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ABSTRACT
Computing the minimal elements of a partially ordered finite set
(poset) is a fundamental problem in combinatorics with numerous
applications such as polynomial expression optimization, transver-
sal hypergraph generation and redundant component removal, to
name a few. We propose a divide-and-conquer algorithm which is
not only cache-oblivious but also can be parallelized free of deter-
minacy races. We have implemented it in Cilk++ targeting multi-
cores. For our test problems of sufficiently large input size our code
demonstrates a linear speedup on 32 cores.

Categories and Subject Descriptors
G.4 [Mathematical Software]: Parallel and vector implementa-
tions; G.2.2 [Graph Theory]: Hypergraphs

General Terms
Algorithms, Theory

Keywords
Partial ordering, minimal elements, multithreaded parallelism, Cilk,
polynomial evaluation, transversal hypergraph

1. INTRODUCTION
Partially ordered sets arise in many topics of mathematical sci-

ences. Typically, they are one of the underlying algebraic structures
of a more complex entity. For instance, a finite collection of alge-
braic sets V = {V1, . . . , Ve} (subsets of some affine space Kn

where K is an algebraically closed field) naturally forms a partially
ordered set (poset, for short) for the set-theoretical inclusion. Re-
moving from V any Vi which is contained in some Vj for i 6= j is
an important practical question which simply translates to comput-
ing the maximal elements of the poset (V,⊆). This simple problem
is in fact challenging since testing the inclusion Vi ⊆ Vj may re-
quire costly algebraic computations. Therefore, one may want to
avoid unnecessary inclusion tests by using an efficient algorithm
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for computing the maximal elements of the poset (V,⊆). However,
this problem has received little attention in the literature [6] since
the questions attached to algebraic sets (like decomposing polyno-
mial systems) are of much more complex nature.

Another important application of the calculation of the minimal
elements of a finite poset is the computation of the transversal of a
hypergraph [2, 12], which itself has numerous applications, like
artificial intelligence [8], computational biology [13], data min-
ing [11], mobile communication systems [23], etc. For a given hy-
pergraph H, with vertex set V , the transversal hypergraph Tr(H)
consists of all minimal transversals ofH: a transversal T is a subset
of V having nonempty intersection with every hyperedge ofH, and
is minimal if no proper subset of T is a transversal. Articles dis-
cussing the computation of transversal hypergraphs, as those dis-
cussing the removal of the redundant components of an algebraic
set generally take for granted the availability of an efficient routine
for computing the maximal (or minimal) elements of a finite poset.

Today’s parallel hardware architectures (multi-cores, graphics pr-
ocessing units, etc.) and computer memory hierarchies (from pro-
cessor registers to hard disks via successive cache memories) en-
force revisiting many fundamental algorithms which were often de-
signed with algebraic complexity as the main complexity measure
and with sequential running time as the main performance counter.
In the case of the computation of the maximal (or minimal) ele-
ments of a poset this is, in fact, almost a first visit. Up to our knowl-
edge, there is no published papers dedicated to a general algorithm
solving this question. The procedure analyzed in [18] is specialized
to posets that are Cartesian products of totally ordered sets.

In this article, we propose an algorithm for computing the mini-
mal elements of an arbitrary finite poset. Our motivation is to ob-
tain an efficient implementation in terms of parallelism and data lo-
cality. This divide-and-conquer algorithm, presented in Section 2,
follows the cache-oblivious philosophy introduced in [9]. Refer-
ring to the multithreaded fork-join parallelism model of Cilk [10],
our algorithm has work O(n2) and span (or critical path length)
O(n), counting the number of comparisons, on an input poset of
n elements. A straightforward algorithmic solution with a span
of O(log(n)) can be achieved in principle. This algorithm does
not, however, take advantage of sparsity in the output, where the
discovery that an element is nonminimal allows it to be removed
from future comparisons with other elements. Our algorithm elim-
inates nonminimal elements immediately so that no work is wasted
by comparing them with other elements. Moreover, our algorithm
does not suffer from determinacy races and can be implemented in
Cilk with sync as the only synchronization primitive. Experimen-
tal results show that our code can reach linear speedup on 32 cores
for n large enough.



In several applications, the poset is so large that it is desirable
to compute its minimal (or maximal) elements concurrently to the
generation of the poset itself, thus avoiding storing the entire poset
in memory. We illustrate this strategy with two applications: poly-
nomial expression optimization in Section 4 and transversal hyper-
graph generation in Section 5. In each case, we generate the poset
in a divide-and-conquer manner and at the same time we compute
its minimal elements. Since, for these two applications, the num-
ber of minimal elements is in general much smaller than the poset
cardinality, this strategy turns out to be very effective and allows
computations that could not be conducted otherwise.

This article is dedicated to Claude Berge (1926 - 2002) who in-
troduced the third author to the combinatorics of sets.

2. THE ALGORITHM
We start by reviewing the notion of a partially ordered set. Let
X be a set and � be a partial order on X , that is, a binary relation
on X which is reflexive, antisymmetric, and transitive. The pair
(X ,�) is called a partially ordered set, or poset for short. If A is
a subset of X , then (A,�) is the poset induced by (X ,�) on A.
When clear from context, we will often write A instead of (A,�).
Here are a few examples of posets:

1. (Z, |) where | is the divisibility relation in the ring Z of inte-
ger numbers,

2. (2S ,⊆) where⊆ is the inclusion relation in the ranked lattice
of all subsets of a given finite set S,

3. (C,⊆) where ⊆ is the inclusion relation for the set C of all
algebraic curves in the affine space of dimension 2 over the
field of complex numbers.

An element x ∈ X is minimal for (X ,�) if for all y ∈ X we
have: y�x ⇒ y = x. The set of the elements x ∈ X which are
minimal for (X ,�) is denoted by Min(X ,�), or simply Min(X ).
From now on we assume that X is finite.

Algorithms 1 and 2 compute Min(X ) respectively in a sequential
and parallel fashion. Before describing these algorithms in more de-
tails let us first specify the programming model and data-structures.
We adopt the multi-threaded programming model of Cilk [10]. In
our pseudo-code, the keywords spawn and sync have the same se-
mantics as the cilk_spawn and cilk_sync in the Cilk++ program-
ming language [15]. We assume that the subsets of X are imple-
mented by a data-structure which supports the following operations
for any subsets A,B of X :

Split: if |A| ≥ 2 then Split(A) returns a partition A−, A+ of A
such that |A−| and |A+| differ at most by 1.

Union: Union(A,B) accepts two disjoint sets A, B and returns C
where C = A ∪B;

In addition, we assume that each subset A of X , with k = |A|,
is encoded in a C/C++ fashion by an array A of size ` ≥ k. An
element in A can be marked at trivial cost.

In Algorithm 1, this data-structure supports a straight-forward
sequential implementation of the computation of Min(A), which
follows from this trivial observation: an element ai ∈ A is minimal
for � if for all j 6= i the relation aj � ai does not hold. However,
and unless the input data fits in cache, Algorithm 1 is not cache-
efficient. We shall return to this point in Section 3 where cache
complexity estimates are provided.

Algorithm 2 follows the cache-oblivious philosophy introduced
in [9]. More precisely, and similarly to the matrix multiplication

Algorithm 1: SerialMinPoset

Input : a poset A
Output : Min(A)

1 for i from 0 to |A|−2 do
2 if ai is unmarked then
3 for j from i+1 to |A|−1 do
4 if aj is unmarked then
5 if aj � ai then
6 mark ai and break inner loop;

7 if ai� aj then
8 mark aj ;

9 A← {unmarked elements in A};
10 return A;

Algorithm 2: ParallelMinPoset

Input : a poset A
Output : Min(A)

1 if |A| ≤MIN_BASE then
2 return SerialMinPoset(A);

3 (A−, A+)← Split(A);
4 A− ← spawn ParallelMinPoset(A−);
5 A+ ← spawn ParallelMinPoset(A+);
6 sync;
7 (A−, A+)← ParallelMinMerge(A−, A+);
8 return Union(A−, A+);

algorithm of [9], Algorithm 2 proceeds in a divide-and-conquer
fashion such that when a subproblem fits into the cache, then all
subsequent computations can be performed with no further cache
misses. However, Algorithm 2, and other algorithms in this paper,
use a threshold such that, when the size of the input is within this
threshold, then a base case subroutine is called. In principle, this
threshold can be set to the smallest meaningful value, say 1, and
thus Algorithm 2 is cache-oblivious. In a software implementation,
this threshold should be large enough so as to reduce parallelization
overheads and recursive call overheads. Meanwhile, this threshold
should be small enough in order to guarantee that, in the base case,
cache misses are limited to cold misses. In the implementation of
the matrix multiplication algorithm of [9], available in the Cilk++
distribution, a threshold is used for the same purpose.

In Algorithm 2, when |A| ≤ MIN_BASE, where MIN_BASE is
the threshold, Algorithm 1 is called. Otherwise, we partitionA into
a balanced pair of subsets A−, A+. By balanced pair, we mean
that the cardinalities |A−| and |A+| differ at most by 1. The two
recursive calls on A− and A+ in Lines 4 and 5 of Algorithm 2 will
compare the elements in A− and A+ separately. Thus, they can
be executed in parallel and free of data races. In Lines 4 and 5 we
overwrite each input subset with the corresponding output one so
that at Line 6 we haveA− = Min(A−) andA+ = Min(A+). Line
6 is a synchronization point which ensures that the computations
in Lines 4 and 5 complete before Line 7 is executed. At Line 7,
cross-comparisons between A− and A+ are made, by means of the
operation ParallelMinMerge of Algorithm 3.

We also apply a divide-and-conquer-with-threshold strategy for
this latter operation, which takes as input a pair B,C of subsets of
X , such that Min(B) = B and Min(C) = C hold. Note that this



pair is not necessarily balanced. This leads to the following four
cases in Algorithm 3, depending on the values of |B| and |C| w.r.t.
the threshold MIN_MERGE_BASE.

Case 1: both |B| and |C| are no more than MIN_MERGE_BASE.
We simply call the operation SerialMinMerge of Algorithm 4
which cross-compares the elements of B and C in order to
remove the larger ones in each ofB and C. The minimal ele-
ments from B and C are stored separately in an ordered pair
(the same order as in the input pair) to remember the prove-
nance of each result. In Cases 2, 3 and 4, this output spec-
ification helps clarifying the successive cross-comparisons
when the input posets are divided into subsets.

Algorithm 3: ParallelMinMerge

Input : B, C such that Min(B) = B and
Min(C) = C hold

Output : (E,F ) such that E ∪ F = Min(B ∪ C),
E ⊆ B and F ⊆ C hold

1 if |B| ≤MIN_MERGE_BASE and
2 |C| ≤MIN_MERGE_BASE then
3 return SerialMinMerge(B,C);

4 else if |B| >MIN_MERGE_BASE and
5 |C| >MIN_MERGE_BASE then
6 (B−, B+)← Split(B);
7 (C−, C+)← Split(C);
8 (B−, C−)← spawn
9 ParallelMinMerge(B−, C−);

10 (B+, C+)← spawn
11 ParallelMinMerge(B+, C+);
12 sync;
13 (B−, C+)← spawn
14 ParallelMinMerge(B−, C+);
15 (B+, C−)← spawn
16 ParallelMinMerge(B+, C−);
17 sync;
18 return (Union(B−, B+),Union(C−, C+));

19 else if |B| >MIN_MERGE_BASE and
20 |C| ≤MIN_MERGE_BASE then
21 (B−, B+)← Split(B);
22 (B−, C)← ParallelMinMerge(B−, C);
23 (B+, C)← ParallelMinMerge(B+, C);
24 return (Union(B−, B+), C);

25 else
// |B| ≤ MIN_MERGE_BASE and
// |C| > MIN_MERGE_BASE

26 (C−, C+)← Split(C);
27 (B,C−)← ParallelMinMerge(B,C−);
28 (B,C+)← ParallelMinMerge(B,C+);
29 return (B,Union(C−, C+));

Case 2: both |B| and |C| are greater than MIN_MERGE_BASE.
We splitB and C into balanced pairs of subsetsB−, B+ and
C−, C+ respectively. Then, we recursively merge these 4
subsets, as described in Lines 8–14 in Algorithm 3. Merging
B−, C− and merging B+, C+ can be executed in parallel
without data races. These two computations complete half of

Algorithm 4: SerialMinMerge

Input : B, C such that Min(B) = B and
Min(C) = C hold

Output : (E,F ) such that E ∪ F = Min(B ∪ C),
E ⊆ B and F ⊆ C hold

1 if |B| = 0 or |C| = 0 then
2 return (B,C);

3 else
4 for i from 0 to |B|−1 do
5 for j from 0 to |C|−1 do
6 if cj is unmarked then
7 if cj � bi then
8 mark bi and break inner loop;

9 if bi� cj then
10 mark cj ;

11 B ← {unmarked elements in B};
12 C ← {unmarked elements in C};
13 return (B,C);

the cross-comparisons between B and C. Then, we perform
the other half of the cross-comparisons between B and C by
merging B−, C+ and merging B+, C− in parallel. At the
end, we return the union of the subsets from B and the union
of the subsets from C.

Case 3, 4: either |B| or |C| is greater than MIN_MERGE_BASE,
but not both. Here, we split the larger set into two subsets
and make the appropriate cross-comparisons via two recur-
sive calls, see Lines 15–25 in Algorithm 3.

3. COMPLEXITY ANALYSIS AND EXPE-
RIMENTATION

We shall establish a worst case complexity for the work, the span
and the cache complexity of Algorithm 2. More precisely, we as-
sume that the input poset of this algorithm has n ≥ 1 elements,
which are pairwise incomparable for �, that is, neither x� y nor
y�x holds for all x 6= y. Our running time is estimated by count-
ing the number of comparisons, that is, the number of times that
the operation � is invoked. The costs of all other operations are
neglected. The principle of Algorithm 2 is similar to that of a par-
allel merge-sort algorithm with a parallel merge subroutine, which
might suggest that the analysis is standard. The use of thresholds
requires, however, a bit of care.

We introduce some notations. For Algorithms 1 and 2 the size of
the input is |A| whereas for Algorithms 3 and 4 the size of the input
is |B|+ |C|. We denote by W1(n), W2(n), W3(n) and W4(n) the
work of Algorithms 1, 2, 3 and 4, respectively, on an input of size
n. Similarly, we denote by S1(n), S2(n), S3(n) and S4(n) the
span of Algorithms 1, 2, 3 and 4, respectively, on an input of size
n. Finally, we denote byN2 andN3 the thresholds MIN_BASE and
MIN_MERGE_BASE, respectively.

Since Algorithm 4 is sequential, under our worst case assump-
tion, we clearly have W4(n) = S4(n) = Θ(n2). Similarly, we
have W1(n) = S1(n) = Θ(n2).

Observe that, under our worst case assumption, the cardinalities
of the input sets B,C differ at most by 1, when each of Algo-



rithms 3 and 4 is called. Hence, the work of Algorithm 3 satisfies:

W3(n) =


W4(n) if n ≤ N3

4W3(n/2) otherwise.

This implies: W3(n) ≤ 4log2(n/N3)N2
3 for all n. Thus we have

W3(n) = O(n2). On the other hand, our assumption implies that
every element of B needs to be compared with every element of C.
Therefore W3(n) = Θ(n2) holds. Now, the span satisfies:

S3(n) =


S4(n) if n ≤ N3

2S3(n/2) otherwise.

This implies: S3(n) ≤ 2log2(n/N3)N2
3 for all n. Thus we have

S3(n) = O(nN3). Moreover, S3(n) = Θ(n) holds for N3 = 1.
Next, the work of Algorithm 2 satisfies:

W2(n) =


W1(n) if n ≤ N2

2W2(n/2) +W3(n) otherwise.

This implies: W2(n) ≤ 2log2(n/N2)N2
2 + Θ(n2) for all n. Thus

we have W2(n) = O(nN2) + Θ(n2).
Finally, the span of Algorithm 2 satisfies:

S2(n) =


S1(n) if n ≤ N2

S2(n/2) + S3(n) otherwise.

Thus we have S2(n) = O(N2
2 +nN3). Moreover, forN3 = N2 =

1, we have S2(n) = Θ(n).
We proceed now with cache complexity analysis, using the ideal

cache model of [9]. We consider a cache of Z words where each
cache line hasLwords. For simplicity, we assume that the elements
of a given poset are packed in an array, occupying consecutive slots,
each of size 1 word. We focus on Algorithms 2 and 3, denoting by
Q2(n) and Q3(n) the number of cache misses that they incur re-
spectively on an input data of size n. We assume that the thresholds
in Algorithms 2 and 3 are set to 1. Indeed, Algorithms 1 and 4
are not cache-efficient. Both may incur Θ(n2/L) cache misses,
for n large enough, whereas Q2(n) ∈ O(n/L + n2/(ZL)) and
Q3(n) ∈ O(n2/(ZL)) hold, as we shall prove now. Observe first
that there exist positive constants α2 and α3 such that we have:

Q2(n) =


Θ(n/L+ 1) if n ≤ α2Z

2Q2(n/2) +Q3(n) + Θ(1) otherwise,

and:

Q3(n) =


Θ(n/L+ 1) if n ≤ α3Z

4Q3(n/2) + Θ(1) otherwise.

This implies: Q3(n) ≤ 4log2(n/(α3Z))Θ(Z/L) for all n, sinceZ ∈
Ω(L2) holds. Thus we have Q3(n) ∈ O(n2/(ZL)). We deduce:

Q2(n) ≤ 2kΘ(Z/L) +
Xi=k−1

i=0
2iQ3(n/2i) + Θ(2k)

where k = log2(n/(α2Z)). This leads to: Q2(n) ≤ O(n/L +
n2/(ZL)). Therefore, we have proved the following result.

PROPOSITION 1. Assume thatX has n ≥ 1 elements, such that
neither x� y nor y�x holds for all x, y ∈ X . Set the thresholds in
Algorithms 2 and 3 to 1. Then, the work, span and cache complexity
of Min(X ), as computed by Algorithm 2, are Θ(n2), Θ(n) and
O(n/L+ n2/(ZL)), respectively.

We leave for a forthcoming paper other types of analysis such as
average case algebraic complexity. We turn now our attention to
experimentation.
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Figure 1: Scalability analysis for ParallelMinPoset by Cilkview

We have implemented the operation ParallelMinPoset of Algo-
rithm 2 as a template function in Cilk++. It is designed to work for
any poset providing a method Compare(ai, aj) that, for any two
elements ai and aj , determines whether aj � ai, or ai� aj , or ai
and aj are incomparable. Our code offers two data structures for
encoding the subsets of the poset X : one is based on arrays and the
other uses the bag structure introduced by the first Author in [20].

For the benchmarks reported in this section, X is a finite set of
natural numbers compared for the divisibility relation. For exam-
ple, the set of the minimal elements of X = {6, 2, 7, 3, 5, 8} is
{2, 7, 3, 5}. Clearly, we implement natural numbers using the type
int of C/C++. Since checking integer divisibility is cheap, we
expect that these benchmarks could illustrate the intrinsic parallel
efficiency of our algorithm.

We have benchmarked our program on sets of random natural
numbers, with sizes ranging from 50, 000 to 500, 000 on a 32-core
machine. This machine has 8 Quad Core AMD Opteron 8354 @ 2.2
GHz connected by 8 sockets. Each core has 64 KB L1 data cache
and 512 KB L2 cache. Every four cores share 2 MB of L3 cache.
The total memory is 128.0 GB. We have compared the timings with
MIN_BASE and MIN_MERGE_BASE being 8, 16, 32, 64 and 128
for different sizes of input. As a result, we choose 64 for both
MIN_BASE and MIN_MERGE_BASE to reach the best timing for



all the test cases.
Figure 1 shows the results measured by the Cilkview [14] scala-

bility analyzer for computing the minimal elements of 100, 000 and
500, 000 random natural numbers. The reference sequential algo-
rithm for the speedup is Algorithm 2 running on 1 core; the run-
ning time of this latter code differs only by 0.5% or 1% from the
C elision of Algorithm 2. On 1 core, the timing for computing the
minimal elements of 100, 000 and 500, 000 random natural num-
bers is respectively 260 and 6454 seconds, which is slightly better
(0.5%) than Algorithm 1. The number of minimal elements for
the two sets of random natural numbers is respectively 99, 919 and
498, 589. These results demonstrate the abundant parallelism cre-
ated by our divide-and-conquer algorithm and the very low parallel
overhead of our program in Cilk++. We have also used Cilkview to
check that our program is indeed free of data races.

4. POLYNOMIAL EXPRESSION OPTIMI-
ZATION

We present an application where the poset can be so large that
it is desirable to compute its minimal elements concurrently to the
generation of the poset itself, thus avoiding storing the entire poset
in memory. As we shall see, this approach is very successful for
this application.

We briefly describe this application which arises in the optimiza-
tion of polynomial expressions. Let f ∈ K[X] be a multivari-
ate polynomial with coefficients in a field K and with variables in
X = {x1, . . . , xn}. We assume that f is given as the sum of its
terms, say f =

P
m∈monoms(f) cmm, where monoms(f) denotes

the set of the monomials of f and cm is the coefficient of m in f .
A key procedure in this application computes a partial syntactic

factorization of f , that is, three polynomials g, h, r ∈ K[X], such
that f writes gh + r and the following two properties hold: (1)
every term in the product gh is the product of a term of g and a
term of h, (2) the polynomials r and gh have no common mono-
mials. It is easy to see that if both g and h are not constant and
one has at least two terms, then evaluating f represented as gh+ r
requires less additions/multiplications in K than evaluating f rep-
resented as

P
m∈monoms(f) cmm, that is, as the sum of its terms.

Consider for instance the polynomial f = ax + ay + az + by +
bz ∈ Q[x, y, z, a, b]. One possible partial syntactic factorization is
(g, h, r) = (a+b, y+z, ax) since we have f = (a+b)(y+z)+ax
and since the above two properties are clearly satisfied. Evaluating
f after specializing x, y, z, a, b to numerical values will amount to 9
additions and multiplications in Q with f = ax+ay+az+by+bz
while 5 are sufficient with f = (a+ b)(y + z) + ax.

One popular approach to reduce the size of a polynomial expres-
sion and facilitate its evaluation is to use Horner’s rule. This high-
school trick well-known for univariate polynomials is extended to
multivariate polynomials via different schemes [4, 21, 22, 5]. How-
ever, it is difficult to compare these extensions and obtain an opti-
mal scheme from any of them. Indeed, they all rely on selecting
an appropriate ordering of the variables. Unfortunately, there are
n! possible orderings for n variables, which limits this approach to
polynomials with moderate number of variables.

In [19], given a finite set M of monomials in x1, . . . , xn, the
authors propose an algorithm for computing a partial syntactic fac-
torization (g, h, r) of f such that monoms(g) ⊆ M holds. The
complexity of this algorithm is polynomial in |M|, n, d, t where d
and t are the total degree and number of terms of f , respectively.
One possible choice forM would consist in taking all monomials
dividing a term in f . The resulting base monomial set M would
often be too large since the targeted n and d in practice are respec-

tively in the ranges 4 · · · 16 and 2 · · · 10, which would lead |M| to
be in the order of thousands or even millions. In [19], the setM is
computed in the following way:

1. compute G the set of all non-constant gcd(m1,m2) where
m1,m2 are any two monomials of f , with m1 6= m2,

2. compute the minimal elements of G for the divisibility rela-
tion of monomials.

In practice, this strategy produces a more efficient evaluation repre-
sentation comparing to the Horner’s rule based polynomial expres-
sion optimization methods. However, there is an implementation
challenge. Indeed, in practice, the number of terms of f is often in
the thousands, which implies that |G| could be in the millions.

This has led to the design of a procedure presented through Al-
gorithms 5, 6, 7 and 8, where G and Min(G) are computed con-
currently in a way that the whole set G does not need to be stored.
The proposed procedure is adapted from Algorithms 1, 2, 3 and
4. The top-level routine is Algorithm 5 which takes as input a set
A of monomials. In practice one would first call this routine with
A = monoms(f). Algorithm 5 integrates the computation of G
andM (as defined above) into a “single pass” divide-and-conquer
process. In Algorithms 5, 6, 7 and 8, we assume that monomials
support the operations listed below, where m1,m2 are monomials:

• Compare(m1,m2) returns 1 if m1 divides m2 (that is, if
m2 is a multiple of m1) and returns −1 if m2 divides m1.
Otherwise, m1 and m2 are incomparable. This function im-
plements the partial order used on the monomials.

• Gcd(m1,m2) computes the gcd of m1 and m2.

In addition, we have a data-structure for monomial sets which sup-
port the following operations, where A,B are monomial sets.

• InnerPairsGcds(A) computes Gcd(a1, a2) for all a1, a2 ∈
A where a1 6= a2 and returns the non-constant values only.

• CrossPairsGcds(A,B) computes Gcd(a, b) for all a ∈ A
and for all b ∈ B and returns the non-constant values only.

• SerialInnerBaseMonomials(A) first calls InnerPairsGcds(A),
and then passes the result to SerialMinPoset of Algorithm 1.

• SerialCrossBaseMonomials(A,B) applies SerialMinPoset
to the result of CrossPairsGcds(A,B).

With the above basic operations, we can now describe our divide-
and-conquer method for computing the base monomial set of A,
that is, Min(GA), where GA consists of all non-constant gcd(a1, a2)
for a1, a2 ∈ A and a1 6= a2. The top-level function is Parallel-
BaseMonomial of Algorithm 5. If |A| is within a threshold, namely
MIN_BASE, the operation SerialInnerBaseMonomials(A) is called.
Otherwise, we partition A as A− ·∪A+ and observe that

Min(GA) = Min(Min(GA−) ∪Min(GA+) ∪Min(GA−,A+))

holds where GA−,A+ consists of all non-constant gcd(x, y) for
(x, y) ∈ A− × A+. Following the above formula, we create two
computational branches: (1) one for Min(Min(GA−)∪Min(GA+))
which is computed by the operation SelfBaseMonomials of Algo-
rithm 6; (2) one for Min(GA−,A+) which is computed by the op-
eration CrossBaseMonomials of Algorithm 7. Algorithms 6 and 7
proceed in a divide-and-conquer manner:

• Algorithm 6 makes two recursive calls in parallel, then merges
their results with Algorithm 3.



Algorithm 5: ParallelBaseMonomials

Input : a monomial set A
Output : Min(GA) where GA consists of all

non-constant gcd(a1, a2) for a1, a2 ∈ A and
a1 6= a2

1 if |A| ≤ MIN_BASE then
2 return SerialInnerBaseMonomials(A);

3 else
4 (A−, A+)← Split(A);
5 B ← spawn SelfBaseMonomials(A−, A+);
6 C ← spawn CrossBaseMonomials(A−, A+);
7 sync;
8 (D1, D2)← ParallelMinMerge(B,C);
9 return Union(D1, D2);

Algorithm 6: SelfBaseMonomials

Input : two disjoint monomial sets B,C
Output : Min(GB ∪GC) where GB (resp. GC ) consists

of all non-constant gcd(x, y) for x, y ∈ B
(resp. C) with x 6= y

1 E ← spawn ParallelBaseMonomials(B);
2 F ← spawn ParallelBaseMonomials(C);
3 sync;
4 (D1, D2)← ParallelMinMerge(E,F );
5 return Union(D1, D2);

Algorithm 7: CrossBaseMonomials

Input : two disjoint monomial sets B,C
Output : Min(GB,C) where GB,C consists of all

non-constant gcd(b, c) for (b, c) ∈ B × C
1 if |B| ≤ MIN_MERGE_BASE then
2 return SerialCrossBaseMonomials(B,C);

3 else
4 (B−, B+)← Split(B);
5 (C−, C+)← Split(C);
6 E ← spawn
7 HalfCrossBaseMonomials(B−, C−, B+, C+);
8 F ← spawn
9 HalfCrossBaseMonomials(B−, C+, B+, C−);

10 sync;
11 (D1, D2)← ParallelMinMerge(E,F );
12 return Union(D1, D2);

Algorithm 8: HalfCrossBaseMonomials

Input : four monomial sets A,B,C,D pairwise
disjoint

Output : Min(GA,B ∪ GC,D) where GA,B (resp.
GC,D) consists of all non-constant gcd(x, y)
for (x, y) ∈ A×B (resp. C ×D)

1 E ← spawn CrossBaseMonomials(A,B);
2 F ← spawn CrossBaseMonomials(C,D);
3 sync;
4 (G1, G2)← ParallelMinMerge(E,F );
5 return Union(G1, G2);

 0

 5

 10

 15

 20

 25

 30

 0  5  10  15  20  25  30

S
pe

ed
up

Cores

Computing a base monomial set of 14869 monomials

Parallelism = 7366, Ideal Speedup
Lower Performance Bound

Measured Speedup

 0

 5

 10

 15

 20

 25

 30

 0  5  10  15  20  25  30

S
pe

ed
up

Cores

Computing a base monomial set of 38860 monomials

Parallelism = 121798, Ideal Speedup
Lower Performance Bound

Measured Speedup

Figure 2: Scalability analysis for ParallelBaseMonomials by Cilkview

• Algorithm 7 uses a threshold. In the base case, computations
are performed serially. Otherwise, both input monomial sets
are split evenly then processed via two concurrent calls to
Algorithm 8, whose results are merged with Algorithm 3.

• Algorithm 8 simply performs two concurrent calls to Algo-
rithm 7 whose results are merged with Algorithm 3.

We have implemented these algorithms in Cilk++. A monomial
is represented by an exponent vector. Each entry of an exponent
vector is an unsigned int. A set A of input monomials is repre-
sented by an array of |A|n unsigned ints where n is the number
of variables. Accessing the elements in A is simply by indexing.

When the divide-and-conquer process reaches the base cases,
at Lines 1–2 in Algorithm 5 and lines 1–2 in Algorithm 7, we
compute either InnerPairsGcds(A) or CrossPairsGcds(B,C), fol-
lowed by the computation of the minimal elements of these gcds.
Here, we allocate dynamically the space to hold the gcds. Each exe-
cution of InnerPairsGcds(A) allocates memory for |A|(|A|− 1)/2
gcds. Each execution of CrossPairsGcds(B,C) allocates space
for |B||C| gcds. The size of these allocated memory spaces in
the base cases is rather small, which, ideally, should fit in cache.
Right after computing the gcds, we compute the minimal elements
of these gcds in place. In other words, we remove those gcds which



are not minimal for the divisibility relation. In the Union opera-
tions, for example the Union(D1, D2) in Line 9 in Algorithm 5,
we reallocate the larger one between D1 and D2 to accommo-
date |D1|+ |D2| monomials and free the space of the smaller one.
This memory management strategy combined with the divide-and-
conquer technique permits us to handle large sets of monomials,
which could not be handled otherwise. This is confirmed by the
benchmarks of our implementation.

Figure 2 gives the scalability analysis results by Cilkview for
computing the base monomial sets of two large monomial sets.
The first one has 14869 monomials with 28 variables; its num-
ber of minimal elements here 14. Both thresholds MIN_BASE and
MIN_MERGE_BASE are set to 64. Its timing on 1 core is about
3.5 times less than the serial loop method, which is the function
SerialInnerBaseMonomials. Using 32 cores we gain a speedup fac-
tor of 27 with respect to the timing on 1 core. Another monomial
set has 38860 monomials with 30 variables. There are 15 minimal
elements. The serial loop method for this case aborted due to mem-
ory allocation failure. However, our parallel execution reaches a
speedup of 30 on 32 cores. We also notice that the ideal parallelism
and the lower performance bound estimated by Cilkview for both
benchmarks are very high but our measured speedup curve is lower
than the lower performance bound. We attribute this performance
degradation to the cost of our dynamic memory allocation.

5. TRANSVERSAL HYPERGRAPH GENE-
RATION

Hypergraphs generalize graphs in the following way. A hyper-
graph H is a pair (V, E) where V is a finite set and E is a set of
subsets of V , called the edges (or hyperedges) of H. The elements
of V are called the vertices ofH. The number of vertices and edges
ofH are denoted here by n(H) and |H| respectively; they are called
the order and the size ofH. We denote by Min(H) the hypergraph
whose vertex set is V and whose hyperedges are the minimal el-
ements of the poset (E ,⊆). The hypergraph H is said simple if
none of its hyperedges is contained in another, that is, whenever
Min(H) = H holds.

We denote by Tr(H) the hypergraph whose vertex set is V and
whose hyperedges are the minimal elements of the poset (T ,⊆)
where T consists of all subsets A of V such that A∩E 6= ∅ holds
for all E ∈ E . We call Tr(H) the transversal of H. Let H′ =
(V, E ′) and H′′ = (V, E ′′) be two hypergraphs. We denote by
H′∪H′′ the hypergraph whose vertex set is V and whose hyper-
edge set is E∪E ′. Finally, we denote by H′ ∨ H′′ the hypergraph
whose vertex set is V and whose hyperedges are the E′∪E′′ for all
(E′, E′′) ∈ E ′ × E ′′. The following proposition [2] is the basis of
most algorithms for computing the transversal of a hypergraph.

PROPOSITION 2. For two hypergraphsH′ = (V, E ′) andH′′ =
(V, E ′′) we have

Tr(H′∪H′′) = Min(Tr(H′) ∨ Tr(H′′)).

All popular algorithms for computing transversal hypergraphs,
see [12, 16, 1, 7, 17], make use of the formula in Proposition 2
in an incremental manner. That is, writing E = E1, . . . , Em and
Hi = (V, {E1, . . . , Ei}) for i = 1 · · ·m, these algorithms com-
pute Tr(Hi+1) from Tr(Hi) as follows

Tr(Hi+1) = Min(Tr(Hi) ∨ (V, {{v} | v ∈ Ei+1}))

The differences between these algorithms consist of various tech-
niques to minimize the construction of unnecessary intermediate
hyperedges. While we believe that these techniques are all impor-
tant, we propose to apply Berge’s formula à la lettre, that is, to

Algorithm 9: ParallelTransversal

Input : A hypergraphH
Output : Tr(H)

1 if |H| ≤ TR_BASE then
2 return SerialTransversal(H);

3 (H−,H+)← Split(H);
4 H− ← spawn ParallelTransversal(H−);
5 H+ ← spawn ParallelTransversal(H+);
6 sync;
7 return ParallelHypMerge(H−,H+);

Algorithm 10: ParallelHypMerge

Input : H, K such that Tr(H) = H and Tr(K) = K.
Output : Min(H ∨K)

1 if |H| ≤MERGE_HYP_BASE and
2 |K| ≤MERGE_HYP_BASE then
3 return SerialHypMerge(H,K);

4 else if |H| >MERGE_HYP_BASE and
5 |K| >MERGE_HYP_BASE then
6 (H−,H+)← Split(H);
7 (K−,K+)← Split(K);
8 L ← spawn
9 HalfParallelHypMerge(H−,K−,H+,K+);

10 M← spawn
11 HalfParallelHypMerge(H−,K+,H+,K−);
12 return Union(ParallelMinMerge(L,M));

13 else if |H| >MERGE_HYP_BASE and
14 |K| ≤MERGE_HYP_BASE then
15 (H−,H+)← Split(H);
16 M− ← ParallelHypMerge(H−,K);
17 M+ ← ParallelHypMerge(H+,K);
18 return Union(ParallelMinMerge(M−,M+));

19 else
// |H| ≤ MERGE_HYP_BASE and
// |K| > MERGE_HYP_BASE

20 (K−,K+)← Split(K);
21 M− ← ParallelHypMerge(K−,H);
22 M+ ← ParallelHypMerge(K+,H);
23 return Union(ParallelMinMerge(M−,M+));

Algorithm 11: HalfParallelHypMerge

Input : four hypergraphsH, K,L,M
Output : Min(Min(H ∨K) ∪ Min(L ∨M))

1 N ← spawn ParallelHypMerge(K,H);
2 P ← spawn ParallelHypMerge(L,M);
3 sync;
4 return Union(ParallelMinMerge(N ,P));



divide the input hypergraph H into hypergraphs H′, H′′ of similar
sizes and such thatH′∪H′′ = H. Our intention is to create oppor-
tunity for parallel execution. At the same time, we want to control
the intermediate expression swell resulting from the computation of

Tr(H) ∨ Tr(H′).

To this end, we compute this expression in a divide-and-conquer
manner and apply the Min operator to the intermediate results.

Algorithm 9 is our main procedure. Similarly to Algorithm 2, it
proceeds in a divide-and-conquer manner with a threshold. For the
base case, we call SerialTransversal(H), which can implement any
serial algorithms for computing the transversal of hypergraph H.
When the input hypergraph is large enough, then this hypergraph
is split into two so as to apply Proposition 2 with the two recursive
calls performed concurrently. When these recursive calls return,
their results are merged by means of Algorithm 10.

Given two hypergraphs H and K, with the same vertex set, sat-
isfying Tr(H) = H and Tr(K) = K, the operation ParallelHyp-
Merge of Algorithm 10 returns Min(H ∨ K). This operation is
another instance of an application where the poset can be so large
that it is desirable to compute its minimal elements concurrently to
the generation of the poset itself, thus avoiding storing the entire
poset in memory. As for the application described in Section 4,
one can indeed efficiently generate the elements of the poset and
compute its minimal elements simultaneously.

The principle of Algorithm 10 is very similar to that of Algo-
rithm 3. Thus, we should simply mention two points. First, Algo-
rithm 10 uses a subroutine, namely HalfParallelHypMerge of Al-
gorithm 11, for clarity. Secondly, the base case of Algorithm 10,
calls SerialHypMerge(H,K), which can implement any serial al-
gorithms for computing Min(H ∨K).

We have implemented our algorithms in Cilk++ and benchmarked
our code with some well-known problems on the same 32-core ma-
chine reported in Section 3. An implementation detail which is
worth to mention is data representation. We represent each hyper-
edge as a bit-vector. For a hypergraph with n vertices, each hy-
peredge is encoded by n bits. By means of this representation, the
operations on the hyperedges such as inclusion test and union can
be reduced to bit operations. Thus, a hypergraph with m edges
is encoded by an array of mn bits. Traversing the hyperedges is
simply by moving pointers to the bit-vectors in this array.

Our test problems can be classified into three groups. The first
one consists of three types of large examples reported in [16]. We
summarize their features and compare the timing results in Table 1.
A scalability analysis for the three large problems in data mining
on a 32-core is illustrated in Figure 3. The second group consid-
ers an enumeration problem (Kuratowski hypergraph), as listed in
Table 2 and Figure 4. The third group is Lovasz hypergraph [2],
reported in Table 3. The sizes of the three base cases used here
(TR_BASE, MERGE_HYP_BASE and MIN_MERGE_BASE) are
respectively 32, 16 and 128. Our experimentation shows that the
base case threshold is an important influential factor on perfor-
mance. In this work, they are determined by our test runs. To
predict the feasible values based on the type of a poset and the hi-
erarchical memory of a machine would definitely help. We shall
develop a tool for this purpose when we deploy our software.

In Table 1, we describe the parameters of each problem follow-
ing the same notation as in [16]. The first three columns indicate re-
spectively the number of vertices, n, the number of hyperedges, m,
and the number of minimal transversals, t. The problems classified
as Threshold, Dual Matching and Data Mining are large examples
selected from [16]. We have used thg, a Linux executable program
developed by Kavvadias and Stavropoulos in [16] for their algo-
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rithm, named KS, to measure the time for solving these problems
on our machine. We observed that the timing results of thg on our
machine were very close to those reported in [16]. Thus, we show
here the timing results (seconds) presented in [16] in the fourth col-
umn (KS) in our Table 1. From the comparisons in [16], the KS
algorithm outperforms the algorithm of Fredman and Khachiyan
as implemented by Boros et al. in [3] (BEGK) and the algorithm
of Bailey et al. given in [1] (BMR) for the Dual Matching and
Threshold graphs. However, for the three large problems from data
mining, the KS algorithm is about 30 to 60 percent slower than the
best ones between BEGK and BMR.

In the last three columns in Table 1, we report the timing (in
seconds) of our program for solving these problems using 1 core
and 32 cores, and the speedup factor on 32-core w.r.t on 1-core.
On 1-core, our method is about 6 to 18 times faster for the selected
Dual Matching problems and the large problems in data mining.
Our program is particularly efficient for the Threshold graphs, for
which it takes only about 0.01 seconds for each of them, while
thg took about 11 to 82 seconds. In addition, our method shows
significant speedup on multi-cores for the problems of large input
size. As shown in Figure 3, for the three data mining problems, our
code demonstrates linear speedup on 32 cores w.r.t the timing of the
same algorithm on 1 core.

There are three sets of hypergraphs in [16] on which our method
does not perform well, namely Matching, Self-Dual Threshold and
Self-Dual Fano-Plane graphs. For these examples our code is about
2 to 50 times slower than the KS algorithm presented in [16]. Al-
though the timing of such examples is quite small (from 0.01 to
178 s), they demonstrate the efficient techniques used in [16]. In-
cooperating such techniques into our algorithm is our future work.

Instance parameters KS ParallelTransversal Speedup Ratio
n m t (s) 1-core (s) 32-core (s) KS/1-core KS/32-core

Threshold problems
140 4900 71 11 0.01 - 1000 -
160 6400 81 23 0.01 - 2000 -
180 8100 91 44 0.01 - 4000 -
200 10000 101 82 0.02 - 4000 -
Dual Matching problems

34 131072 17 57 9 0.57 6 100
36 262144 18 197 23 1.77 9 111
38 524288 19 655 56 3.53 12 186
40 1048576 20 2167 131 7.13 17 304

Data Mining problems
287 48226 97 1648 92 3 18 549
287 92699 99 6672 651 21 10 318
287 108721 99 9331 1146 36 8 259

Table 1: Examples from [16]

The first family of classical hypergraphs that we have tested is
related to an enumeration problem, namely the Kuratowski Kr

n hy-
pergraphs. Table 2 gives two representative ones. This type of hy-
pergraphs are defined by two parameters n and r. Given n distinct
vertices, such a hypergraph contains all the hyperedges that have
exactly r vertices. Our program achieves linear speedup on this
class of hypergraphs with sufficiently large size, as reported in Ta-
ble 2 and Figure 4 for K5

40 and K7
30. We have also used the thg

program provided by the Authors of [16] to solve these problems.
The timing for solving K5

30 by the thg program is about 6500 sec-
onds, which is about 70 times slower than our ParallelTransversal
on 1-core. For the case of K5

40 and K7
30, the thg program did not

produce a result after running for more than 15 hours.
Another classical hypergraph is the Lovasz hypergraph, which

is defined by a positive integer r. Consider r finite disjoint sets
X1, . . . , Xr such that Xj has exactly j elements, for j = 1 · · · r.
The Lovasz hypergraph of rank r, denoted by Lr , has all its hyper-
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edges of the form

Xj ∪ {xj+1, . . . , xr},

where xj+1, . . . , xr belong respectively to Xj+1, . . . , Xr , for j =
1 . . . r. We have tested our implementation with the Lovasz hy-
pergraphs up to rank 10. For the rank 9 problem, we obtained 25
speedup on 32-core. For the one of rank 10, due to time limit, we
only obtained the timing on 32-core and 16-core, which shows a
linear speedup from 16 cores to 32 cores. The thg program solves
the problem of rank 8 in 8000 seconds. For the problems of rank 9
and 10, the thg program did not complete within 15 hours.

6. CONCLUDING REMARKS
In this paper, we have proposed a parallel algorithm for comput-

ing the minimal elements of a finite poset. Its implementation in
Cilk++ on multi-cores is capable of processing large posets that a
serial implementation could not process. Moreover, for sufficiently
large input data set, our code reaches linear speedup on 32 cores.

We have integrated our algorithm into two applications. One is
polynomial expression optimization and the other one is the com-
putation of transversal hypergraphs. In both cases, we control in-
termediate expression swell by generating the poset and computing



Instance parameters KS ParallelTransversal
n r m t (s) 1-core 16-core 32-core

(s) (s) Speedup (s) Speedup
30 5 142506 27405 6500 88 6 14.7 3.5 25.0
40 5 658008 91390 >15 hr 915 58 15.8 30 30.5
30 7 2035800 593775 >15 hr 72465 4648 15.6 2320 31.2

Table 2: Tests for the Kuratowski hypergraphs

Instance parameters KS ParallelTransversal
n r m t (s) 1-core 16-core 32-core

(s) (s) Speedup (s) Speedup
36 8 69281 69281 8000 119 13 8.9 10 11.5
45 9 623530 623530 >15 hr 8765 609 14.2 347 25.3
55 10 6235301 6235301 >15 hr - 60509 - 30596

Table 3: Tests for the Lovasz hypergraphs

its minimal elements concurrently. Our Cilk++ code for computing
transversal hypergraphs is competitive with the implementation re-
ported by Kavvadias and Stavropoulos in [16]. Moreover, our code
outperforms the one of our colleagues on three sets of large input
problems, in particular the problems from data mining. However,
our code is slower than theirs on other data sets. In fact, our code
is a preliminary implementation, which simply applies Berge’s for-
mula in a divide-and-conquer manner. We still need to enhance our
implementation with the various techniques which have been de-
veloped for controlling expression swell in transversal hypergraph
computations [12, 16, 1, 7, 17].

We are extending the work presented in this paper in different
directions. First, we would like to obtain a deeper complexity anal-
ysis of our algorithm for computing the minimal elements of a finite
poset. Secondly, we are adapting this algorithm to the computation
of GCD-free bases and the removal of redundant components.
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