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Abstract

The computation of triangular decompositions involves two fundamental operations:
polynomial GCDs modulo regular chains and regularity test modulo saturated ide-
als. We propose new algorithms for these core operations based on modular meth-
ods and fast polynomial arithmetic. We rely on new results connecting polynomial
subresultants and GCDs modulo regular chains. We report on extensive experimen-
tation, comparing our code to pre-existing Maple implementations, as well as more
optimized Magma functions. In most cases, our new code outperforms the other
packages by several orders of magnitude.

Key words: Fast polynomial arithmetic, subresultants, regular chain, regular
GCD, triangular decomposition, polynomial systems

1 Introduction

Triangular decomposition of polynomial systems are based on a recursively
univariate vision of multivariate polynomials. Most of the methods comput-
ing these decompositions manipulate polynomial remainder sequences (PRS).
Moreover, these methods are usually “factorization free”, which explains why
two different irreducible components may be represented by the same regular
chain. An essential routine is then to check whether a hypersurface f = 0 con-
tains one of the irreducible components encoded by a regular chain T . This
is achieved by testing whether the polynomial f is a zero-divisor modulo the
saturated ideal of T . This univariate vision on regular chains allows to perform
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regularity test by means of GCD computations. However, since the saturated
ideal of T may not be prime, the concept of a GCD used here is not standard.

The first formal definition of this type of GCDs was given by Kalkbrener in
[14]. But in fact, GCDs over non-integral domains were already used in several
papers [9,16,12] since the introduction of the celebrated D5 Principle [7] by
Della Dora, Dicrescenzo and Duval. Indeed, this brilliant and simple observa-
tion allows one to carry out over direct product of fields computations that are
usually conducted over fields. For instance, computing univariate polynomial
GCDs by means of the Euclidean Algorithm.

To define a polynomial GCD of two (or more) polynomials modulo a regular
chain T , Kalkbrener refers to the irreducible components that T represents.
In order to improve the practical efficiency of those GCD computations by
means of subresultant techniques, Rioboo and the second author proposed a
more abstract definition in [24]. Their GCD algorithm is, however, limited to
regular chains with zero-dimensional saturated ideals.

While Kalkbrener’s definition cover the positive dimensional case, his approach
cannot support triangular decomposition methods solving polynomial systems
incrementally, that is, by solving one equation after another. This is a seri-
ous limitation since incremental solving is a powerful way to develop efficient
sub-algorithms, by means of geometrical consideration. The first incremental
triangular decomposition method was proposed by Lazard in [15], without
proof nor a GCD definition. Another such method was established by the
second author in [23] together with a formal notion of GCD adapted to the
needs of incremental solving. This concept, called regular GCD, is reviewed in
Section 2 in the context of regular chains. A more abstract definition follows.

Let B be a commutative ring with unity. Let P , Q and G be non-zero univariate
polynomials in B[y]. We say that G is a regular GCD of P,Q if the following
three conditions hold:

(1) the leading coefficient of G in y is a regular element of B,
(2) G lies in the ideal generated by P and Q in B[y], and
(3) if G has positive degree w.r.t. y, then G pseudo-divides both of P and Q,

that is, the pseudo-remainders prem(P,G) and prem(Q,G) are null.

In the context of regular chains, the ring B is the residue class ring of a
polynomial ring A := k[x1, . . . , xn] over a field k by the saturated ideal sat(T )
of a regular chain T . Even if the leading coefficients of P,Q are regular and
sat(T ) is radical, the polynomials P,Q may not necessarily admit a regular
GCD (unless sat(T ) is prime). However, by splitting T into several regular
chains T1, . . . , Te (in a sense specified in Section 2) one can compute a regular
GCD of P,Q over each of the ring A/sat(Ti), as shown in Section 4.
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In this paper, we propose a new algorithm for this task, together with a the-
oretical study and implementation report, providing dramatic improvements
w.r.t. previous work [14,23]. Section 3 exhibits sufficient conditions for a sub-
resultant of P,Q (regarded as univariate polynomials in y) to be a regular
GCD of P,Q w.r.t. T . Some of these properties could be known, but we could
not find a reference for them, in particular when sat(T ) is not radical.

These results reduce the computation of regular GCDs to that of subresultant
chains. More precisely and reusing the above notations, Theorem 1 in Section 4
states that the regular chain T can be split into regular chains T1, . . . , Te such
that for each i = 1 · · · e, one of the subresultants of P and Q is a regular GCD
of P,Q over A/sat(Ti).

In Section 5 we describe our implementation for subresultant chain computa-
tion. We observe that, during the computation of triangular decomposition,
whenever a regular GCD of P and Q w.r.t. T is needed, the resultant of P and
Q w.r.t. y is likely to be computed too. This suggests to organize calculations
in a way that the subresultant chain of P and Q is computed only once. To this
end, we evaluate the subresultant chain of P and Q at sufficiently many values
of (x1, . . . , xn) such that any coefficient of any subresultant P and Q can be in-
terpolated when needed. In our implementation, this evaluation-interpolation
scheme is based on FFT techniques. It is available in Maple in the module
FastArithmeticTools of the RegularChains library.

The use of fast arithmetic for computing regular GCDs was proposed in [6] for
regular chains with zero-dimensional radical saturated ideals. Algorithm 1 in
Section 4, however, does not suffer from any such restrictions: the saturated
ideal of T may be non-radical or of positive dimension.

Algorithm 1 relies on a procedure for testing whether a polynomial is regu-
lar w.r.t the saturated ideal of a regular chain. In Section 6, we propose a
new algorithm for this task in dimension zero, see Algorithm 2. Then, under
genericity assumptions, we establish running time estimates for both Algo-
rithms 1 and 2, see Theorem 2 and Corollary 3. We explain in Section 6 why
these results suggest that Algorithms 1 and 2 are probably more suitable for
implementation than the algorithms of [6].

The experimental results of Section 7 illustrate the efficiency of our algorithms.
We obtain speed-up factors of several orders of magnitude w.r.t. the algorithms
of [23] for regular GCD computations and regularity test. Our code compares
and often outperforms packages with similar specifications in Maple and
Magma.

With respect to the ISSAC 2009 article [21], the present paper contains a
formal presentation of Algorithm 1 together with a complete proof. In addition,
the complexity results of Section 6 are new.

3



2 Preliminaries

Let k be a field and let k[x] = k[x1, . . . , xn] be the ring of polynomials with
coefficients in k, with ordered variables x1 ≺ · · · ≺ xn. Let k be the algebraic
closure of k. If u is a subset of x then k(u) denotes the fraction field of k[u].

For F ⊂ k[x], we denote by 〈F 〉 the ideal it generates in k[x] and by
√

〈F 〉

the radical of 〈F 〉. For H ∈ k[x], the saturated ideal of 〈F 〉 w.r.t. H, denoted
by 〈F 〉 : H∞, is the ideal

{Q ∈ k[x] | ∃m ∈ N s.t. HmQ ∈ 〈F 〉}.

A polynomial P ∈ k[x] is a zero-divisor modulo 〈F 〉 if there exists a polynomial
Q such that PQ ∈ 〈F 〉, and neither P nor Q belongs to 〈F 〉. The polynomial
P is regular modulo 〈F 〉 if it is neither zero, nor a zero-divisor modulo 〈F 〉.
We denote by V (F ) the zero set (or algebraic variety) of F in k

n
. For a subset

W ⊂ k
n
, we denote by W its closure in the Zariski topology.

2.1 Regular chains and related notions

Polynomial. If P ∈ k[x] is a non-constant polynomial, the largest variable
appearing in P is called the main variable of P and is denoted by mvar(P ). We
regard P as a univariate polynomial in its main variable. The degree and the
leading coefficient of P as a univariate polynomial in mvar(P ) are called main

degree and initial of P ; they are denoted by mdeg(P ) and init(P ) respectively.

Triangular Set. A subset T of non-constant polynomials of k[x] is a trian-

gular set if the polynomials in T have pairwise distinct main variables. Denote
by mvar(T ) the set of all mvar(P ) for P ∈ T . A variable v ∈ x is algebraic

w.r.t. T if v ∈ mvar(T ); otherwise it is free. For a variable v ∈ x we denote
by T<v (resp. T>v) the subsets of T consisting of the polynomials with main
variable less than (resp. greater than) v. If v ∈ mvar(T ), we denote by Tv the
polynomial P ∈ T with main variable v. For T not empty, Tmax denotes the
polynomial of T with largest main variable.

Quasi-component and saturated ideal. Given a triangular set T in k[x],
denote by hT the product of the init(P ) for all P ∈ T . The quasi-component

W (T ) of T is V (T )\V (hT ), that is, the set of the points of V (T ) which do not
cancel any of the initials of T . We denote by sat(T ) the saturated ideal of T ,
defined as follows: if T is empty then sat(T ) is the trivial ideal 〈0〉; otherwise
it is the ideal 〈T 〉 : h∞

T .
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Regular chain. A triangular set T is a regular chain if either T is empty, or
T \ {Tmax} is a regular chain and the initial of Tmax is regular with respect to
sat(T \ {Tmax}). In this latter case, sat(T ) is a proper ideal of k[x]. From now
on T ⊂ k[x] is a regular chain; moreover we write m = |T |, s = mvar(T ) and
u = x \ s. The ideal sat(T ) enjoys several properties. First, its zero-set equals
W (T ). Second, the ideal sat(T ) is unmixed with dimension n−m. Moreover,
any prime ideal p associated to sat(T ) satisfies p∩k[u] = 〈0〉.

Given P ∈ k[x] the pseudo-remainder (resp. iterated resultant) of P w.r.t. T ,
denoted by prem(P, T ) (resp. res(P, T )) is defined as follows. If P ∈ k or no
variables of P is algebraic w.r.t. T , then prem(P, T ) = P (resp. res(P, T ) = P ).
Otherwise, we set prem(P, T ) = prem(R, T<v) (resp. res(P, T ) = res(R, T<v))
where v is the largest variable of P which is algebraic w.r.t. T and R is the
pseudo-remainder (resp. resultant) of P and Tv w.r.t. v. We have: P is null
(resp. regular) w.r.t. sat(T ) if and only if prem(P, T ) = 0 (resp. res(P, T ) 6= 0).

Regular GCD. Let I be the ideal generated by
√

sat(T ) in k(u)[s]. Then

L(T ) := k(u)[s]/I is a direct product of fields. It follows that every pair of
univariate polynomials P,Q ∈ L(T )[y] possesses a GCD in the sense of [24].
The following GCD notion [23] is more convenient since it avoids considering
radical ideals. Let T ⊂ k[x1, . . . , xn] be a regular chain and let P,Q ∈ k[x, y] be
non-constant polynomials both with main variable y. Assume that the initials
of P and Q are regular modulo sat(T ). A non-zero polynomial G ∈ k[x, y] is
a regular GCD of P,Q w.r.t. T if these conditions hold:

(1) lc(G, y) is regular with respect to sat(T );
(2) there exist u, v ∈ k[x, y] such that g − up− vt ∈ sat(T );
(3) if deg(G, y) > 0 holds, then 〈P,Q〉 ⊆ sat(T ∪G).

In this case, the polynomial G has several properties. First, it is regular with
respect to sat(T ). Moreover, if sat(T ) is radical and deg(G, y) > 0 holds,
then the ideals 〈P,Q〉 and 〈G〉 of L(T )[y] are equal, so that G is a GCD
of (P,Q) w.r.t. T in the sense of [24]. The notion of a regular GCD can be
used to compute intersections of algebraic varieties. As an example we will use
Formula (1) which follows from Theorem 32 in [23]. Assume that the regular
chain T is simply {R} where R = res(P,Q, y), for R 6∈ k, and let H be the
product of the initials of P and Q. Then, we have:

V (P,Q) = W (R,G) ∪ V (H,P,Q). (1)

Splitting. Two polynomials P,Q may not necessarily admit a regular GCD
w.r.t. a regular chain T , unless sat(T ) is prime, see Example 1 in Section 3.
However, if T “splits” into several regular chains, then P,Q may admit a
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regular GCD w.r.t. each of them. This requires a notation. For non-empty
regular chains T, T1, . . . , Te ⊂ k[x] we write T −→ (T1, . . . , Te) whenever

√

sat(T ) =
√

sat(T1) ∩ · · · ∩
√

sat(Te),

mvar(T ) = mvar(Ti) and sat(T ) ⊆ sat(Ti) hold for all 1 ≤ i ≤ e. Observe that
during splitting any polynomial H regular w.r.t sat(T ) is also regular w.r.t.
sat(Ti) for all 1 ≤ i ≤ e.

2.2 Fundamental operations on regular chains

We list below the specifications of the fundamental operations on regular
chains used in this paper. The names and specifications of these operations
are the same as in the RegularChains library [18] in Maple.

Regularize. For a regular chain T ⊂ k[x] and P in k[x], the operation
Regularize(P, T ) returns regular chains T1, . . . , Te of k[x] such that, for each 1 ≤
i ≤ e, P is either zero or regular modulo sat(Ti) and we have T−→(T1, . . . , Te).

RegularGcd. Let T be a regular chain and let P,Q ∈ k[x, y] be non-
constant with mvar(P ) = mvar(Q) = y 6∈ mvar(T ) and such that both init(P )
and init(Q) are regular w.r.t. sat(T ). Then, the operation RegularGcd(P,Q, T )
returns a sequence (G1, T1), . . . , (Ge, Te), called a regular GCD sequence, where
G1, . . . , Ge are polynomials and T1, . . . , Te are regular chains of k[x], such
that T−→(T1, . . . , Te) holds and Gi is a regular GCD of P,Q w.r.t. Ti for all
1 ≤ i ≤ e.

NormalForm. Let T be a zero-dimensional normalized regular chain, that
is, a regular chain whose saturated ideal is zero-dimensional and whose initials
are all in the base field k. Observe that T is a lexicographic Gröbner basis.
Then, for P ∈ k[x], the operation NormalForm(P, T ) returns the normal form

of P w.r.t. T in the sense of Gröbner bases.

2.3 Subresultants

We follow the presentation of [8], [26] and [10].
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Determinantal polynomial. Let B be a commutative ring with identity
and let m ≤ n be positive integers. Let M be a m×n matrix with coefficients
in B. Let Mi be the square submatrix of M consisting of the first m−1 columns
of M and the i-th column of M , for i = m · · ·n; let det Mi be the determinant
of Mi. We denote by dpol(M) the element of B[y], called the determinantal

polynomial of M , given by

dpol(M) = det Mmyn−m + det Mm+1y
n−m−1 + · · ·+ det Mn.

Note that if dpol(M) is not zero then its degree is at most n−m. Let P1, . . . , Pm

be polynomials of B[y] of degree less than n. We denote by mat(P1, . . . , Pm)
the m × n matrix whose i-th row contains the coefficients of Pi, sorting in
order of decreasing degree, and such that Pi is treated as a polynomial of
degree n− 1. We denote by dpol(P1, . . . , Pm) the determinantal polynomial of
mat(P1, . . . , Pm).

Subresultant. Let P,Q ∈ B[y] be non-constant polynomials of respective
degrees p, q with q ≤ p. Let d be an integer with 0 ≤ d < q. Then the d-th
subresultant of P and Q, denoted by Sd(P,Q), is

Sd(P,Q) = dpol(yq−d−1P, yq−d−2P, . . . , P, yp−d−1Q, . . . , Q).

This is a polynomial which belongs to the ideal generated by P and Q in B[y].
In particular, S0(P,Q) is res(P,Q), the resultant of P and Q. Observe that if
Sd(P,Q) is not zero then its degree is at most d. When Sd(P,Q) has degree d,
it is said non-defective or regular; when Sd(P,Q) 6= 0 and deg(Sd(P,Q)) < d,
Sd(P,Q) is said defective. We denote by sd the coefficient of Sd(P,Q) in yd.
For convenience, we extend the definition to the q-th subresultant as follows:

Sq(P,Q) =











γ(Q)Q, if p > q or lc(Q) ∈ B is regular

undefined, otherwise

where γ(Q) = lc(Q)p−q−1. Note that when p equals q and lc(Q) is a regular
element in B, Sq(P,Q) = lc(Q)−1Q is in fact a polynomial over the total
fraction ring of B. We call specialization property of subresultants the following
statement. Let D be another commutative ring with identity and Ψ a ring
homomorphism from B to D such that we have Ψ(lc(P )) 6= 0 and Ψ(lc(Q)) 6= 0.
Then we have

Sd(Ψ(P ), Ψ(Q)) = Ψ(Sd(P,Q)).

Divisibility relations of subresultants. The subresultants Sq−1(P,Q),
Sq−2(P,Q), . . ., S0(P,Q) satisfy relations which induce an Euclidean-like al-
gorithm for computing them. Following [8] we first assume that B is an integral
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domain. For convenience, we simply write Sd instead of Sd(P,Q) for each d.
We write A ∼ B for A,B ∈ B[y] whenever they are associated over fr(B), the
field of fractions of B. Then for d = q − 1, . . . , 1, we have:

(rq−1) Sq−1 = prem(P,−Q), the pseudo-remainder of P by −Q,
(r<q−1) if Sq−1 6= 0, with e = deg(Sq−1), then the following holds:

prem(Q,−Sq−1) = lc(Q)(p−q)(q−e)+1Se−1,

(re) if Sd−1 6= 0, with e = deg(Sd−1) < d− 1, thus Sd−1 is defective, and we have
(1) deg(Sd) = d, thus Sd is non-defective,
(2) Sd−1 ∼ Se and lc(Sd−1)

d−e−1Sd−1 = sd
d−e−1Se, thus Se is non-defective,

(3) Sd−2 = Sd−3 = · · · = Se+1 = 0,
(re−1) if both Sd and Sd−1 are nonzero, with respective degrees d and e then we

have prem(Sd,−Sd−1) = lc(Sd)
d−e+1Se−1.

We consider now the case where B is an arbitrary commutative ring, following
Theorem 4.3 in [10]. If Sd, Sd−1 are nonzero, with respective degrees d and e
and if sd is regular in B then we have

lc(Sd−1)
d−e−1Sd−1 = sd

d−e−1Se.

Moreover, there exists Cd ∈ B[y] such that we have:

(−1)d−1lc(Sd−1)seSd + CdSd−1 = lc(Sd)
2Se−1.

In addition Sd−2 = Sd−3 = · · · = Se+1 = 0 also holds.

3 Regular GCDs

Throughout this section, we assume n ≥ 1 and we consider P,Q ∈ k[x1, . . . , xn+1]
non-constant polynomials with the same main variable y := xn+1 and such
that p := deg(P, y) ≥ q := deg(Q, y) holds. We denote by R the resultant of
P and Q w.r.t. y. Let T ⊂ k[x1, . . . , xn] be a non-empty regular chain such
that R ∈ sat(T ) and the initials of P,Q are regular w.r.t. sat(T ). We denote
by A and B the rings k[x1, . . . , xn] and k[x1, . . . , xn]/sat(T ), respectively. Let
Ψ be both the canonical ring homomorphism from A to B and the ring homo-
morphism it induces from A[y] to B[y]. For 0 ≤ j ≤ q, we denote by Sj the
j-th subresultant of P,Q in A[y].

Let d be an index in the range 1 · · · q such that Sj ∈ sat(T ) for all 0 ≤ j < d.
Lemma 3 and Lemma 4 exhibit conditions under which Sd is a regular GCD
of P and Q w.r.t. T . Lemma 1 and Lemma 2 investigate the properties of Sd

when lc(Sd, y) is regular modulo sat(T ) and lc(Sd, y) ∈ sat(T ) respectively.
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Lemma 1 If lc(Sd, y) is regular modulo sat(T ), then the polynomial Sd is a

non-defective subresultant of P and Q over A. Consequently, Ψ(Sd) is a non-

defective subresultant of Ψ(P ) and Ψ(Q) in B[y].

Proof. When d = q holds, we are done. Assume d < q. Suppose Sd is defective,
that is, deg(Sd, y) = e < d. According to item (re) in the divisibility relations
of subresultants, there exists a non-defective subresultant Sd+1 such that

lc(Sd, y)d−eSd = sd−e
d+1Se,

where sd+1 is the leading coefficient of Sd+1 in y. By our assumptions, Se

belongs to sat(T ), thus lc(Sd, y)d−eSd ∈ sat(T ) holds. It follows from the fact
lc(Sd, y) is regular modulo sat(T ) that Sd is also in sat(T ). However the fact
that lc(Sd, y) = init(Sd) is regular modulo sat(T ) also implies that Sd is regular
modulo sat(T ). A contradiction. �

Lemma 2 If lc(Sd, y) is contained in sat(T ), then all the coefficients of Sd

regarded as a univariate polynomial in y are nilpotent modulo sat(T ).

Proof. If the leading coefficient lc(Sd, y) is in sat(T ), then lc(Sd, y) ∈ p holds
for all the associated primes p of sat(T ). By the Block Structure Theorem of
subresultants (Theorem 7.9.1 of [22]) over an integral domain k[x1, . . . , xn−1]/p,

Sd must belong to p. Hence we have Sd ∈
√

sat(T ). Indeed, in a commutative
ring, the radical of an ideal equals the intersection of all its associated primes.
Thus Sd is nilpotent modulo sat(T ). It follows from Exercise 2 of [1] that all
the coefficients of Sd in y are also nilpotent modulo sat(T ). �

Lemma 2 implies that, whenever lc(Sd, y) ∈ sat(T ) holds, the polynomial Sd

will vanish on all the components of sat(T ) after splitting T sufficiently. This
is the key reason why Lemma 1 and Lemma 2 can be applied for computing
regular GCDs. Indeed, up to splitting via the operation Regularize, one can
always assume that either lc(Sd, y) is regular modulo sat(T ) or lc(Sd, y) belongs
to sat(T ). Hence, up to splitting, one can assume that either lc(Sd, y) is regular
modulo sat(T ) or Sd belongs to sat(T ). Therefore, if Sd 6∈ sat(T ), we consider
the subresultant Sd as a candidate regular GCD of P and Q modulo sat(T ).

Example 1 If lc(Sd, y) is not regular modulo sat(T ) then Sd may be defective.

Consider for instance the polynomials P = x2
3x

2
2 − x4

1 and Q = x2
1x

2
3 − x4

2

in Q[x1, x2, x3]. We have prem(P,−Q) = (x6
1 − x6

2) and R = (x6
1 − x6

2)
2.

Let T = {R}. The last subresultant of P,Q modulo sat(T ) is prem(P,−Q),
which has degree 0 w.r.t x3, although its index is 1. Note that prem(P,−Q) is

nilpotent modulo sat(T ).

In what follows, we give sufficient conditions for the subresultant Sd to be a
regular GCD of P and Q w.r.t. T . When sat(T ) is a radical ideal, Lemma 4
states that the assumptions of Lemma 1 are sufficient. This lemma validates
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the search for a regular GCD of P and Q w.r.t. T in a bottom-up style, from
S0 up to Sℓ for some ℓ. Lemma 3 covers the case where sat(T ) is not radical
and states that Sd is a regular GCD of P and Q modulo T , provided that Sd

satisfies the conditions of Lemma 1 and provided that, for all d < k ≤ q, the
coefficient lc(Sk, y

k) is either null or regular modulo sat(T ).

Lemma 3 We reuse the notations and assumptions of Lemma 1. Then Sd is

a regular GCD of P and Q modulo sat(T ), if for all d < k ≤ q, the coefficient

sk of yk in Sk is either null or regular modulo sat(T ).

Proof. There are three conditions to satisfy for Sd to be a regular gcd of P
and Q modulo sat(T ):

(1) lc(Sd) is regular modulo sat(T );
(2) there exists polynomials u and v such that Sd − uP − vQ ∈ sat(T ); and
(3) both P and Q are in I := sat(T ∪ {Sd}).

We write Ψ(r) as r̄ for brevity 1 , and will prove the lemma in three steps.

Claim 1: If Q and Sq−1 are in I, then Sd is a regular gcd of P , Q modulo sat(T ).

Indeed, the properties of Sd imply Conditions (1), (2) and we only need to
show that the Condition (3) also holds. If d = q holds, then Sq−1 ∈ sat(T )
and we are done. Otherwise, Sq−1 = prem(P,−Q) is not null modulo sat(T ),
because S̄q−1 = 0 implies that all subresultants of P̄ and Q̄ with index less
than q vanish over B. By assumption, both Q and Sq−1 = prem(P,−Q) are
in I, P is also in I, since lc(Q) is regular modulo sat(T ) and is also regular
modulo I. This completes the proof of Claim 1.

In order to prove that Q and Sq−1 are in sat(T ), we define the following set of
indices

J = {j | d < j < q, coeff(Sj, y
j) /∈ sat(T )}.

By assumption, coeff(Sj, y
j) is regular modulo sat(T ) for each j ∈ J . Our ar-

guments rely on the Block Structure Theorem (BST) over an arbitrary ring [10]
and Ducos’ subresultant algorithm [8,23] along with the specialization prop-
erty of subresultants.

Claim 2: If J = ∅, then Si ∈ I holds for all d < i ≤ q.

Indeed, the BST over B implies that there exists at most one subresultant Sj

such that d < j < q and Sj /∈ sat(T ). Therefore all but Sq−1 are in sat(T ),

1 The degree of S̄k may be less than the degree of Sk, since its leading coefficient
could be in sat(T ). Hence, lc(Sk) may differ from lc(S̄k). We carefully distinguish
them when the leading coefficient of a subresultant is not regular in B.
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and thus S̄q−1 is defective of degree d. More precisely, the BST over B implies

lc(S̄q−1)
e
Sq−1 ≡ lc(Sq)

eSd mod sat(T ) (2)

for some integer e ≥ 0. According to Relation (2), lc(S̄q−1) is regular in B.
Hence, we have Sq−1 ∈ I. By the definition of Sd, we have prem(S̄q,−S̄q−1, y) ∈
sat(T ) which implies Sq ∈ I. This completes the proof of Claim 2.

Now we consider the case J 6= ∅. Write J explicitly as J = {j0, j1, . . . , jℓ−1},
with ℓ = |J | and we assume j0 < j1 < · · · < jℓ−1. For convenience, we write
jℓ := q. For each integer k satisfying 0 ≤ k ≤ ℓ we denote by Pk the following
property:

Si ∈ I, for all d < i ≤ jk.

Claim 3: The property Pk holds for all 0 ≤ k ≤ ℓ.

We proceed by induction on 0 ≤ k ≤ ℓ. The base case is k = 0. We need to
show Si ∈ I for all d < i ≤ j0. By the definition of j0, S̄j0 is a non-defective
subresultant of P̄ and Q̄, and coeff(Si, y

i) is in sat(T ) for all d < i < j0. By
the BST over B, there is at most one d < i < j0 such that Si /∈ sat(T ). If
no such a subresultant exists, then we know that prem(S̄j0 ,−S̄d) is in sat(T ).
Consequently, Sj0 ∈ I holds, which implies Sj ∈ I for all d < i ≤ j0. On the
other hand, if Si0 is not in sat(T ) for some d < i0 < j0, then S̄i0 is similar to
S̄d over B. To be more precise, we have

lc(S̄i0)
e
S̄i0 ≡ lc(S̄j0)

e
S̄d mod sat(T ) (3)

for some integer e ≥ 0. With the same reasoning as in the case J = ∅, we know
that lc(S̄i0) is regular modulo sat(T ) and we deduce that Si0 ∈ I holds. Also,
we have prem(S̄j0 ,−S̄i0) ∈ sat(T ), by definition of Sd. This implies Sj0 ∈ I
from the fact that lc(S̄i0) is regular modulo sat(T ) (and thus regular modulo
I). Hence, we have Si ∈ I for all d < i ≤ j0, as desired. Therefore the property
Pk holds for k = 0.

Now we assume that the property Pk−1 holds for some 1 ≤ k ≤ ℓ. We prove
that Pk also holds. According to the BST over B, there exists at most one sub-
resultant between S̄jk−1

and S̄jk
, both of which are non-defective subresultants

of P̄ and Q̄. If Si ∈ sat(T ) holds for all jk−1 < i < jk, then we have

prem(S̄jk
,−S̄jk−1

) ≡ lc(S̄jk
)
e
S̄u mod sat(T )

for some d ≤ u < jk−1 and some integer e ≥ 0. Thus, prem(S̄jk
,−S̄jk−1

) ∈ I
by our induction hypothesis, and consequently, Sjk

∈ I holds. On the other
hand, if all subresultants Si (for jk−1 < i < jk) but Sik (for some index ik such
that jk−1 < ik < jk) are in sat(T ), then S̄ik is similar to S̄jk−1

over B, that is,

lc(S̄ik)
e
S̄ik ≡ lc(S̄jk

)
e
S̄jk−1

mod sat(T ) (4)
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for some integer e ≥ 0. By Relation (4), lc(S̄ik) is regular modulo sat(T ), and
thus is regular modulo I. Using Relation (4) again, we have Sik ∈ I, since
Sjk−1

is in I. Meanwhile, we have

prem(S̄jk
,−S̄ik) ≡ lc(S̄jk

)
e
S̄u mod sat(T )

for some d ≤ u < jk−1 and some integer e ≥ 0. By the induction hypothesis,
we deduce Su ∈ I, which implies Sjk

∈ I together with the fact that lc(S̄ik) is
regular modulo I. This shows that Si ∈ I holds for all d < i ≤ jk. Therefore,
property Pk holds.

Finally, we apply Claim 3 with k = ℓ, leading to Si ∈ I for all d < i ≤ jℓ = q,
which completes the proof of our lemma. �

The consequence of the above corollary is that we ensure that Sd is a regular
gcd after checking that the leading coefficients of all non-defective subresul-
tants above Sd, are either null or regular modulo sat(T ). Therefore, one may
be able to conclude that Sd is a regular GCD simply after checking the coeffi-
cients “along the diagonal” of the pictorial representation of the subresultants
of P and Q, see Figure 1.

S1

S2

S4

S5

S6

Q = S7

P

S̄1

S̄2

S̄4

S̄6

Q̄ = S̄7

P̄

Fig. 1. A possible configuration of the subresultant chain of P and Q. On the left,
P and Q have five nonzero subresultants over k[x], four of which are non-defective
and one of which is defective. Let T be a regular chain in k[x] such that lc(P )
and lc(Q) are regular modulo sat(T ). Further, we assume that lc(S1) and lc(S4)
are regular modulo sat(T ), however, lc(S6) is in sat(T ). The right hand side is a
possible configuration of the subresultant chain of P̄ and Q̄. In the proof of Claim
3, the set J is {j0 = 4} and j1 = 7, whereas i0 = 2 and i1 = 6 are the indices of
defective subresultants over k[x]/sat(T ). In this case, S1 is a regular gcd of P and
Q modulo sat(T ).

Lemma 4 With the assumptions of Lemma 1, assume sat(T ) radical. Then,

Sd is a regular GCD of P,Q w.r.t. T .

Proof. As for Lemma 3, it suffices to check that P , Q belong to sat(T ∪ {Sd}).
Let p be any prime ideal associated with sat(T ). Define D = k[x1, . . . , y]/p

12



and let L be the fraction field of the integral domain D. Clearly Sd is the last
subresultant of P, Q in D[y] and thus in L[y]. Hence Sd is a GCD of P, Q in
L[y]. Thus Sd divides P, Q in L[y] and pseudo-divides P, Q in D[y]. Therefore
prem(P, Sd) and prem(Q,Sd) belong to p. Finally prem(P, Sd) and prem(Q,Sd)
belong to sat(T ). Indeed, sat(T ) being radical, it is the intersection of its
associated primes. �

4 A regular GCD algorithm

Following the notations and assumptions of Section 3, we propose an algo-
rithm to compute a regular GCD sequence of P,Q w.r.t. T . as specified in
Section 2.2. Then, we explain how to relax the assumption R ∈ sat(T ). First,
the subresultants of P,Q in A[y] are assumed to be known. We explain in
Section 5 how we compute them in our implementation. Secondly, we rely
on the Regularize operation specified in Section 2.2. Lastly, we inspect the
subresultant chain of P,Q in A[y] in a bottom-up manner. Therefore, we view
S1, S2, . . . as successive candidates and apply either Lemma 4, (if sat(T ) is
known to be radical) or Lemma 3.

By virtue of Lemma 1 and Lemma 2 there exists regular chains T1, . . . , Te ⊂
k[x] such that T −→ (T1, . . . , Te) holds and for each 1 ≤ i ≤ e there exists an
index 1 ≤ di ≤ q such that the leading coefficient lc(Sdi

, y) of the subresultant
Sdi

is regular modulo sat(Ti) and Sj ∈ sat(Ti) for all 0 ≤ j < di. Such regular
chains can be computed using the operation Regularize. If each sat(Ti) is radical
then it follows from Lemma 4 that (Sd1

, T1), . . . , (Sde
, Te) is a regular GCD

sequence of P,Q w.r.t. T . In practice, when sat(T ) is radical then so are all
sat(Ti), see [2]. If some sat(Ti) is not known to be radical, then one can compute
regular chains Ti,1, . . . , Ti,ei

⊂ k[x] such that Ti −→ (Ti,1, . . . , Ti,ei
) holds and

for each 1 ≤ ℓi ≤ ei there exists an index 1 ≤ dℓi
≤ q such that Lemma 3

applies and shows that the subresultant Sdℓi
is regular GCD of P,Q w.r.t.

Ti,ℓi
. Such computation relies again on Regularize. The complete procedure of

computing regular GCD sequence is given by the algorithm RGSZR.

Theorem 1 The algorithm RGSZR terminates and computes a regular GCD

sequence of P and Q with respect to T .

Proof. We need to show the termination of two while-loops in the algorithm.
The first one is the while-loop from Line 4 to Line 15. Observe that if an
item [i, C] out of Tasks satisfies i = mdeg(Q), then both Si and ci are regular
modulo sat(C). Then no true splitting will happen (i.e. C = D at Line 11)
while calling Regularize(Si, C). Moreover, item [i,D] will only be inserted into
Candidates (Line 15). In other words, no item [i,D] with i > mdeg(Q) will
appear during the computation. Since only items [i+1, D], replacing the item

13



RGSZR(P,Q, T );

Input : P and Q are polynomials ∈ k[x][y] such that lc(P, y),
lc(Q, y) are regular modulo sat(T ), res(P,Q, y) ∈ sat(T ),
and deg(P, y) ≥ deg(Q, y) > 0

Output : a regular GCD sequence of P , Q w.r.t T

1 Compute subresultants Si of P and Q in y for 1 ≤ i ≤ mdeg(Q)
// Compute regular GCD candidates

2 Find the smallest index i such that Si /∈ sat(T )
3 Candidates← ∅, Tasks← {[i, T ]}
4 while Tasks 6= ∅ do
5 Take and remove an item [i, C] out of Tasks
6 ci ← lc(Si, y)
7 if ci ∈ sat(C) then
8 for D ∈ Regularize(Si, C) do
9 Tasks← Tasks ∪ {[i + 1, D]}

10 else
11 for D ∈ Regularize(Si, C) do
12 if ci ∈ sat(D) then
13 Tasks← Tasks ∪ {[i + 1, D]}
14 else
15 Candidates← Candidates ∪ {[i,D]}

// Check all regular GCD candidates

16 if sat(T ) is known to be radical then
17 for [i, C] ∈ Candidates do
18 Results← Results ∪ {[Si, C]}

19 else
20 for [i, C] ∈ Candidates do
21 Tasks← {[i, C]}, Split← ∅
22 while Tasks 6= ∅ do
23 Take and remove an item [j,D] out of Tasks
24 if j = mdeg(Q) then
25 Split← Split ∪ {D}
26 else
27 Find the smallest k > j, s.t. sk = coeff(Sk, y

k) 6∈ sat(D)
28 for E ∈ Regularize(sk, D) do
29 Tasks := Tasks ∪ {[j + 1, E]}

30 for E ∈ Split do
31 Results← Results ∪ {[Si, E]}

32 return Results

Algorithm 1: RGSZR(P,Q, T )
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[i, C] from Tasks, can be inserted back at Line 9 and Line 13, this while-
loop terminates eventually. The second while-loop is from Line 22 to Line 29.
According to Line 24 and 25, no item [j,D] with j > mdeg(Q) will appear
during the computation. Hence the latter while-loop terminates as well. This
completes the proof of the termination of the algorithm.

Now we prove the correctness of the algorithm. During each iteration of the
while-loop from Line 4 to Line 15, from the specification of Regularize, regular
chains in Regularize(Si, C) form a splitting of C. This implies a loop invariant:
regular chains in Tasks and Candidates form a splitting of T . What we need
to show is: each item [i,D] of Candidates satisfies that Si is a candidate
regular GCD of P , Q w.r.t D and lc(Si, y) is regular modulo sat(D).

We first prove a loop invariant for items in Tasks: During each iteration of the

first while-loop, each item [i, C] in Tasks satisfies Sk ∈ sat(C) for all k < i.

Firstly, for each item [i + 1, D] inserted back into Tasks at Line 9, we need
to show Si ∈ sat(D) for each D ∈ Regularize(Si, C). Since ci ∈ sat(C), by
Lemma 2, Si is a nilpotent modulo sat(C), and thus Si cannot be regular
modulo sat(D). By the specification of Regularize, Si ∈ sat(D) for each D.
Secondly, for each item [i + 1, D] inserted back into Tasks at Line 13, we
know ci 6∈ sat(C) but ci ∈ sat(D), and need to show Si ∈ sat(D). Lemma 2
still applies, which implies that Si is a nilpotent modulo sat(D). Since D is a
regular chain in Regularize(Si, D), Si must be null modulo sat(D). This proves
the loop invariant.

Now for each item [i,D] inserted into Candidates at Line 15, ci = lc(Si, y) is
regular modulo sat(D), since we have ci 6∈ sat(D) and D ∈ Regularize(Si, C).
It follows from the fact that [i, C] is taken from Tasks, Sk ∈ sat(D) holds for
all k < i. Therefore, for each [i,D] in Candidates, Si is a candidate regular
GCD of P,Q w.r.t D, as desired.

If sat(T ) is known to be radical, then we are done according to Lemma 4.

To finalize the proof, we show the correctness of the procedure checking each
candidate regular GCD (Lines 16 to 31). With a similar reasoning as above,
during each iteration of the for-loop from Line 20 to Line 31, all regular chains
appearing in Candidates and Results still form a splitting of T . We only need
to show that each item [Si, E] inserted into Results satisfies that Si is a regular
GCD of P,Q w.r.t E.

Indeed, a key invariant of the while-loop from Line 22 to Line 29 is: each item
[j,D] from Tasks satisfies that coeff(Sk, y

k) is null or regular modulo sat(D)
for each i < k ≤ j. This invariant is clearly maintained by Lines 27, 28 and 29.
After finishing this while-loop, the set Split consists of regular chains E such
that coeff(Sk, y

k) is null or regular modulo sat(E) for each i < k ≤ mdeg(Q).
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According to Lemma 3, Si is a regular GCD of P,Q w.r.t E, which will be
added into Results at Line 31. �

Recall the definition of a candidate regular GCD. Given a regular chain T in
k[x], and polynomials P , Q in k[x][xn+1] such that mvar(P ) = mvar(Q) =
xn+1, mdeg(P ) ≥ mdeg(Q), and initials of P , Q are regular modulo sat(T ).
Assume that there exists an index d in the range 1 · · · q = mdeg(Q) such that
Sd 6∈ sat(T ) and Sj ∈ sat(T ) for all 0 ≤ j < d. The subresultant Sd is called a
candidate regular GCD of P and Q w.r.t T . The following corollary is a direct
consequence of Theorem 1.

Corollary 1 (Existence of regular GCDs) The subresultant Sd may not

be a regular GCD of P,Q w.r.t T . However, there exists a splitting T →
(T1, . . . , Tm) and a sequence d1, . . . , dm such that for each i in 1 · · ·m, d ≤
di ≤ q and Sdi

is a regular GCD of P,Q w.r.t. Ti.

According to the definition of a regular GCD, Sdi
is a polynomial of positive

degree di in xn+1 and its leading coefficient sdi
= lc(Sdi

, xn+1) is regular modulo
sat(Ti), which implies that Sdi

is of positive degree di modulo sat(Ti). In other
words, regular GCD of positive degree exists in each branch of T .

We explain how to relax the assumption R ∈ sat(T ) and thus obtain a general
algorithm for the operation RegularGcd. The principle is straightforward. Let
R = res(P,Q, y). We call Regularize(R, T ) obtaining regular chains T1, . . . , Te

such that T −→ (T1, . . . , Te). For each 1 ≤ i ≤ e we compute a regular
GCD sequence of P and Q w.r.t. Ti as follows: If R ∈ sat(Ti) holds then we
proceed as described above; otherwise R 6∈ sat(Ti) holds and the resultant R
is actually a regular GCD of P and Q w.r.t. Ti by definition. Observe that
when R ∈ sat(Ti) holds the subresultant chain of P and Q in y is used to
compute their regular GCD w.r.t. Ti. This is one of the motivations for the
implementation techniques described in Sections 5 and 6.

5 Subresultant chain computation

This section and the next one address implementation techniques and com-
plexity issues. We describe our encoding of the subresultant chain of P,Q in
k[x1, . . . , xn][y]. This representation is used in both our implementation and
complexity results. For simplicity our analysis is restricted to the case where
k is a finite field whose “characteristic is large enough”. The case where k is
the field Q of rational numbers could be handled in a similar fashion, with
the necessary adjustments. We follow the notations introduced in Section 3.
However we do not assume that R = res(P,Q, y) necessarily belongs to the
saturated ideal of the regular chain T .
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One motivation for the design of the techniques presented in this paper is
the solving of systems of two equations, say P = Q = 0. Indeed, this can be
seen as a fundamental operation in incremental methods for solving systems
of polynomial equations, such as the one of [23]. We make two simple obser-
vations. Formula 1 p. 5 shows that solving this system reduces “essentially”
to computing R and a regular GCD sequence of P, Q modulo {R}, when R is
not constant. This is particularly true when n = 1 since in this case the variety
V (H,P,Q) is likely to be empty for “generic” polynomials P,Q. The second
observation is that, under the same genericity assumptions, a regular GCD G
of P,Q w.r.t. {R} is likely to exist and have degree one w.r.t. y. Therefore,
once the subresultant chain of P,Q w.r.t. y is calculated, one can obtain G
“essentially” at no additional cost. At the end of this section, we shall return
to these observation and deduce complexity results from them.

The subresultant chain of P and Q are represented by homomorphic images:
following [5], we evaluate (x1, . . . , xn) at sufficiently may points such that the
subresultants of P and Q (regarded as univariate polynomials in y = xn+1) can
be computed by interpolation. To be more precise, we need some notations. Let
di be the maximum of the degrees of P and Q in xi, for all i = 1, . . . , n + 1.
Observe that bi := 2didn+1 is an upper bound for the degree of R (or any
subresultant of P and Q) in xi, for all i. Let B be the product (b1+1) · · · (bn+1).

Specialization grid (SCube). We proceed by evaluation/interpolation; our
sample points are chosen on an n-dimensional rectangular grid. We call spe-

cialization grid or simply Scube the data consisting of this grid and the values
that the subresultant chain of P,Q takes at each point of on this grid. This is
precisely how the subresultants of P,Q are encoded in our implementation. Of
course, the validity of this approach requires that our evaluation points cancel
no initials of P or Q. Even though finding such points deterministically is a
difficult problem, this creates no issue in practice. Whenever possible (typi-
cally, over suitable finite fields), we choose roots of unity as sample points, so
that we can use FFT (or van der Hoeven’s Truncated Fourier Transform [13]);
otherwise, standard fast evaluation/interpolation algorithms are used.

In order to reconstruct all subresultants of P and Q, from their SCube, one
needs to perform O(dn+1) evaluations and O(d2

n+1) interpolations. Since our
sample points lie on a grid, the total cost (including the computation of the
images of the subresultants on the grid) becomes

O

(

Bd2
n+1

n
∑

i=1

log(bi)

)

or O

(

Bd2
n+1

n
∑

i=1

M(bi) log(bi)

bi

)

,

depending on the choice of the sample points (see e.g. [25] for similar esti-
mates).
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Here, as usual, M(b) stands for the cost of multiplying univariate polyno-
mials of degree less than b, see [11, Chap. 8]. Using the estimate M(b) ∈
O(b log(b) log log(b)) from [3], this respectively gives the bounds

O(d2
n+1B log(B)) and O(d2

n+1B log2(B) log log(B)).

These estimates are far from optimal. A first important improvement consists
in interpolating in the first place only the leading coefficients of the subresul-
tants, and recover all other coefficients when needed. This is sufficient for the
algorithm of Section 4. This idea brings the following result.

Lemma 5 Constructing the SCube can be done within

O(d2
n+1B + dn+1Blog2(B)loglog(B))

operations in k. If multi-dimensional FFT can be used then this estimate be-

comes O(d2
n+1B + dn+1B log(B)) operations in k.

Another desirable improvement would consist in using fast arithmetic based
on Half-GCD techniques [11], with the goal of reducing the total cost to
O (̃dn+1B), which is the best known bound for computing the resultant, or a
given subresultant. However, as of now, we do not have such a result, due to
the possible splittings.

We return now to the question of solving two equations. Our goal is to estimate
the cost of computing the polynomials R and G in the context of Formula 1
p. 5. We propose an approach where the computation of G essentially comes for
free, once R has been computed. This is a substantial improvement compared
to traditional methods, such as [14,23], which compute G without recycling the
intermediate calculations of R. With the above assumptions and notations, we
saw that the resultant R can be computed in at most O(dn+1Blog(B)+d2

n+1B)
operations in k. In many cases (typically, with random systems), G has degree
one in y = xn+1. Then, the GCD G can be computed within the same bound
as the resultant. Besides, in this case, one can use the Half-GCD approach
instead of computing all subresultants of P and Q. This leads to the following
result in the bivariate case; we omit its proof here.

Corollary 2 With n = 1, assuming that V (H,P,Q) is empty, and assuming

deg(G, y) = 1, solving the input system P = Q = 0 can be done in O∼(d2
2d1)

operations in k.
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6 Regularity test in dimension zero

The operation Regularize specified in Section 2.1 is a core routine in meth-
ods computing triangular decompositions. It has been used in the algorithms
presented in Section 4. Algorithms for this operation appear in [14,23].

The purpose of this section is to show how to realize efficiently this operation.
For simplicity, we restrict ourselves to regular chains with zero-dimensional
saturated ideals, in which case the separate operation of [14] and the regular-

ize operation [23] are similar. We also restrict ourselves to reduced and nor-
malized regular chains, which implies that these regular chains are reduced
lexicographical Gröbner bases.

For such a regular chain T in k[x] and a polynomial p ∈ k[x] we denote
by RegularizeDim0(p, T ) the function call Regularize(p, T ). In broad terms, it
“separates” the points of V (T ) that cancel p from those which do not. The
output is a set of regular chains {T1, . . . , Te} such that the points of V (T )
which cancel p are given by the Ti’s modulo which p is null.

Algorithm 2 differs from those with similar specification in [14,23] by the fact
that it creates opportunities for using modular methods and fast polynomial
arithmetic. Our first trick is based on the following result (Theorem 1 in [4]):
the polynomial p is invertible modulo T if and only if the iterated resultant of p
with respect to T is non-zero. The correctness of Algorithm 2 follows from this
result, the specification of the operation RegularGcd and an inductive process.
Similar proofs appear in [14,23]. A complexity analysis of Algorithm 2, under
some genericity assumptions, is reported at the end of this section.

The main novelty of Algorithm 2 is to employ the fast evaluation/interpolation
strategy described in Section 5. In our implementation of Algorithm 2, at Line
6, we compute the “Scube” representing the subresultant chain of q and Cv.
This allows us to compute the resultant r and then to compute the regular
GCDs (g, E) at Line 14 from the same “Scube”. In this way, intermediate
computations are recycled. Moreover, fast polynomial arithmetic is involved
through the manipulation of the “Scube”.

In Algorithm 2, a routine RegularizeInitialDim0 is called, whose specification
is given below. See [23] for an algorithm. Briefly speaking, this routine splits
a regular chain T into regular chains T1, . . . , Te according to a polynomial p
such that for each i = 1 · · · e the polynomial p reduces modulo sat(Ti) to a
constant polynomial or to a polynomial with a regular initial.

We shall now estimate the running time of Algorithm 2 under the following
two genericity assumptions.
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RegularizeDim0(p, T )

Input : T normalized reduced zero-dimensional regular chain and p
polynomial, both in k[x1, . . . , xn], with p reduced w.r.t. T .

Output : see the specification in Section 2.2.

1 Results← ∅;
2 for (q, C) ∈ RegularizeInitDim0(P, T ) do
3 if q ∈ k then Results← {C} ∪Results;
4 else
5 v ← mvar(q);
6 r ← res(q, Cv, v) ;
7 r ← NormalForm(r, C<v);
8 for D ∈ RegularizeDim0(r, C<v) do
9 s← NormalForm(r,D);

10 if s 6= 0 then
11 U ← {D ∪ {Cv} ∪ C>v} ;
12 Results← {C} ∪Results;

13 else
14 for (g, E) ∈ RegularGcd(q, Cv, D) do
15 g ← NormalForm(g, E);
16 U ← {E ∪ {g} ∪D>v};
17 Results← {C} ∪Results;
18 c← NormalForm(quo(Cv, g), E);
19 if deg(c, v) > 0 then
20 Results←

RegularizeDim0(q, E ∪ c ∪ C>v) ∪Results

21 return Results;

Algorithm 2: Regularize a polynomial

RegularizeInitDim0(p, T )

Input : T a normalized zero-dimensional regular chain and p a
polynomial, both in k[x1, . . . , xn]

Output : A set of pairs {(pi, Ti) | i = 1 · · · e}, in which pi is a
polynomial and Ti is a regular chain, such that either pi is a
constant or its initial is regular modulo sat(Ti),
p ≡ pi mod sat(Ti) holds, and we have T −→ (T1, . . . , Te).

(H1) T generates a radical ideal,
(H2) none of the calls to RegularizeDim0 splits its second argument into several

regular chains.
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Ensuring that Hypothesis (H1) holds is standard. This is done by adapting
to coefficients in products of fields squarefree part computation of univariate
polynomial with coefficients in a field, see [23]. Hypothesis (H1) holds if T
generates a maximal ideal. It is also likely to hold on a random dense input,
as observed in our experimentation. Analyzing the running time of Algorithm 2
without Hypothesis (H2) leads to additional difficulties which can be handled
using the techniques of [6], but this would be another paper.

In order to proceed with our analysis, we need some notations. We define
logp(x) = log2(max(2, x)) and llogp(x) = logp(logp(x)) for any real value
x. Observe that for all a, b we have logp(ab) ≤ logp(a)logp(b). Let di be
the degree in xi of the polynomial Txi

. Let s1, . . . , sn be positive integers
and let s ∈ k[x1, . . . , xn] be a polynomial satisfying deg(s, xi) < si for all
i = 1 · · ·n. We denote by NF(s1, . . . , sn, d1, . . . , dn) an upper bound for the
number of operations in k performed when computing the normal form of
s w.r.t. T . If no confusion is possible, we simply write NF(s1, . . . , sn) in-
stead of NF(s1, . . . , sn, d1, . . . , dn). Next, we denote by RZ(d1, . . . , dn) (resp.
MT (d1, . . . , dn)) an upper bound for the number of operations in k performed
when computing RegularizeDim0(p, T ) where p is reduced w.r.t. T (resp. when
multiplying modulo 〈T 〉 two polynomials reduced w.r.t. T ). In [20] it is shown
that there exists a constant K > 1 such that

MT (d1, . . . , dn) ≤ 4n K Dn logp(Dn)llogp(Dn)

holds where Dk = d1 · · · dk. By convention D0 = 1.

Lemma 6 With the above notations, we have:

NF(s1, . . . , sn) ≤ 5 K logp(σ) llogp(σ) logp(Dn−1) llogp(Dn−1)
n
∑

i=1

4i−1SiDi−1,

where we define σ = max(s1, . . . , sn) and Si = si · · · sn, for all i = 1 · · ·n.

Proof. Let c0, . . . , ct be the coefficients of s w.r.t. xn such that s writes
∑t

i=0cix
i
n. To compute NormalForm(s, T ) we start by computing s′ which is

∑t
i=0c

′

ix
i
n where c′i is NormalForm(ci, T<xn

). Since t < sn, this first step costs at
most snNF(s1, . . . , sn−1) operations in k. Then, we compute the remainder in
the Euclidean division of s′ by Txn

modulo 〈T<xn
〉. Using the results of Chap-

ter 9 in [11], this latter step amounts to at most 5M(sn)MT (d1, . . . , dn−1). This
leads to the following inequality

NF(s1, . . . , sn) ≤ snNF(s1, . . . , sn−1) + 5M(sn)MT (d1, . . . , dn−1).

Unrolling this relation yields

NF(s1, . . . , sn) ≤ 5sn · · · s2M(s1) +
n
∑

i=2

5sn · · · si+1M(si)MT (d1, . . . , di−1).
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Therefore, we have

NF(s1, . . . , sn) ≤ 5Klogp(σ) llogp(σ) logp(Dn−1) llogp(Dn−1)
n
∑

i=1

4i−1SiDi−1.

�

Lemma 7 With notations of Lemma 6, assuming dn+1 ≥ 2 and si = 2didn+1

for all i = 1 · · ·n, we have

NF(s1, . . . , sn) ≤ 80 K n 2n dn
n+1 Dn logp2(Dn) llogp2(Dn).

Proof. We apply Lemma 6. First, we observe that logp(σ) ≤ 2 logp(Dn) holds
if n > 1. However, to cover n = 1, we use the estimate logp(σ) ≤ 4 logp(Dn).
Since logp(Dn) ≥ 1 holds, we deduce llogp(σ) ≤ 4 llogp(Dn). Next, we observe
that Si = (2dn+1)

n−i+1di · · · dn holds which brings

n
∑

i=1

4i−1SiDi−1 = 2ndn
n+1Dn

n
∑

i=1

(2/dn+1)
i−1 ≤ n 2n dn

n+1 Dn

and the conclusion follows. �

As in Section 5 we consider two polynomials P,Q ∈ [x1, . . . , xn, xn+1] with pos-
itive degree in y = xn+1 such that we have 0 < deg(Q, xn+1) ≤ deg(P, xn+1) =:
dn+1. We assume that the initials of P,Q are regular w.r.t. sat(T ), that the
resultant of P,Q w.r.t. xn+1 belongs to sat(T ) and that all coefficients of P
and Q w.r.t. xn+1 are reduced w.r.t. T . Let us denote by SRC(d1, . . . , dn, dn+1)
an upper bound for the number of operations in k necessary to construct the
SCube of P,Q. It follows from Lemma 5 that there exists a constant C > 0
such that

SRC(d1, . . . , dn, dn+1) ≤ C
(

d2
n+1Bn + dn+1Bnlogp2(Bn)llogp(Bn)

)

(5)

where Bn = 2ndn
n+1Dn. Moreover, one can choose C such that each coefficient

w.r.t. xn+1 of a subresultant of P and Q w.r.t. xn+1 can be interpolated within
C Bnlogp2(Bn)llogp(Bn) operations in k.

We denote by GCD(d1, . . . , dn, dn+1) an upper bound for the number of opera-
tions in k performed when computing a regular GCD sequence of P,Q modulo
sat(T ). We have the following result.

Lemma 8 Under Hypotheses (H1) and (H2), we have:

GCD(d1, . . . , dn+1) ≤ SRC(d1, . . . , dn, dn+1) + RZ(d1, . . . , dn)+

dn+1(dn+1+1)
2

(

C Bnlogp2(Bn)llogp(Bn) + NF(s1, . . . , sn)
)
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where si = 2didn+1 for all i = 1 · · ·n.

Proof. Recall that Hypothesis (H2) means that computations do not split.
This implies that when Algorithm 1 calls RegularizeDim0(ci, C) with a (re-
duced, normalized, zero-dimensional) regular chain C and with a polynomial
ci reduced w.r.t. C, then ci is either null or invertible modulo 〈C〉. Consider
now the candidate search phase (Lines 4 to 15) in Algorithm 1. With the nota-
tions of this algorithm, consider an item [i, C] at Line 5. If ci belongs to sat(C)
then the whole subresultant Si belongs to sat(C). This follows from Lemma 2
and the fact that sat(C) is radical (Hypothesis (H2)). If ci does not belong
to sat(C) then ci is invertible modulo sat(C) and thus Si is a candidate. This
implies that, in the worst case, the candidate search phase is accomplished by:

• interpolating all subresultant of P and Q w.r.t. xn+1 from the SCube,
• computing the normal form of all these coefficients w.r.t. T ,
• performing one regularity test of a polynomial which is not in 〈T 〉.

Finally, Hypothesis (H1) together with Lemma 4 implies that the candidate
is actually a regular GCD of P,Q modulo sat(T ). Hence the candidate check

phase of Algorithm 1 comes at no cost. The conclusion follows. �

Lemma 9 Under Hypotheses (H1) and (H2) and assuming dn+1 ≥ 2, we have

GCD(d1, . . . , dn+1) ≤ O(n2 2n) dn+2
n+1 Dn Ln + RZ(d1, . . . , dn),

where Ln = logp(n) logp2(dn+1) llogp(dn+1) logp2(Dn) llogp2(Dn).

Proof. From Lemma 8 and Equation (5) we have

GCD(d1, . . . , dn, dn+1) ≤ C
3(dn+1+1)dn+1

2
Bnlogp2(Bn)llogp(Bn)

(dn+1+1)dn+1

2
NF(s1, . . . , sn) + RZ(d1, . . . , dn)

(6)

We shall simplify the above inequality. Since Bn = 2ndn
n+1Dn and n ≥ 1, we

deduce

logp(Bn) ≤ n + nlog2(dn+1) + log2(Dn) ≤ 3 n logp(dn+1) logp(Dn),

and
llogp(Bn) ≤ 2 logp(n) llogp(dn+1) llogp(Dn),

which leads to

Bn logp2(Bn) llogp(Bn) ≤ 18 n2 2n dn
n+1 Dn Ln. (7)

Next, we deduce from Lemma 7 that

NF(s1, . . . , sn) ≤ 80 K n 2n dn
n+1 Dn Ln (8)
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Using 1
2
(dn+1 + 1)dn+1 ≤ d2

n+1 together with (6), (7) and (8) we obtain

GCD(d1, . . . , dn, dn+1) ≤ (54 C n + 80 K) n 2n dn+2
n+1 Dn Ln + RZ(d1, . . . , dn).

This completes the proof. �

Theorem 2 Under Hypotheses (H1) and (H2) and assuming di ≥ 2 for all

i = 1 · · ·n we have, for n ≥ 2

RZ(d1, . . . , dn) ≤ O(n2 2n−1) dn+1
n Dn−1 Ln−1 + 2 RZ(d1, . . . , dn−1) (9)

which implies

RZ(d1, . . . , dn) ∈ O∼(2n)
n
∑

i=2

(

i2 di
i Di

)

. (10)

Proof. We follow Algorithm 2, which computes RegularizeDim0(p, T ). Recall
that the input polynomial p is reduced w.r.t T . Since we are looking for an up-
per bound for RZ(d1, . . . , dn) we can assume that the main variable of p is xn.
Hypothesis (H2) implies that init(p) is invertible modulo 〈T 〉 and thus that
executing Line 2 amounts at most to RZ(d1, . . . , dn−1). Observe that at Line 5

we have q = p and Cv = Txn
. The next cost is at Lines 6 and 7 with the compu-

tation of the SCube of p and Txn
w.r.t. xn, the interpolation of their resultant

r and the computation of NormalForm(r, T<xn
). We observe that this cost is

included in (resp. dominated by) the estimate of GCD(d1, . . . , dn−1, dn) given
by Lemma 8, if NormalForm(r, T<xn

) = 0 (resp. r is invertible modulo 〈T<xn
〉).

The next cost is at Line 8 with the call RegularizeDim0(r, T<xn
), amounting

at most to RZ(d1, . . . , dn−1). Hypothesis (H2) implies that Line 9 comes at no
cost. At this point either r 6∈ sat(T<xn

) holds and the algorithm terminates, or
the next expense is at Line 14 which fits within GCD(d1, . . . , dn−1, dn). In this
latter case, (H2) implies deg(g, xn) = deg(q, xn) and no other computations
take place. Finally, we obtain Relation (9) by virtue of Lemma 9. �

Corollary 3 Under Hypotheses (H1) and (H2) and assuming di ≥ 2 for all

i = 1 · · ·n we have, for n ≥ 2

GCD(d1, . . . , dn, dn+1) ∈ O∼(n2 2n)dn+2
n+1Dn + O∼(2n)

n
∑

i=2

(

i2 di
i Di

)

. (11)

Proof. The claim follows from Theorem 2 and Lemma 9. �

Essentially, Relation (11) depends “quadratically” on the product of the de-
grees d1, . . . , dn, dn+1. This is clear when d1 = · · · = dn = dn+1 holds. Moreover
the “exponential factor” is only 2n. In [6], the Authors provide an algorithm
with the same specification as Algorithm 2. Under the same hypotheses, they
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achieve a running estimate which depends “linearly” (up to logarithmic fac-
tors) on the product of the degrees d1, . . . , dn, dn+1. However, their “expo-
nential factor” is of the form cn where c ≥ 700. Since practical values for
d1, . . . , dn, dn+1 are often below the hundreds, in particular for dn+1 with n
large, this suggests that the algorithms presented in this paper are probably
more suitable for implementation than those of [6].

7 Experimentation

We have implemented in C language all the algorithms presented in the pre-
vious sections. The corresponding functions rely on the asymptotically fast
arithmetic operations from our modpn library [19]. For this new code, we have
also realized a Maple interface, called FastArithmeticTools, which is a new
module of the RegularChains library [18].

In this section, we compare the performance of our FastArithmeticTools

commands with Maple’s and Magma’s existing counterparts. For Maple,
we use its latest release, namely version 13; For Magma we use Version
V2.15-4, which is the latest one at the time of writing this paper. How-
ever, for this release, the Magma commands TriangularDecomposition and
Saturation appear to be some time much slower than in Version V2.14-8.
When this happens, we provide timings for both versions.

We have three test cases dealing respectively with the solving of bivariate
systems, the solving of two-equation systems and the regularity testing of a
polynomial w.r.t. a zero-dimensional regular chain. In our experimentation all
polynomial coefficients are in a prime field whose characteristic is a 30-bit
prime number. For each of our figure or table the degree is the total degree of
any polynomial in the input system. All the benchmarks were conducted on a
64-bit Intel Pentium VI Quad CPU 2.40 GHZ machine with 4 MB L2 cache
and 3 GB main memory.

For the solving of bivariate systems we compare the command Triangularize

to the command BivariateModularTriangularize of the module FastArith-
meticTools. Indeed both commands have the same specification for such input
systems. Note that Triangularize is a high-level generic code which applies to
any type of input system and which does not rely on fast polynomial arithmetic
or modular methods. On the contrary, BivariateModularTriangularize is
specialized to bivariate systems (see Corollary 2 in Section 5) is mainly imple-
mented in C and is supported by the modpn library. BivariateModularTrian-
gularize is an instance of a more general fast algorithm called FastTrian-

gularize; we use this second name in our figures.
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Fig. 2. Timing for generic dense systems
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Fig. 3. Timing for highly non-equiprojectable systems

Since a triangular decomposition can be regarded as a “factored” lexicographic
Gröbner basis we also benchmark the computation of such bases in Maple

and Magma. Figure 2a compares FastTriangularize and (lexicographic)
Groebner:-Basis in Maple on generic dense input systems. On the largest
input example the former solver is about 20 times faster than the latter. For
the solving of systems with two equations, we compare FastTriangularize

with GroebnerBasis in Magma. On Figure 2b these two solvers are simply
referred as Magma and Maple. For this benchmark the input are generic
dense trivariate systems.

Figure 3a compares FastTriangularize and (lexicographic) Groebner:-Basis
on highly non-equiprojectable dense input systems; for these systems the
number of equiprojectable components is about half the degree of the va-
riety. At the total degree 23 our solver is approximately 100 times faster than
Groebner:-Basis. Figure 3b compares FastTriangularize, GroebnerBasis
in Magma and TriangularDecomposition in Magma on the same set of
highly non-equiprojectable dense input systems. Once again our solver out-
performs its competitors.
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d1 d2 Reg. Fast Reg. Magma d1 d2 Reg. Fast Reg. Magma

2 2 0.052 0.016 0.000 20 38 69.876 0.776 3.660

4 6 0.236 0.016 0.010 22 42 107.154 0.656 6.600

6 10 0.760 0.016 0.010 24 46 156.373 1.036 10.460

8 14 1.968 0.020 0.050 26 50 220.653 2.172 17.110

10 18 4.420 0.052 0.090 28 54 309.271 1.640 25.900

12 22 8.784 0.072 0.220 30 58 434.343 2.008 42.600

14 26 15.989 0.144 0.500 32 62 574.923 4.156 57.000

16 30 27.497 0.208 0.990 34 66 746.818 6.456 104.780

18 34 44.594 0.368 1.890

Fig. 4. bivariate random dense

d1 d2 d3 Reg. Fast Reg. Magma d1 d2 d3 Reg. Fast Reg. Magma

2 2 3 0.240 0.008 0.000 8 14 21 168.910 2.204 8.250

3 4 6 1.196 0.020 0.020 9 16 24 332.036 14.764 23.160

4 6 9 4.424 0.032 0.030 10 18 27 >1000 21.853 61.560

5 8 12 12.956 0.148 0.200 11 20 30 >1000 57.203 132.240

6 10 15 33.614 0.360 0.710 12 22 33 >1000 102.830 284.420

7 12 18 82.393 1.108 2.920

Fig. 5. trivariate random dense

Figures 4, 5 and 6 compare our fast regularity test algorithm (Algorithm 2)
with the RegularChains library Regularize and its Magma counterpart.
More precisely, in Magma, we first saturate the ideal generated by the in-
put zero-dimensional regular chain T with the input polynomial P using the
Saturation command. Then the TriangularDecomposition command de-
composes the output produced by the first step. The total degree of the input
i-th polynomial in T is di. For Figure 4 and Figure 5, the input T and P are
randomly generated such that the intermediate computations do not split. In
this non-splitting cases, our fast Regularize algorithm is significantly faster
than the other commands. For Figure 6, the input T and P are constructed
such that many intermediate computations need to split. In this case, our fast
Regularize algorithm is slightly slower than its Magma counterpart, but
still much faster than the generic (non-modular and non-supported by modpn)
Regularize command of the RegularChains library. The slow down w.r.t.
the Magma code is due to the (large) overheads of the C -Maple interface,
see [19] for details.

8 Conclusion

The concept of a regular GCD extends the usual notion of polynomial GCD
from polynomial rings over fields to polynomial rings modulo saturated ideals
of regular chains. Regular GCDs play a central role in triangular decomposi-
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d1 d2 d3 Reg. Fast Reg. V2.15-4 V2.14-8

2 2 3 0.184 0.028 0.000 0.000

3 4 6 0.972 0.060 0.000 0.010

4 6 9 3.212 0.092 >1000 0.030

5 8 12 8.228 0.208 >1000 0.150

6 10 15 21.461 0.888 807.850 0.370

7 12 18 51.751 3.836 >1000 1.790

8 14 21 106.722 9.604 >1000 2.890

9 16 24 207.752 39.590 >1000 10.950

10 18 27 388.356 72.548 >1000 19.180

11 20 30 703.123 138.924 >1000 56.850

12 22 33 >1000 295.374 >1000 76.340

Fig. 6. trivariate dense with many splittings

tion methods. Traditionally, regular GCDs are computed in a top-down man-
ner, by adapting standard PRS techniques (Euclidean Algorithm, subresultant
algorithms, . . . ).

In this paper, we have examined the properties of regular GCDs of two polyno-
mials w.r.t a regular chain. The theoretical results in Section 3 show that one
can proceed in a bottom-up manner, leading to Algorithm 1 in Section 4. This
has three benefits described in Sections 5 and 6. First, this algorithm is well-
suited to employ modular methods and fast polynomial arithmetic. Secondly,
we avoid the repetition of (potentially expensive) intermediate computations.
Lastly, we avoid, as much as possible, computing modulo regular chains and
use polynomial computations over the base field instead, while controlling
expression swell. The running time estimates of Section 6. and experimental
results of Section 7 illustrate the high efficiency of our algorithms.
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