
Out the four different evaluation methods, the first three are sequential and are based on
the following DAGs: the original MAPLE DAG (labeled as Input), the DAG computed
by our hypergraph method (labeled as HG), the HG DAG further optimized by CSE
(labeled as HG + CSE). The last method uses the 4-schedule generated from the DAG
obtained by HG + CSE. All these evaluation schemes are automatically generated as a
list of SLPs. When an SLP is generated as one procedure in a source file, the file size
grows linearly with the number of lines in this SLP. We observe that gcc 4.2.4 failed
to compile the resultant of generic polynomials of degree 6 and 6 (the optimization
level is 2). In Figure 4, we report the timings of the four approaches to evaluate the
input at 10K and 100K points. The first four data rows report timings where the gcc
optimization level is 0 during the compilation, and the last row shows the timings with
the optimization at level 2. We observe that the optimization level affects the evalua-
tion time by a factor of 2, for each of the four methods. Among the four methods, the
4-schedule method is the fastest and it is about 20 times faster than the first method.

m n #point Input HG HG+CSE 4-schedule #point Input HG HG+CSE 4-schedule
6 5 10K 14.490 2.675 1.816 0.997 100K 144.838 26.681 18.103 9.343
6 6 10K 57.853 18.618 4.281 2.851 100K 577.624 185.883 42.788 28.716
7 5 10K 46.180 11.423 4.053 2.104 100K 461.981 114.026 40.526 19.560
7 6 10K 190.397 54.552 13.896 8.479 100K 1902.813 545.569 138.656 81.270

6 5 10K 6.611 1.241 0.836 0.435 100K 66.043 12.377 8.426 4.358

Fig. 4. Timing to evaluate large polynomials

References

1. Breuer, M.A.: Generation of optimal code for expressions via factorization. ACM Com-
mun. 12(6), 333–340 (1969)

2. Leiserson, C.E., Li, L., Moreno Maza, M., Xie, Y.: Parallel computation of the minimal
elements of a poset. In: Proc. PASCO 2010. ACM Press, New York (2010)

3. Carnicer, J., Gasca, M.: Evaluation of multivariate polynomials and their derivatives. Mathe-
matics of Computation 54(189), 231–243 (1990)

4. Ceberio, M., Kreinovich, V.: Greedy algorithms for optimizing multivariate horner schemes.
SIGSAM Bull 38(1), 8–15 (2004)

5. Intel Corporation. Cilk++., http://www.cilk.com/
6. von zur Gathen, J., Gerhard, J.: Modern Computer Algebra. Cambridge Univ. Press, Cam-

bridge (1999)
7. Hosangadi, A., Fallah, F., Kastner, R.: Factoring and eliminating common subexpressions in

polynomial expressions. In: ICCAD 2004, pp. 169–174. IEEE Computer Society, Los Alami-
tos (2004)

8. Peña, J.M.: On the multivariate Horner scheme. SIAM J. Numer. Anal. 37(4), 1186–1197
(2000)

9. Peña, J.M., Sauer, T.: On the multivariate Horner scheme ii: running error analysis. Comput-
ing 65(4), 313–322 (2000)

http://www.cilk.com/

	Efficient Evaluation of Large Polynomials
	Introduction
	Syntactic Decomposition of a Polynomial
	The Hypergraph Method
	Complexity Estimates
	Experimental Results

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037002e000d00500072006f00640075006300650073002000500044004600200062006f006f006b00200069006e006e006500720077006f0072006b002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

