
U
N
CO

RR
EC

TE
D
PR

O
O
F

YJSCO: 1027 Model 1G pp. 1–17 (col. fig: nil)

ARTICLE  IN  PRESS
Journal of Symbolic Computation xx (xxxx) xxx–xxx

Contents lists available at ScienceDirect

Journal of Symbolic Computation

journal homepage: www.elsevier.com/locate/jsc

Fast arithmetic for triangular sets: From theory to practiceI

Xin Li, Marc Moreno Maza, Éric Schost
Computer Science Department, The University of Western Ontario, London, Ontario, Canada

a r t i c l e i n f o

Article history:
Received 29 November 2007
Accepted 15 April 2008
Available online xxxx

a b s t r a c t

We study arithmetic operations for triangular families of poly-
nomials, concentrating on multiplication in dimension zero. By a
suitable extension of fast univariate Euclidean division, we ob-
tain theoretical and practical improvements over a direct recur-
sive approach; for a family of special cases, we reach quasi-linear
complexity. The main outcome we have in mind is the accelera-
tion of higher-level algorithms, by interfacing our low-level imple-
mentation with languages such as AXIOM orMaple. We show the
potential for huge speed-ups, by comparing twoAXIOM implemen-
tations of van Hoeij and Monagan’s modular GCD algorithm.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction 1

Triangular representations are a useful data structure for dealing with a variety of problems, from Q1 2

computations with algebraic numbers to the symbolic solution of polynomial or differential systems. 3

At the core of the algorithms for these objects, one finds a few basic operations, such as multiplication 4

and division in dimension zero. Higher-level algorithms can be built on these subroutines, using for 5

instance modular algorithms and lifting techniques (Dahan et al., 2005). 6

Our goal in this article is twofold. First, we study algorithms for multiplicationmodulo a triangular 7

set in dimension zero. All known algorithms involve an overhead exponential in the number n of 8

variables; we show how to reduce this overhead in the general case, and how to remove it altogether 9

in a special case. Our second purpose is to demonstrate how the combination of such fast algorithms 10

and low-level implementation can readily improve the performance of environments like AXIOM or 11

Maple in a significant manner, for a variety of higher-level algorithms. We illustrate this through 12

the example of van Hoeij and Monagan’s modular GCD algorithm for number fields (van Hoeij and 13

Monagan, 2002). 14
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Triangular sets. Triangular representations are versatile data structures. The zero-dimensional case1

is discussed in detail (with worked-out examples) in Lazard (1992); a general introduction (including2

positive dimensional situations) is given in Aubry et al. (1999). In this article, we adopt the following3

convention: amonic triangular set is a family of polynomials T = (T1, . . . , Tn) in R[X1, . . . , Xn], where4

R is a commutative ring with 1. For all i, we impose that Ti is in R[X1, . . . , Xi], ismonic in Xi and reduced5

with respect to T1, . . . , Ti−1. Since all our triangular sets will be monic, we simply call them triangular6

sets.7

The natural approach to arithmetic modulo triangular sets is recursive: to work in the residue8

class ring LT = R[X1, . . . , Xn]/〈T1, . . . , Tn〉, we regard it as LT− [Xn]/〈Tn〉, where LT− is the ring9

R[X1, . . . , Xn−1]/〈T1, . . . , Tn−1〉. This point of view allows one to design elegant recursive algorithms,10

whose complexity is often easy to analyze, and which can be implemented in a straightforward11

manner in high-level languages such as AXIOM or Maple (Lemaire et al., 2005). However, as shown12

below, this approach is not necessarily optimal, regarding both complexity and practical performance.13

Complexity issues. The core of our problematic ismodular multiplication: given A and B in the residue14

class ring LT, compute their product; here, one assumes that the input and output are reduced with15

respect to the polynomials T. Besides, one can safely suppose that all degrees are at least 2 (see the16

discussion in the next section).17

In one variable, the usual approach consists inmultiplying A and B and reducing them by Euclidean18

division. Using classical arithmetic, the cost is about 2d21 multiplications and 2d
2
1 additions in R, with19

d1 = deg(T1, X1). Using fast arithmetic, polynomial multiplication becomes essentially linear, the20

best known result (Cantor and Kaltofen (1991), after Schönhage and Strassen (1971) and Schönhage21

(1977)) being of the form k d1 lg(d1) lg lg(d1), with k a constant and lg(x) = log2max(2, x). A22

Euclidean division can then be reduced to two polynomial multiplications, using Cook–Sieveking–23

Kung’s algorithm (Cook, 1966; Sieveking, 1972; Kung, 1974). In n variables, themeasure of complexity24

is δT = deg(T1, X1) · · · deg(Tn, Xn), since representing a polynomial modulo T requires storing δT25

elements. Then, applying the previous results recursively leads to bounds of order 2nδ2T for the26

standard approach, and (3k + 1)nδT for the fast one, neglecting logarithmic factors and lower-order27

terms. An important difference with the univariate case is the presence of the overheads 2n and28

(3k+ 1)n, which cannot be absorbed in a big-Oh estimate anymore (unless n is bounded).29

Improved algorithms and the virtues of fast arithmetic. Our first contribution is the design and30

implementation of a faster algorithm: while still relying on the techniques of fast Euclidean division,31

we show in Theorem 1 that a mixed dense / recursive approach yields a cost of order 4nδT, neglecting32

again all lower order terms and logarithmic factors; this is better than the previous bound for δT ≥ 2n.33

Building upon previous work (Filatei et al., 2006), the implementation is done in C, and is dedicated34

to small finite field arithmetic.35

The algorithm uses fast polynomial multiplication and Euclidean division. For univariate36

polynomials over Fp, such fast algorithms become advantageous for degrees of approximately 100.37

In a worst-case scenario, this may suggest that for multivariate polynomials, fast algorithms become38

useful when the partial degree in each variable is at least 100, whichwould be a severe restriction. Our39

second contribution is to contradict this expectation, by showing that the cut-off values for which the40

fast algorithm becomes advantageous decreasewith the number of variables.41

A quasi-linear algorithm for a special case.We next discuss a particular case, where all polynomials42

in the triangular set are actually univariate, that is, with Ti in K[Xi] for all i. Despite its apparent43

simplicity, this problem already contains non-trivial questions, such as power series multiplication44

modulo 〈Xd11 , . . . , X
dn
n 〉, taking Ti = X

di
i .45

For the question of power seriesmultiplication, no quasi-linear algorithmwas knownuntil (Schost,46

2005).We extend this result to the case of arbitrary Ti ∈ K[Xi], the crucial question being how to avoid47

expanding the (polynomial) product AB before reducing it. Precisely, we prove that forK of cardinality48

greater than, or equal to,maxi≤n di, and for ε > 0, there exists a constantKε such that for all n, products49

modulo 〈T1(X1), . . . , Tn(Xn)〉 can be done in at most Kεδ1+εT operations, with δT as before.50

Following Bini et al. (1979, 1980), Bini (1980) and Schost (2005), the algorithm uses deformation51

techniques, and is unfortunately not expected to be very practical, except e.g. when all degrees equal52

2. However, this shows that for a substantial family of examples, and in suitable (large enough) fields,53

Please cite this article in press as: Li, X., et al., Fast arithmetic for triangular sets: From theory to practice. Journal of Symbolic
Computation (2008), doi:10.1016/j.jsc.2008.04.019
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one can suppress the exponential overhead seen above. Generalizing this result to an arbitrary T is a 1

major open problem. 2

Applications to higher-level algorithms. Fast arithmetic for basic operations modulo a triangular 3

set is fundamental for a variety of higher-level operations. By embedding fast arithmetic in high-level 4

environments like AXIOM (see Filatei et al. (2006) and Li and Moreno Maza (2006)) orMaple, one can 5

obtain a substantial speed-up for questions ranging from computationswith algebraic numbers (GCD, 6

factorization) to polynomial system solving via triangular decomposition, such as in the algorithm of 7

Moreno Maza (1999), which is implemented in AXIOM andMaple (Lemaire et al., 2005). 8

Our last contribution is to demonstrate such a speed-up on the example of vanHoeij andMonagan’s 9

algorithm for GCD computation in number fields. This algorithm is modular, most of the effort 10

consisting in GCD computations over small finite fields. We compare a direct AXIOM implementation 11

to one relying on our low-level C implementation, and obtain improvement of orders of magnitude. 12

Outline of the paper. Section 2 presents our multiplication algorithms, for general triangular sets 13

and triangular sets consisting of univariate polynomials. We next describe our implementation in 14

Section 3; experiments and comparisons with other systems are given in Section 4. 15

2. Algorithms 16

We describe here ourmain algorithm. It relies on the Cook–Sieveking–Kung idea but differs from a 17

direct recursive implementation: recalling that we handlemultivariate polynomials makes it possible 18

to base our algorithm on fast multivariate multiplication. 19

2.1. Notation and preliminaries 20

Notation. Triangular sets will be written as T = (T1, . . . , Tn). The multi-degree of a triangular set T is 21

the n-uple di = deg(Ti, Xi)1≤i≤n. We will write δT = d1 · · · dn; in Section 2.3, we will use the notation 22

rT =
∑n
i=1(di − 1) + 1. Writing X = X1, . . . , Xn, we let LT be the residue class ring R[X]/〈T〉, where 23

R is our base ring. Let MT be the set of monomials MT =
{
X e11 · · · X

en
n | 0 ≤ ei < di for all i

}
; then, 24

because of our monicity assumption, the free R-submodule generated byMT in R[X], written 25

Span(MT) =

{∑
m∈MT

amm | am ∈ R

}
, 26

is isomorphic to LT. Hence, in our algorithms, elements of LT are represented on the monomial basis 27

MT. Without loss of generality, we always assume that all degrees di are at least 2. Indeed, if Ti has 28

degree 1 in Xi, the variable Xi appears neither in the monomial basisMT nor in the other polynomials 29

Tj, so one can express it as a function of the other variables, and Ti can be discarded. 30

Standard and fastmodularmultiplication.As said before, standard algorithms have a cost of roughly 31

2nδ2T operations in R for multiplication in LT. This bound seems not even polynomial in δT, due to the 32

exponential overhead in n. However, since all degrees di are at least 2, δT is at least 2n; hence, any 33

bound of the form Knδ`T is actually polynomial in δT, since it is upper-bounded by δ
log2(K)+`
T . 34

Our goal is to obtain bounds of the form KnδT (up to logarithmic factors), that are thus softly linear 35

in δT for fixed n; of course, we want the constant K as small as possible. We will use fast polynomial 36

multiplication, denoting by M : N → N a function such that over any ring, polynomials of degree 37

less than d can be multiplied in M(d) operations, and which satisfies the super-linearity conditions 38

of von zur Gathen and Gerhard (1999, Chapter 8). Using the algorithm of Cantor and Kaltofen (1991), 39

one can take M(d) ∈ O(d log(d) log log(d)). Precisely, we will denote by k a constant such that 40

M(d) ≤ k d lg(d) lg lg(d) holds for all d, with lg(d) = log2max(d, 2) 41

In one variable, fast modular multiplication is done using the Cook–Sieveking–Kung algori- 42

thm (Cook, 1966; Sieveking, 1972; Kung, 1974). Given T1 monic of degree d1 in R[X1] and A, B of 43

degrees less than d1, one computes first the product AB. To perform the Euclidean division AB = 44

QT1 + C , one first computes the inverse S1 = U−11 mod Xd1−11 , where U1 = Xd11 T1(1/X1) is 45

Please cite this article in press as: Li, X., et al., Fast arithmetic for triangular sets: From theory to practice. Journal of Symbolic
Computation (2008), doi:10.1016/j.jsc.2008.04.019
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the reciprocal polynomial of T1. This is done using Newton iteration, and can be performed as a1

precomputation, for a cost of 3M(d1)+O(d1). One recovers first the reciprocal ofQ , then the remainder2

C , using two polynomial products. Taking into account the cost of computing AB, but leaving out3

precomputations, these operations have cost 3M(d1) + d1. Applying this result recursively leads to4

a rough upper bound of
∏
i≤n(3M(di)+di) for a product in LT, without taking into account the similar5

cost of precomputation (see Langemyr (1991) for similar considerations); this gives a total estimate6

of roughly (3k+ 1)nδT, neglecting logarithmic factors.7

One can reduce the (3k + 1)n overhead: since additions and constant multiplications in LT can8

be done in linear time, it is the bilinear cost of univariate multiplication which governs the overall9

cost. Over a field of large enough cardinality, using evaluation / interpolation techniques, univariate10

multiplication in degree less than d can be done using 2d − 1 bilinear multiplications; this yields11

estimates of rough order (3 × 2)nδT = 6nδT. Studying more precisely the multiplication process,12

we prove in Theorem 1 that one can compute products in LT using at most K 4nδT lg(δT) lg lg(δT)13

operations, for a universal constant K. This is a synthetic but rough upper bound;we givemore precise14

estimates within the proof. Obtaining results linear in δT, without an exponential factor in n, is amajor15

open problem. When the base ring is a field of large enough cardinality, we obtain first results in this16

direction in Theorem 2: in the case of families of univariate polynomials, we present an algorithm of17

quasi-linear complexity Kεδ1+εT for all ε.18

Basic complexity considerations. Sincewe are estimating costs that depend on an a prioriunbounded19

number of parameters, big-Oh notation is delicate to handle. We rather use explicit inequalities when20

possible, all the more as an explicit control is required in the proof of Theorem 2. For similar reasons,21

we do not use O˜ notation.22

We denote by CEval (resp. CInterp) functions such that over any ring R, a polynomial of degree23

less than d can be evaluated (resp. interpolated) at d points a0, . . . , ad−1 in CEval(d) (resp. CInterp(d))24

operations, assuming ai − aj is a unit for i 6= j for interpolation. From von zur Gathen and Gerhard25

(1999, Chapter 10), we can take both quantities in O(M(d) lg(d)), where the constant in the big-Oh is26

universal. In Section 2.3, we will assume without loss of generality thatM(d) ≤ CEval(d) for all d.27

Recall that k is such that M(d) is bounded by k d lg(d) lg lg(d) for all d. Up to maybe increasing k,28

we will thus assume that both CEval(d) and CInterp(d) are bounded by k d lg2(d) lg lg(d). Finally, we let29

MM(d1, . . . , dn) be such that over any ring R, polynomials in R[X1, . . . , Xn] of degree in Xi less than di30

for all i can be multiplied inMM(d1, . . . , dn) operations. One can take31

MM(d1, . . . , dn) ≤ M((2d1 − 1) · · · (2dn − 1))32

using Kronecker’s substitution. Let δ = d1 · · · dn. Assuming di ≥ 2 for all i, we deduce the inequalities33

(2d1 − 1) · · · (2dn − 1) ≤ 2nδ ≤ δ2,34

which imply thatMM(d1, . . . , dn) admits the upper bound35

k2nδ lg(2nδ) lg lg(2nδ) ≤ 4k2nδ lg(δ) lg lg(δ).36

Up to replacing k by 4k, we thus have37

δ ≤ MM(d1, . . . , dn) ≤ k 2nδ lg(δ) lg lg(δ). (1)38

Pan (1994) proposed an alternative algorithm, that requires the existence of interpolation points in39

the base ring. This algorithm is more efficient when e.g. di are fixed and n → ∞. However, using it40

below would not bring any improvement, due to our simplifications.41

2.2. The main algorithm42

Theorem 1. There exists a constant K such that the following holds. Let R be a ring and let T be a triangular43

set in R[X]. Given A, B inLT, one can compute AB ∈ LT in at most K 4nδT lg(δT) lg lg(δT) operations (+,×)44

in R.45

Proof. Let T = (T1, . . . , Tn) be a triangular set of multi-degree (d1, . . . , dn) in R[X] = R[X1, . . . , Xn].46

We then introduce the following objects:47

Please cite this article in press as: Li, X., et al., Fast arithmetic for triangular sets: From theory to practice. Journal of Symbolic
Computation (2008), doi:10.1016/j.jsc.2008.04.019
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Fig. 1. Algorithms Rem andMulTrunc.

• We write T− = (T1, . . . , Tn−1), so that LT− = R[X1, . . . , Xn−1]/〈T−〉. 1

• For i ≤ n, the polynomial Ui = X
di
i Ti(X1, . . . , Xi−1, 1/Xi) is the reciprocal polynomial of Ti; Si is the 2

inverse of Ui modulo 〈T1, . . . , Ti−1, X
di−1
i 〉. We write S = (S1, . . . , Sn) and S− = (S1, . . . , Sn−1). 3

Two subroutines are used, which we describe in Fig. 1. In these subroutines, we use the following 4

notation: 5

• For D in R[X1, . . . , Xi] such that deg(D, Xi) ≤ e, Rev(D, Xi, e) is the reciprocal polynomial 6

X ei D(X1, . . . , Xi−1, 1/Xi). 7

• For D in R[X], Coeff(D, Xi, e) is the coefficient of X ei . 8

We can now give the specification of these auxiliary algorithms. These algorithms make some 9

assumptions, that will be satisfied when we call them from our main routine. 10

• The first one is Rem(A, T, S), with A in R[X]. This algorithm computes the normal form of Amodulo 11

T, assuming that deg(A, Xi) ≤ 2di − 2 holds for all i. When n = 0, A is in R, T is empty and 12

Rem(A, T, S) = A. 13

• The next subroutine isMulTrunc(A, B, T, S, dn+1), with A, B in R[X, Xn+1]; it computes the product 14

ABmodulo 〈T, Xdn+1n+1 〉, assuming that deg(A, Xi) and deg(B, Xi) are bounded by di− 1 for i ≤ n+ 1. 15

If n = 0, T is empty, so this function return AB mod Xd11 . 16

To computeRem(A, T, S), we use the Cook–Sieveking–Kung idea inLT− [Xn]: we reduce all coefficients 17

of A modulo T− and perform two truncated products in LT− [Xn] using MulTrunc. The operation 18

MulTrunc is performed by multiplying A and B as polynomials, truncating in Xn+1 and reducing all 19

coefficients modulo T, using Rem. 20

For the complexity analysis, assuming for a start that all inverses S have been precomputed, we 21

write CRem(d1, . . . , dn) for an upper bound on the cost of Rem(A, T, S) and CMulTrunc(d1, . . . , dn+1) for 22

a bound on the cost ofMulTrunc(A, B, T, S, dn+1). Setting CRem( ) = 0, the previous algorithms imply 23

the estimates 24

CRem(d1, . . . , dn) ≤ (2dn − 1)CRem(d1, . . . , dn−1) + CMulTrunc(d1, . . . , dn − 1)
+ CMulTrunc(d1, . . . , dn) + d1 · · · dn; 25

CMulTrunc(d1, . . . , dn) ≤ MM(d1, . . . , dn)+ CRem(d1, . . . , dn−1)dn. 26

Assuming that CMulTrunc is non-decreasing in each di, we deduce the upper bound 27

CRem(d1, . . . , dn) ≤ 4CRem(d1, . . . , dn−1)dn + 2MM(d1, . . . , dn)+ d1 · · · dn, 28

Please cite this article in press as: Li, X., et al., Fast arithmetic for triangular sets: From theory to practice. Journal of Symbolic
Computation (2008), doi:10.1016/j.jsc.2008.04.019
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for n ≥ 1. WriteMM′(d1, . . . , dn) = 2MM(d1, . . . , dn)+ d1 · · · dn. This yields1

CRem(d1, . . . , dn) ≤
n∑
i=1

4n−i MM′(d1, . . . , di)di+1 · · · dn,2

since CRem( ) = 0. In view of the bound onMM given in Eq. (1), we obtain3

MM′(d1, . . . , di)di+1 · · · dn ≤ 3k2iδT lg(δT) lg lg(δT).4

Taking e.g. K = 3k gives the bound CRem(d1, . . . , dn) ≤ K 4nδT lg(δT) lg lg(δT). The product A, B 7→ AB5

inLT is performed bymultiplying A and B as polynomials and returning Rem(AB, T, S). Hence, the cost6

of this operation admits a similar bound, up to replacing K by K+ k. This concludes our cost analysis,7

excluding the cost of the precomputations. We now estimate the cost of precomputing the inverses8

S: supposing that S1, . . . , Sn−1 are known, we detail the cost of computing Sn. Our upper bound on9

CMulTrunc shows that, assuming S1, . . . , Sn−1 are known, one multiplication modulo X
d′n
n in LT− [Xn] can10

be performed in11

k2nδ′ lg(δ′) lg lg(δ′)+ K 4nδ′ lg(δT−) lg lg(δT−)12

operations, with δT− = d1 · · · dn−1 and δ
′
= δT−d

′
n. Up to replacing K by K+ k, and assuming d′n ≤ dn,13

this yields the upper bound K 4nδ′ lg(δT) lg lg(δT). Let now ` = dlog2(dn−1)e. Using Newton iteration14

in LT− [Xn], we obtain Sn by performing 2 multiplications in LT− [Xn] in degrees less than m and m/215

negations, for m = 2, 4, . . . , 2`−1, see von zur Gathen and Gerhard (1999, Chapter 9). By the remark16

above, the cost is at most17

t(n) =
∑

m=2,...,2`−1
3K 4nd1 · · · dn−1m lg(δT) lg lg(δT) ≤ 3K 4nδT lg(δT) lg lg(δT).18

The sum t(1) + · · · + t(n) bounds the total precomputation time; one sees that it admits a similar19

form of upper bound. Up to increasing K, this gives the desired result. �20

2.3. The case of univariate polynomials21

To suppress the exponential overhead, it is necessary to avoid expanding the product AB. We22

discuss here the case of triangular sets consisting of univariate polynomials, where this is possible.23

We provide a quasi-linear algorithm, that works under mild assumptions. However, the techniques24

used (deformation ideas, coming from fast matrix multiplication algorithms (Bini et al., 1979, 1980;25

Bini, 1980)) induce large sublinear factors.26

Theorem 2. For any ε > 0, there exists a constant Kε such that the following holds. Let K be a field27

and T = (T1, . . . , Tn) be a triangular set of multi-degree (d1, . . . , dn) in K[X1] × · · · × K[Xn], with28

2 ≤ di ≤ |K| for all i. Given A, B in LT, one can compute AB ∈ LT using at most Kε δ1+εT operations29

(+,×,÷) in K.30

Step 1.Westart by a special case. Let T = (T1, . . . , Tn) be a triangular set ofmulti-degree (d1, . . . , dn);31

for later applications, we suppose that it has coefficients in a ring R. Our main assumption is that for32

all i, Ti is in R[Xi] and factors as33

Ti = (Xi − αi,0) · · · (Xi − αi,di−1),34

with αi,j − αi,j′ a unit in R for j 6= j′. Let V ⊂ Rn be the grid35

V = [ (α1,`1 , . . . , αn,`n) | 0 ≤ `i < di ],36

which is the zero-set of (T1, . . . , Tn) (when the base ring is a domain). Remark that Ti and Tj can have37

non-trivial common factors: all that matters is that for a given i, evaluation and interpolation at the38

roots of Ti is possible.39

Please cite this article in press as: Li, X., et al., Fast arithmetic for triangular sets: From theory to practice. Journal of Symbolic
Computation (2008), doi:10.1016/j.jsc.2008.04.019
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Fig. 2. AlgorithmMulSplit.

Proposition 3. Given A, B in LT, as well as the set of points V , one can compute AB ∈ LT using at most 1

δT

(
1+

∑
i≤n

2CEval(di)+ CInterp(di)
di

)
2

operations (+,×,÷) in R. 3

In view of our remarks on the costs of evaluation and interpolation, this latter cost is at most 4

K′ δT lg2(δT) lg lg(δT), for a universal constant K′, which can be taken as K′ = 3k+ 1. 5

Proof. The proof uses an evaluation / interpolation process. Define the evaluation map 6

Eval :Span(MT) → RδT
F 7→ [F(α) | α ∈ V ]. 7

Since allαi,j−αi,j′ are units, themap Eval is invertible. To perform evaluation and interpolation,we use 8

the algorithm in Pan (1994, Section 2), which generalizes the multidimensional Fourier Transform: to 9

evaluate F , we see it as a polynomial in K[X1, . . . , Xn−1][Xn], and evaluate recursively its coefficients 10

at V ′ = [(α1,`1 , . . . , αn−1,`n−1) | 0 ≤ `i < di]. We conclude by performing d1 · · · dn−1 univariate 11

evaluations in Xn in degree dn. 12

Extending our previous notation, we immediately deduce the recursion for the cost CEval of 13

multivariate evaluation 14

CEval(d1, . . . , dn) ≤ CEval(d1, . . . , dn−1) dn + d1 · · · dn−1CEval(dn), 15

so that CEval(d1, . . . , dn) ≤ δT
∑
i≤n

CEval(di)
di

. 16

The inverse map of Eval is the interpolation map Interp. Again, we use Pan’s algorithm; the recursion 17

and the bounds for the cost are the same, yielding 18

CInterp(d1, . . . , dn) ≤ δT
∑
i≤n

CInterp(di)
di

. 19

To computeAB mod T, it suffices to evaluateA and B onV , multiply the δT pairs of values thus obtained, 20

and interpolate the result. The cost estimate follows. � 21

This algorithm is summarized in Fig. 2, under the name MulSplit (since it refers to triangular sets 22

which completely split into linear factors). 23

Step 2.Wecontinuewith the casewhere the polynomials Ti do not split anymore. Recall our definition 24

of the integer rT =
∑n
i=1(di−1)+1; since the polynomials T form a Gröbner basis for any order, rT is 25

the regularity of the ideal 〈T〉. In the following, the previous exponential overhead disappears, but we 26

introduce a quasi-linear dependency in rT: these bounds are good for triangular sets made of many 27

polynomials of low degree. 28

Proposition 4. Under the assumptions of Theorem 2, given A, B in LT, one can compute the product 29

AB ∈ LT using at most 30

k′ δT M(rT)
∑
i≤n

CEval(di)+ CInterp(di)
di

, 31

operations (+,×,÷) in K, for a universal constant k′. 32

Please cite this article in press as: Li, X., et al., Fast arithmetic for triangular sets: From theory to practice. Journal of Symbolic
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Fig. 3. Algorithm LiftRoots.

As before, there exists a universal constant K′′ such that this estimate simplifies as1

K′′ δT rT
(
lg(δT) lg(rT)

)3
. (2)2

Proof. Let T = (T1, . . . , Tn) be a triangular set with Ti in K[Xi] of degree di for all i. Let U =3

(U1, . . . ,Un) be the polynomials4

Ui = (Xi − ai,0) · · · (Xi − ai,di−1),5

where for fixed i, the values ai,j are pairwise distinct (these values exist due to our assumption on6

the cardinality of K). Let finally η be a new variable, and define V = (V1, . . . , Vn) ⊂ K[η][X] by7

Vi = ηTi + (1 − η)Ui, so that Vi is monic of degree di in K[η][Xi]. Remark that the monomial bases8

MT,MU andMV are all the same, that specializing η at 1 in V yields T and that specializing η at 0 in V9

yields U.10

Lemma 5. Let A, B be in Span(MT) in K[X] and let C = AB mod 〈V〉 in K[η][X]. Then C has degree in η11

at most rT − 1, and C(1,X) equals AB modulo 〈T〉.12

Proof. Fix an arbitrary order on the elements of MT, and let Mat(Xi,V) and Mat(Xi, T) be the13

multiplication matrices of Xi modulo respectively 〈V〉 and 〈T〉 in this basis. Hence, Mat(Xi,V) has14

entries in K[η] of degree at most 1, and Mat(Xi, T) has entries in K. Besides, specializing η at 1 in15

Mat(Xi,V) yields Mat(Xi, T). The coordinates of C = AB mod 〈V〉 on the basis MT are obtained by16

multiplying the coordinates ofBby thematrixMat(A,V)ofmultiplication byAmodulo 〈V〉. Thismatrix17

equals A(Mat(X1,V), . . . ,Mat(Xn,V)); hence, specializing its entries at 1 gives the matrix Mat(A, T),18

proving our last assertion. To conclude, observe that since A has total degree atmost rT−1, the entries19

ofMat(A,V) have degree at most rT − 1 as well. �20

Let R be the ring K[η]/〈ηrT〉 and let A, B be in Span(MT) in K[X]. Define Cη = AB mod 〈V〉 in R[X]21

and let C be its canonical preimage inK[η][X]. By the previous lemma, C(1,X) equals AB mod 〈T〉. To22

compute Cη , we will use the evaluation / interpolation techniques of Step 1, as the following lemma23

shows that the polynomials V split in R[X]. The corresponding algorithm is in Fig. 3; it uses a Newton–24

Hensel lifting algorithm, called Lift, whose last argument indicates the target precision.25

Lemma 6. Let i be in {1, . . . , n}. Given ai,0, . . . , ai,di−1 and Ti, one can compute αi,0, . . . , αi,di−1 in R
di ,26

with αi,j − αi,j′ invertible for j 6= j′, and such that27

Vi = (Xi − αi,0) · · · (Xi − αi,di−1)28

holds in R[Xi], using O(M(rT)CEval(di)) operations in K. The constant in the big-Oh estimate is universal.29

Proof. As shown in Bostan and Schost (2004, Section 5), the cost of computing Ui from its roots is30

CEval(di)+O(M(di)), which is inO(CEval(di)) by our assumption on CEval; from this, one deduces Viwith31

O(di) operations. The polynomial Ui = Vi(0, Xi) splits into a product of linear terms in K[Xi], with no32

repeated root, so Vi splits into R[Xi], by Hensel’s lemma. The power series roots αi,j are computed by33

applying Newton–Hensel lifting to the constants ai,j, for j = 0, . . . , di − 1. Each lifting step then boils34

down to evaluate the polynomial Vi and its derivative on the current di-uple of approximate solutions35

and deducing the required correction. Hence, as in von zur Gathen and Gerhard (1999, Chapter 15),36

the total cost isO(M(rT)CEval(di)) operations; one easily checks that the constant hidden in this big-Oh37

is universal. �38
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Fig. 4. AlgorithmMulUnivariate.

We can finally prove Proposition 4. To compute AB mod 〈T〉, we compute Cη = AB mod 〈V〉 in 1

R[X], deduce C ∈ K[η][X] and evaluate it at 1. By the previous lemma, we can use Proposition 3 2

over the coefficient ring R to compute Cη . An operation (+,×,÷) in R has cost O(M(rT)). Taking into 3

account the costs of Step 1 and Lemma 6, one sees that there exists a constant k′ such that the cost is 4

bounded by 5

k′ δT M(rT)
∑
i≤n

CEval(di)+ CInterp(di)
di

. � 6

The algorithm is given in Fig. 4, under the name MulUnivariate; we use a function called 7

Choose(K, d), which returns d pairwise distinct elements from K. 8

Step 3: conclusion. To prove Theorem 2, we combine the previous two approaches (the general case 9

and the deformation approach), using the former for large degrees and the latter for smaller ones. 10

Let ε be a positive real, and define ω = 2/ε. We can assume that the degrees in T are ordered as 11

2 ≤ d1 · · · ≤ dn, with in particular δT ≥ 2n. Define an index ` by the condition that d` ≤ 4ω ≤ d`+1, 12

taking d0 = 0 and dn+1 = ∞ for definiteness, and let 13

T′ = (T1, . . . , T`) and T′′ = (T`+1, . . . , Tn). 14

Then the quotient LT equals R[X`+1, . . . , Xn]/〈T′′〉, with R = K[X1, . . . , X`]/〈T′〉. By Eq. (2), a product 15

in R can be done in K′′ δT′ rT′
(
lg(δT′) lg(rT′)

)3 operations in K; additions are cheaper, since they can 16

be done in time δT′ . By Theorem 1, one multiplication in LT can be done in K 4n−`δT′′ lg(δT′′) lg lg(δT′′) 17

operations in R. Hence, taking into account that δT = δT′δT′′ , the total cost for one operation in LT can 18

be roughly upper-bounded by 19

KK′′ 4n−` δT rT′
(
lg(δT′) lg(rT′) lg(δT′′)

)3
. 20

Now, observe that rT′ is upper-bounded by d`n ≤ 4ω lg(δT). This implies that the factor 21

rT′
(
lg(δT′) lg(rT′) lg(δT′′)

)3
22

is bounded by H lg10(δT), for a constant H depending on ε. Next, (4n−`)ω = (4ω)n−` is bounded by 23

d`+1 · · · dn ≤ δT. Raising to the power ε/2 yields 4n−` ≤ δ
ε/2
T ; thus, the previous estimate admits the 24

upper bounds 25

KK′′ H δ1+ε/2T lg10(δT) ≤ KK′′ HH′δ1+εT , 26

where H′ depends on ε. 27

3. Implementation techniques 28

The previous algorithms were implemented in C; most efforts were devoted to the generic 29

algorithm of Section 2.2. As in Filatei et al. (2006) and Li and Moreno Maza (2006), the C code was 30

interfaced with AXIOM. In this section, we describe this implementation. 31

Arithmetic in Fp. Our implementation is devoted to small finite fields Fp, with p a machine word 32

prime of the form c2n + 1, for c < 2n. Multiplications in Fp are done using Montgomery’s 33

REDC routine (Montgomery, 1985). A straightforward implementation does not bring better 34

Please cite this article in press as: Li, X., et al., Fast arithmetic for triangular sets: From theory to practice. Journal of Symbolic
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performance than the floating point techniques of Shoup (1995). We use an improved scheme,1

adapted to our special primes, presented in the appendix. Compared to a direct implementation of2

Montgomery’s algorithm, it lowers the operation count by 2 double word shifts and 2 single word3

shifts. This approach performs better on our experimentation platform (Pentium 4) than Shoup’s4

implementation, the gain being of 32%. It is also more efficient and more portable than the one5

in Filatei et al. (2006), which explicitly relied on special machine features like SSE registers of late6

IA-32 architectures.7

Arithmetic in Fp[X]. Univariate polynomial arithmetic is crucial: multiplication modulo a triangular8

set boils down to multivariate polynomial multiplications, which can then be reduced to univariate9

multiplications through Kronecker’s substitution. We use classical and FFT multiplication for10

univariate polynomials over Fp. We use two FFT multiplication routines: the first one is that11

from Cormen et al. (2002); its implementation is essentially the one described in Filatei et al. (2006),12

up to a few modifications to improve cache-friendliness. The second one is van der Hoeven’s TFT13

(Truncated Fourier Transform) (van der Hoeven, 2004), which is less straightforward but can perform14

better for transform sizes that are not powers of 2. We tried several data accessing patterns; the most15

suitable solution is platform-dependent, since cache size, associativity properties and register sets16

have huge impact. Going further in that direction will require automatic code tuning techniques, as17

in Johnson et al. (2005, 2006) and Püschel et al. (2005).18

Multivariate arithmetic over Fp. We use a dense representation for multivariate polynomials:19

important applications of modular multiplication (GCD computations, Hensel lifting for triangular20

sets) tend to produce dense polynomials. We use multidimensional arrays (encoded as a contiguous21

memory block of machine integers) to represent our polynomials, where the size in each dimension22

is bounded by the corresponding degree deg(Ti, Xi), or twice that much for intermediate products.23

Multivariate arithmetic is done using either Kronecker’s substitution as in Filatei et al. (2006) or24

standard multidimensional FFT. While the two approaches share similarities, they do not access data25

in the same manner. In our experiments, multidimensional FFT performed better by 10%–15% for26

bivariate cases, but was slower for larger number of variables with small FFT size in each dimension.27

Triangular sets over Fp. Triangular sets are represented in C by an array of multivariate polynomials.28

For the algorithm of Section 2.3, we only implemented the case where all degrees are 2; this mostly29

boils down to evaluation and interpolation on n-dimensional grids of size 2n, over a power series30

coefficient ring.31

More work was devoted to the algorithm of Section 2.2. Two strategies for modular multiplication32

were implemented, a plain one and that of Section 2.2. Both first perform amultivariatemultiplication33

then do a multivariate reduction; the plain reduction method performs a recursive Euclidean34

division, while the faster one implements both algorithms Rem andMulTrunc of Section 2.2. Remark35

in particular that even the plain approach is not the entirely naive, as it uses fast multivariate36

multiplication for the initial multiplication. Both approaches are recursive, which makes it possible37

to interleave them. At each level i = n, . . . , 1, a cut-off point decides whether to use the plain or fast38

algorithm for multiplication modulo 〈T1, . . . , Ti〉. These cut-offs are experimentally determined: as39

showed in Section 4, they are surprisingly low for i > 1.40

The fast algorithm uses precomputations (of the power series inverses of the reciprocals of the41

polynomials Ti). In practice, it is of course better to store and reuse these elements: in situations42

such as GCD computation or Hensel lifting, we expect to do several multiplications modulo the same43

triangular set. We could push further these precomputations, by storing Fourier transforms; this is44

not done yet.45

GCD’s. One of the first applications of fast modular multiplication is GCD computation modulo a46

triangular set, which itself is central to higher-level algorithms for solving systems of equations.47

Hence, we implemented a preliminary version of such GCD computations using a plain recursive48

version of Euclid’s algorithm. This implementation has not been thoroughly optimized. In particular,49

we have not incorporated any half-GCD technique, except for univariate GCD’s; this univariate half-50

GCD is far from optimal.51

TheAXIOM level. Integrating our fast arithmetic intoAXIOM is straightforward, after dealingwith the52

following two problems. First, AXIOM is a Lisp-based system, whereas our package is implemented53

Please cite this article in press as: Li, X., et al., Fast arithmetic for triangular sets: From theory to practice. Journal of Symbolic
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in C. Second, in AXIOM, dense multivariate polynomials are represented by recursive trees, but in our 1

C package, they are encoded as multidimensional arrays. Both problems are solved by modifying the 2

GCL kernel. For the first issue, we integrate our C package into the GCL kernel, so that our functions 3

from can be used by AXIOM at run-time. For the second problem, we realized a tree / array polynomial 4

data converter. This converter is also linked to GCL kernel; the conversations, happening at run-time, 5

have negligible cost. 6

4. Experimental results 7

The main part of this section describes experimental results attached to our main algorithm of 8

Section 2.2; we discuss the algorithm of Section 2.3 in the last paragraphs. For the entire set of 9

benchmarks, we use random dense polynomials. Our experiments were done on a 2.80 GHz Pentium 10

4 PC, with 1GB memory and 1024 KB cache. 11

4.1. Comparing different strategies 12

We start by experiments comparing different strategies for computing productsmodulo triangular 13

sets in n = 1, 2, 3 variables, using our general algorithm. 14

Strategies. Let L0 = Fp be a small prime field and let Ln be L0[X1, . . . , Xn]/〈T〉, with T a n-variate 15

triangular set of multi-degree (d1, . . . , dn). To compute a product C = AB ∈ Ln, we first expand 16

P = AB ∈ L0[X], then reduce it modulo T. The product P is always computed by the same method; 17

we use three strategies for computing C . 18

• Plain. We use univariate Euclidean division; computations are done recursively in Li−1[Xi] for 19

i = n, . . . , 1. 20

• Fast, using precomputations. We apply the algorithm Rem(C, T, S) of Fig. 1, assuming that the 21

inverses S have been precomputed. 22

• Fast, without precomputations. We apply the algorithm Rem(C, T, S) of Fig. 1, but recompute 23

the required inverses on the fly. 24

Our ultimate goal is to obtain a highly efficient implementation of the multiplication in Ln. To do 25

so, we want to compare our strategies in L1, L2, . . ., Ln. In this report we give details for n ≤ 3 26

and leave for future work the case of n > 3, as the driving idea is to tune our implementation 27

in Li before investigating that of Li+1. This approach leads to determine cut-offs between our 28

different strategies. The alternative is between plain and fast strategies, depending on the assumption 29

regarding precomputations. For applications discussed before (quasi-inverses, polynomial GCDs 30

modulo a triangular set), using precomputations is realistic. 31

Univariate multiplication. Fig. 5 compares our implementation of the Truncated Fourier Transform 32

(TFT) multiplication to the classical Fast Fourier Transform (FFT). Because the algorithm is more 33

complex, especially the interpolation phase, the TFT approach does not outperform the classical FFT 34

multiplication in all cases. 35

Univariate triangular sets. Finding the cut-offs betweenour strategies is straightforward. Fig. 6 shows 36

the result using classical FFT multiplication; the cut-off point is about 150. If precomputations are not 37

assumed, then this cut-off doubles. Using Truncated Fourier Transform, one obtains roughly similar 38

results. 39

Bivariate triangular sets. For n = 2, we let in Fig. 7 d1 and d2 vary in the ranges 4, . . . , 304 and 40

2, . . . , 102. This allows us to determine a cut-off for d2 as a function of d1. Surprisingly, this cut-off is 41

essentially independent of d1 and can be chosen equal to 5. We discuss this point below. To continue 42

our benchmarks in L3, we would like the product d1d2 to play the role in L3 that d1 did in L2, so as to 43

determine the cut-off for d3 as a function of d1d2. This leads to the question: for a fixed product d1d2, 44

does the running time of the multiplication in L2 stay constant when (d1, d2) varies in the region 45

4 ≤ d1 ≤ 304 and 2 ≤ d2 ≤ 102? Fig. 8 gives timings obtained for this sample set; it shows that the 46

Please cite this article in press as: Li, X., et al., Fast arithmetic for triangular sets: From theory to practice. Journal of Symbolic
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Fig. 5. TFT vs. FFT.

Fig. 6.Multiplication in L1 , all strategies, using FFT multiplication.

Fig. 7. Multiplication in L2 , fast without precomputations vs. fast using precomputations (left) and plain vs. fast using
precomputations (right).

time varies mostly for the plain strategy (the levels in the fast case are due to our FFTmultiplication).1

These results guided our experiments in L3.2

Trivariate triangular sets. For our experiments with L3, we consider three patterns for (d1, d2).3

Pattern 1 has d1 = 2, Pattern 2 has d1 = d2 and Pattern 3 has d2 = 2. Then, we let d1d2 vary from 4 to4

304 and d3 from 2 to 102. For simplicity, we also report only the comparison between the strategies5

plain and fast using precomputations. The timings are in Fig. 9; they show an impressive speed-up6

for the Fast strategy. We also observe that the cut-off between the two strategies can be set to 3 for7

each of the patterns. Experiments as in Fig. 8 gives similar conclusion: the timing depends not only8

on d1d2 and d3 but also on the ratios between these degrees.9

Please cite this article in press as: Li, X., et al., Fast arithmetic for triangular sets: From theory to practice. Journal of Symbolic
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Fig. 8.Multiplication in L2 , time vs. d = d1d2 , Plain (left) and Fast using precomputations (right).

Fig. 9.Multiplication in L3 , plain vs. fast, patterns 1–3 from top left to bottom.

Discussion of the cut-offs. To understand the low cut-off points we observe, we have a closer look at 1

the costs of several strategies for multiplication in L2. For a ring R, classical polynomial multiplication 2

in R[X] in degree less than d uses about (d2, d2) operations (×,+) respectively (we omit linear terms 3

in d). Euclidean division of a polynomial of degree 2d − 2 by a monic polynomial T of degree d has 4

essentially the same cost. Hence, classical modular multiplication uses about (2d2, 2d2) operations 5

(×,+) in R. Additions modulo 〈T〉 take d operations. 6

Thus, a pure recursive approach for multiplication in L2 uses about (4d21d
2
2, 4d

2
1d
2
2) operations 7

(×,+) inK. Our plain approach is less naive. We first perform a bivariate product in degrees (d1, d2). 8

Then, we reduce all coefficients modulo 〈T1〉 and perform Euclidean division in L1[X2], for a cost 9

of about (2d21d
2
2, 2d

2
1d
2
2) operations. Hence, we can already make some advantage of fast FFT-based 10

multiplication, since we traded 2d21d
2
2 base ring multiplications and as many additions for a bivariate 11

product. 12

Using precomputations, the fast approach performs 3 bivariate products in degrees about (d1, d2) 13

and about 4d2 reductionsmodulo 〈T1〉. Even formoderate (d1, d2) such as in the range 20–30, bivariate 14

products can already be done efficiently by FFT multiplication, for a cost much inferior to d21d
2
2. Then, 15

even if reductions modulo 〈T1〉 are done by the plain algorithm, our approach performs better: the total 16

Please cite this article in press as: Li, X., et al., Fast arithmetic for triangular sets: From theory to practice. Journal of Symbolic
Computation (2008), doi:10.1016/j.jsc.2008.04.019
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Fig. 10.Multiplication in L3 , pattern 3, Magma vs. our code.

Fig. 11. Inverse in L3 , pattern 1, Maple vs. our code.

cost of these reductionswill be about (4d21d2, 4d
2
1d2), sowe save a factor' d2/2 on them. This explains1

why we observe very low cut-offs in favor of the fast algorithm.2

4.2. Comparing implementations3

Comparison with Magma. To evaluate the quality of our implementation of modular multiplication,4

we compared it with Magma v. 2-11 (Bosma et al., 1997), which has set a standard of efficient5

implementation of low-level algorithms. We compared multiplication in L3 for the previous three6

patterns, in the same degree ranges. Fig. 10 gives the timings for Pattern 3. The Magma code uses7

iterated quo constructs over UnivariatePolynomial’s, which was the most efficient configuration8

we found. For our code, we use the strategy Fast using precomputations. On this example, our code9

outperformsMagma by factors up to 7.4; other patterns yield similar behavior.10

Comparison with Maple. Our future goal is to obtain high-performance implementations of higher-11

level algorithms in higher-level languages, replacing built-in arithmetic by our C implementation.12

Doing it withinMaple is not straightforward; ourMaple experiments stayed at the level of GCD and13

inversions in L3, for which we compared our code with Maple’s recden library. We used the same14

degree patterns as before, but we were led to reduce the degree ranges to 4 ≤ d1d2 ≤ 204 and15

2 ≤ d3 ≤ 20. Our code uses the strategy fast using precomputations. The Maple recden library16

implements multivariate dense recursive polynomials and can be called from the Maple interpreter17

via the Algebraic wrapper library. OurMaple timings, however, do not include the necessary time18

for convertingMaple objects into therecden format:we justmeasured the time spent by the function19

invpoly of recden. Fig. 11 gives the timings for Pattern 3 (the other results are similar). There is20

a significant performance gap (our timing surface is very close the bottom). When using our plain21

strategy, our code remains faster, but the ratio diminishes by a factor of about 4 for the largest22

configurations.23

Comparison with AXIOM. Using our arithmetic in AXIOM is made easy by the C/GCL structure. In Li24

and Moreno Maza (2006), the modular algorithm by van Hoeij and Monagan (2002) was used as a25
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Fig. 12. GCD computations L3[X4], pure AXIOM code vs. combined C-AXIOM code.

Fig. 13. General vs. specialized algorithm.

driving example to show strategies for suchmultiple-level language implementations. This algorithm 1

computes GCD’s of univariate polynomials with coefficients in a number field bymodular techniques. 2

The coefficient field is described by a tower of simple algebraic extensions of Q; we are thus led to 3

compute GCD’s modulo triangular sets over Fp, for several primes p. We implemented the top-level 4

algorithm in AXIOM. Then, two strategies were used: one relying on the built-in AXIOM modular 5

arithmetic, and the other on our C code; the only difference between the two strategies at the top- 6

level resides in which GCD function to call. The results are given in Fig. 12. We use polynomials A, B 7

inQ[X1, X2, X3]/〈T1, T2, T3〉[X4], with coefficients of absolute value bounded by 2. As shown in Fig. 12 8

the gap is dramatic. 9

4.3. The deformation-based algorithm 10

We conclude with the implementation of the algorithm of Section 2.3, devoted to triangular sets 11

made of univariate polynomials only.We focus on themost favorable case for this algorithm, when all 12

degrees di are 2: in this case, in n variables, the cost reported in Proposition 4 becomes O(2nnM(n)). 13

This extreme situation is actually potentially useful, see for instance an application to the addition 14

of algebraic numbers in characteristic 2 in Schost (2005). For most practical purposes, n should be in 15

the range of about 1, . . . , 20; for such sizes, multiplication in degree n will rely on naive or at best 16

Karatsuba multiplication; hence, a reasonable practical estimate for the previous bound is O(2nn3), 17

which we can rewrite as O(δT log(δT)3). We compare in Fig. 13 the behavior of this algorithm to the 18

general one. As expected, the former behaves better: the general algorithm starts by multiplying 19

the two input polynomials, before reducing them. The number of monomials in the product before 20

reduction is 3n = δlog2(3)T . Hence, for this family of problems, the general algorithm has a non-linear 21

complexity. 22
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Appendix. Multiplication modulo special primes4

Let p be a prime of the form p = c2n+1, for c < 2n (in our code, n ranges from 20 to 23 and c is less5

than 1000). Let ` = dlog2(p)e and let R = 2`. Given a and ω, both reduced modulo p, Montgomery’s6

REDC algorithm computes aω/R mod p. We present our tailor-made version here. Precomputations7

will be authorized for the argumentω (this is not a limitation for ourmain application, FFT polynomial8

multiplication, where ω is a fixed primitive root of unity). We compute9

(1) M1 = aω10

(2) (q1, r1) = (M1 div R,M1 mod R)11

(3) M2 = r1c2n12

(4) (q2, r2) = (M2 div R,M2 mod R)13

(5) M3 = r2c2n14

(6) q3 = M3 div R15

(7) A = q1 − q2 + q3.16

Proposition 7. Suppose that c < 2n and ω 6= −1 mod p. Then A satisfies A ≡ aω/R mod p and17

−(p− 1) < A < 2(p− 1).18

Proof. By construction, we have the equalities Rq1 = M1−r1 and Rq2 = M2−r2. Remark next that 2n19

dividesM2, and thus r2 (since R is a power of two larger than 2n). It follows that 22n dividesM3. Since20

we have c < 2n, p is at most 22n, so R is at most 22n as well. Hence, R divides M3, so that Rq3 = M3.21

Putting this together yields22

RA = M1 − r1 −M2 + r2 +M3.23

Recall thatM2 = r1c2n, so thatM2 = −r1 mod p. Similarly,M3 = r2c2n, soM3 = −r2 mod p. Hence,24

RA = M1 mod p, which means that A = aω/Rmod p, as claimed. As to the bounds on A, we start by25

remarking thatM1 < (p−1)2, sinceω 6= −1 mod p. We thus have q1 < p−1. Next, since r1 < R, we26

deduce that M2 < c2nR which implies that q2 < c2n = p − 1. Similarly, we obtain that q3 < p − 1,27

which implies the requested inequalities. �28

Let us now describe our implementation on 32-bit x86 processors. We use an assembly macro29

MulHiLo(a, b) from the GMP library; this macro computes the product d of twoword-length integers30

a and b and puts the high part of the result (d div 232) in the register AX and the lower part (d mod 232)31

in the register DX, avoiding shifts.32

In our case, R does not equal 232. However, since we allow precomputations on ω, we will actually33

store and use ω′ = 232−`ω instead of ω; hence, MulHiLo(a, ω′) directly gives us q1 and r ′1 = 2
32−`r1.34

Similarly, we do not compute the product r1c2n; instead, we use MulHiLo(r ′1, c
′), where c ′ is the35

precomputed constant c2n, to get q2 and r ′2 = 2
32−`r2.36

To compute q3, it turned out to be better to do as follows.Wewrite q3 as r2c/2`−n. Now, recall from37

the proof of the previous proposition that 2n divides r2. Under the assumption that c < 2n, we saw in38

the proof that ` ≤ 2n, so that 2`−n divides r2. Hence, we obtain q3 by right-shifting r2 by `− n places,39

or, equivalently, r ′2 by 32− n places, and multiplying the result by c. Eventually, we need to bring the40

result A between 0 and p− 1. As in NTL (Shoup, 1995), we avoid if statements: using the sign bit of A41

as a mask, one can add p to A in the case A < 0; by subtracting p and correcting once more, we obtain42

the correct remainder.43
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