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Abstract. We present a CUDA implementation of dense multivariate polynomial arithmetic
based on Fast Fourier Transforms over finite fields. Our core routine computes on the device
(GPU) the subresultant chain of two polynomials with respect to a given variable. This
subresultant chain is encoded by values on a FFT grid and is manipulated from the host (CPU)
in higher-level procedures.

We have realized a bivariate polynomial system solver supported by our GPU code. Our
experimental results (including detailed profiling information and benchmarks against a serial
polynomial system solver implementing the same algorithm) demonstrate that our strategy is
well suited for GPU implementation and provides large speedup factors with respect to pure
CPU code.

1. Introduction

Graphics processing units (GPUs) are becoming very attractive for scientific computing
applications that are targeting high performance. Many application software have gained
massive speedup factors by integrating GPU support, in areas like Monte Carlo simulation,
weather forecasting, climate research, molecular modeling, quantum mechanical physics and
astrophysics. See for instance the research areas in the website of GPGPU.org [2] or the
application section in the Wikipedia page for GPGPU [1], where many references and links
are provided. Symbolic computation is also entering the area of many-core computing, but few
reports have been published so far [4, 8, 10, 17].

In this paper, and up to our knowledge, we report on the first GPU implementation of a
polynomial system solver over finite fields. A GPU implementation of a bivariate solver over
the real numbers is reported in [3]. Solving polynomial systems is a driving subject in symbolic
computation with many successful results from theoretical to practical aspects. Adapting this
knowledge and acquired experience is, however, very challenging.

The difficulty starts at the level of dense multivariate polynomial arithmetic. For instance,
techniques that have appeared to be very effective for multicore implementation [18, 19] do not
apply to GPU implementation and had to be revisited [17].

Efficient multicore implementation relies on a good usage of the different levels of cache
memories (L1, L2, L3) and in minimizing the impact of performance bottlenecks due to
phenomena like true sharing, false sharing, memory contention, etc. On the other hand,
concurrency platforms (such as OpenMP, Intel Cilk Plus, KAAPI) for multicore architectures
are generally based on the fork-join parallelism model and provide tools for automatic scheduling;
this helps programmers focusing on exposing parallelism for their targeted applications.



The GPU programming model is based on data-parallelism and a large part of the scheduling
is done statically by the programmer through the decomposition of the application into GPU
kernels. Efficient GPU implementation relies on optimizing memory usage for maximum
bandwidth, maximizing occupancy of the device in order to hide memory transfer latency and
optimizing instruction usage for maximum throughput.

The motivation of our work is to support polynomial system solvers based on the notion
of a regular chains [11] where the core algorithms [16] often rely on the theory of polynomial
subresultants [9]. In [12], we have shown that the dominant cost of those algorithms can be
essentially reduced to that of subresultant chain computations.

In Section 2, following an idea proposed by Collins in [6], we explain how we compute a
subresultant chain by evaluation-interpolation, based on FFT techniques. Once we obtain a so-
called FFT grid on which the input polynomials are sampled, we employ the Brown’s Algorithm
to compute subresultant chains of univariate polynomials. All these computations are performed
on the device for which we have designed a specific implementation of Brown’s Algorithm, see
Section 3.

This sampled subresultant chain can then be exploited by a high-level algorithm running
on the host. A simple case is the resultant computation described in Section 3. A more
advanced one is that of the bivariate solver algorithm of [13] that we report in Section 4.
Actually, we implemented this algorithm with and without GPU code support. Our pure CPU
implementation is serial C code. The specifications of the GPU cards used in our experimentation
are listed in Appendix A while profiling information for our GPU kernels appear in Appendix
C.

Our experimental results show that, for resultant computation our GPU-supported code
outperform our pure CPU code by a speedup factor of 34 (resp. 69) on sufficiently large
input bivariate (resp. trivariate) polynomials. For the largest examples we tested our GPU-
supported bivariate solver outperform its CPU counterpart by a factor of 7.5. For this latter
experimentation, we should insist on the fact that a significant part of the computation
(univariate polynomial GCDs) are still performed by CPU code. Removing this bottleneck
on the critical path of the whole application is work in progress and could be an opportunity to
use two GPU cards concurrently.

One may ask whether the algorithms implemented in this work could also lead to a successful
multicore implementation. We actually tried and the answer is no for sufficiently large input
data. Indeed, our most powerful GPU card can efficiently handle a sampled subresultant
chain with a size in the order of 1 GB. Since the construction of the sampled subresultant
chain essentially consists of many successive traversals of this data structure, a multicore
implementation will suffer from high rate of cache misses due to the fact that L2 to L3 caches
are today in the order of several MB.

2. Subresultant computations

This section is devoted to a high level description of polynomial subresultant computation, by
means of an FFT-based modular algorithm. Let K be a field and n ≥ 1. In the sequel, we
consider P,Q ∈ K[x1, . . . , xn+1] two non-constant polynomials with the same main variable
y := xn+1. We define p := deg(P, y) ≥ q := deg(Q, y). We denote by B the ring K[x1, . . . , xn]
and by Sj the j-th subresultant of P,Q in B[y], for 0 ≤ j < q.

FFT grid. Given n positive integers m1, . . . ,mn, we call the following finite set Θ a grid in Kn

Θ = Θ1 ×Θ2 × · · · ×Θn

= {(u1, . . . , un) | ui ∈ Θi for each i} (1)



where Θi is a finite subset of K with size mi, for each i. We say that the grid Θ is valid for a
polynomial f ∈ K[x1, . . . , xn][y], if the leading coefficient of f in y does not vanish at any point
of Θ. Assume furthermore that, for each i, the integer mi is a power of 2 and that there exists
ωi ∈ K which is a mi-th primitive root of unity. If Θi is chosen as follows:

Θi = {ω
j
i | j = 0 · · ·mi − 1},

then we say that Θ a FFT grid in Kn. The format of Θ is (m1, . . . ,mn) and its size is the
product m1 · · ·mn. The evaluation-interpolation method for computing subresultants Sj , for
0 ≤ j < q, proposed by Collins in [6], proceeds as follows.

(S1) Compute an upper bound for the degree deg(S0, xi) and set mi to it, for i = 1 · · ·n.

(S2) Construct a grid Θ of format (m1, . . . ,mn), valid for both P and Q.

(S3) Evaluation: compute P (u, y) and Q(u, y) for each u ∈ Θ.

(S4) For all u ∈ Θ and all 0 ≤ j < q, compute the subresultant Sj(u) of P (u, y), Q(u, y) in y.

(S5) Interpolation: for each 0 ≤ j < q, construct Sj from the image set {Sj(u) | u ∈ Θ}.

For Step (S1), a well-known degree bound can be derived from the Sylvester matrix of P and
Q, see the paper of Monagan [15] for detailed discussions. For Step (S2), let h be the product
of the leading coefficients of P and Q in y, which is a nonzero polynomial in K[x1, . . . , xn].
Constructing a valid grid for h deterministically is difficult. In practice, one can generate a grid
at random and check whether the grid is valid or not. Step (S4) is equivalent to computing the
subresultant chains of m univariate polynomial pairs. A standard tool is Brown’s subresultant
algorithm [5].

Step (S3) and Step (S5) are instances of the so-called multipoint evaluation and multipoint
interpolation problems, respectively. In general, these operations can be performed by means of
subproduct tree techniques [9]. We do not analyze this point of view further since our focus is
on FFT grids. If Θ is a FFT grid, then FFT-based multipoint evaluation and interpolation run
in O(m log(m)) operations in K.

The approach used in our implementation is summarized by Figure 1, where all the
computations are converted into the bivariate case, by means of Kronecker’s substitutions. This
turns multivariate FFT computations into univariate ones, which simplifies both the analysis
and the implementation. In practice, it is wiser to conduct large univariate FFTs (or large
bivariate FFTs, see [18] for details) rather than multivariate FFTs with small sizes along one
or more dimensions. Another feature of our implementation is the use of random translations
of the form φa : x 7−→ x+ a (applied to the polynomials F ′, G′ ∈ Zc[x, y], see Figure 1) in order
to find a valid FFT grid. Details, including a probability analysis can be found in [20].

3. Brown’s algorithm on the GPU
One of the most important algebraic tools for solving polynomial system symbolically is the
polynomial subresultants. We refer to [7, 21] for the theory of polynomial subresultants. In
this section, after briefly reviewing some properties of polynomial subresultants, we present our
CUDA FFT-based implementation of Brown’s subresultant algorithm for bivariate (or trivariate)
polynomials over a prime field K = Zc. of characteristic c > 2.

Let D be an integral domain and let P,Q ∈ D[y] be non-constant polynomials of degree
p, q respectively. We assume p ≥ q. The polynomials computed by the subresultant algorithm
form a sequence, called the subresultant chain and denoted by S = src(P,Q, y). This sequence
consists of q+ 1 polynomials (Sq, . . . , S0) in D[y], starting at Sq = lc(Q)p−qQ and ending at the
resultant S0 = res(P,Q, y). The polynomial Sj is called the subresultant of index j. For each
index 0 ≤ j ≤ q, if Sj is not zero, its degree is at most j and Sj is said regular if deg(Sj , y) = j.
Hence, Sq is a regular subresultant by definition. See [12] for a complete and formal definition
of a subresultant chain.



P , Q in Zc[x1, . . . , xn, y]
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Figure 1. Compute the subresultant chain via an FFT based modular algorithm

3.1. Brown’s algorithm

Algorithm 1: Brown’s subresultant algorithm

Input : polynomials F,G ∈ K[x] such that deg(F ) ≥ deg(G) > 0
Output : the subresultant chain of F and G

Si ← 0 for 0 ≤ i < deg(G);1

B ← prem(F,−G, x), A← G, α← deg(F )− deg(G);2

while B 6= 0 do3

d← deg(A), e← deg(B), δ ← d− e;4

Sd−1 ← B;5

Se ← lc(A)α(1−δ)lc(B)δ−1B;6

if e = 0 then break;7

B ← lc(A)−αδ−1prem(A,−B, x), A← Se, α← 1;8

return Si for 0 ≤ i < deg(G);9

The main subroutine involved in Brown’s Algorithm is pseudo-remainder computation. Recall
that given f, g ∈ K[x], the pseudo-division with remainder of f by g computes q, r ∈ K[x] with

lc(g)1+deg(f)−deg(g)f = qg + r, deg(r) < deg(g), (2)

assuming g 6= 0. The polynomials q and r are uniquely determined by Equation (2) and
computed by Algorithm 2. These polynomials are called respectively the pseudo-quotient and
pseudo-remainder of f(x) w.r.t. g(x). We also denote by prem(f, g, x) the pseudo-remainder r.



Algorithm 2: The pseudo-remainder algorithm

Input : polynomials f, g ∈ K[x] such that deg(f) ≥ deg(g) > 0
Output : the pseudo-remainder of f by g in x

r ← f ;1

for i← deg(f)− deg(g) down to 0 do2

r ← lc(g)r − lc(f)xig;3

return r;4

We present our CUDA implementation for constructing FFT-based subresultant chain of
bivariate polynomials. The first step is to evaluate the input polynomials F,G ∈ Zc[x, y]. For
our implementation, univariate polynomials are all dense, encoded as a vector of coefficients.
Multivariate dense polynomials with n variables are encoded recursively as a univariate
polynomial with (n− 1)-variable polynomials as coefficients. For example, F = 1 + 2x+ 3xy +
4x2 + 5y2 can encoded as a vector [1, 2, 4, 0, 3, 0, 5, 0, 0], read as

F = (1 + 2x+ 4x2) + (0 + 3x+ 0x2)y + (5 + 0x+ 0x2)y2.

Our subroutine list fft univariate computes a list of univariate n-point FFTs on a list
polynomials of the same size q. For n = 2k and q ≥ 1, the Stockham FFT factorization implies

Iq ⊗DFTn =
k−1
∏

i=0

(Iq ⊗DFT2 ⊗ I2k−1)(Iq ⊗D2,2k−i−1 ⊗ I2i)

(Iq ⊗ L2k−i

2 ⊗ I2i), (3)

which can be efficiently realized from three types of CUDA kernels, similar to the Stockham FFT,
as presented in [17]. More details appear in our article [17] reporting on a GPU implementation
of FFT over finite fields.

Example 1 Let F = a(x) + b(x)y + c(x)y2 + d(x)y3 be a bivariate polynomial where a, b, c, d,
have degree less than 8. Let ω be a 8-th primitive root of unity. After evaluating F (x, y) at
x = (1, w, w2, w3, w4, w5, w6, w7), the layout of the evaluation data is

M =









a(1) a(ω) a(ω2) · · · a(ω6) a(ω7)
b(1) b(ω) b(ω2) · · · b(ω6) b(ω7)
c(1) c(ω) c(ω2) · · · c(ω6) c(ω7)
d(1) d(ω) d(ω2) · · · d(ω6) d(ω7)









The i-th column corresponds the univariate polynomial F (ωi, y) in y for i = 0 · · · 7. Transposing
matrix M gives

M t =

























a(1) b(1) c(1) d(1)
a(ω) b(ω) c(ω) d(ω)
a(ω2) b(ω2) c(ω2) d(ω2)
a(ω3) b(ω3) c(ω3) d(ω3)
a(ω4) b(ω4) c(ω4) d(ω4)
a(ω5) b(ω5) c(ω5) d(ω5)
a(ω6) b(ω6) c(ω6) d(ω6)
a(ω7) b(ω7) c(ω7) d(ω7)

























.

Assuming that the leading coefficient d(x) in y of F (x, y) does not vanish at any power of ω.
Then each row of M t can be regarded as a univariate polynomial of degree 3.



As illustrated in the above example, the second step is to transpose the evaluated F and G
for preparing the subresultant constructions. The major cost is to compute the subresultant
chains at all evaluation points. To accelerate the overall performance, we implemented Brown’s
subresultant algorithm in CUDA for computing a sequence of subresultant chains in a highly
parallel manner and we present two different approaches for this task.

Coarse-grained approach. The most direct way is to let each CUDA thread run a univariate
Brown’s subresultant algorithm. This approach works all the time and for practical problems
where the number of threads can reach a big value, say 212, this can still bring a reasonable
amount of speedup. However, this approach incurs a large amount of memory accesses to
the GPU global memory within a thread block, which limits the peak performance of the
implementation.

Fine-grained approach. The second approach is to break a list of univariate Brown’s
subresultant computations into a sequence of lists of univariate polynomial pseudo-divisions.
Provided that at each step all Aj ’s have the same degree and all Bj ’s have the same degree 1,
Algorithm 1 can be turned into the “list version”, namely Algorithm 3. Initially, all Fj ’s have
the same degree according to the choice of ω, (as all Gj ’s do).

For two univariate polynomials P (x) andQ(x), let Sk1 , . . ., Skℓ be all the regular subresultants
of P and G with 0 ≤ k1 < · · · < kℓ < deg(Q). Then (k1, . . . , kℓ) is called the degree sequence of
P and Q. In fact, they are the degrees of all remainders in the Euclidean algorithm with input
P,Q. Therefore, the above generic assumption says: the degree sequence of the subresultant
chain of F (ωi, y), G(ωj , y) is independent of j.

Algorithm 3: List of subresultant chains

Input : A list of pairs of polynomials Fj , Gj ∈ K[x] for 0 ≤ j < m such that
deg(Fj) ≥ deg(Gj) > 0, all Fj having the same degree, and all Gj having the
same degree.

Output : the subresultant chain of Fj and Gj , for 0 ≤ j < m.

for 0 ≤ i < deg(Gj), 0 ≤ j < m do1

Sj
i ← 0;2

for 0 ≤ j < m do3

Bj ← prem(Fj ,−Gj , x);4

Aj ← Gj ;5

α← deg(Fj)− deg(Gj);6

for 0 ≤ j < m do7

while Bj 6= 0 do8

d← deg(Aj), e← deg(Bj), δ ← d− e;9

Sj
d−1 ← Bj ;10

Sj
e ← lc(Aj)

α(1−δ)lc(Bj)
δ−1Bj ;11

if e = 0 then break;12

Bj ← lc(Aj)
−αδ−1prem(Aj ,−Bj , x), Aj ← Sj

e , α← 1;13

for 0 ≤ j < m do14

return {Sj
i | 0 ≤ i < deg(Gj)};15

In Algorithm 3, the generic assumption implies that

1 A nonzero constant has degree 0, and 0 has degree −1.



• at Line 8, if Bj = 0 holds for some 0 ≤ j < m, then all Bj are zero;

• at Line 9, all Aj have the same degree d, and all Bj have the same degree e;

• at Line 11, all Sj
e can be computed in a Single Instruction Multiple Data (SIMD) fashion.

• Similarly, at Line 13, all pseudo-divisions can be performed in a SIMD fashion.

Consequently, each of the lines 9 to 13 in the while loop can be executed in a SIMD fashion.
Moreover, several threads can cooperate in computing one Sj

e or one Bj . In particular, our core
subroutine performs a list of pseudo-divisions in a fine-grained way.

Example 2 Let f = a3x
3 + a2x

2 + a1x + a0 and g = b2x
2 + b1x + b0. To obtain the pseudo-

remainder prem(f,−g, x) of f and g, we compute

(1) h2 = −b2f + a3xg = c2x
2 + c1x+ c0,

(2) h1 = −b2h2 + c2g = d1x+ b0.

Alternatively, the pseudo-remainder prem(f,−g, x) can be computed in two steps:

(S1) c2 =

∣

∣

∣

∣

a3 a2
b2 b1

∣

∣

∣

∣

, c1 =

∣

∣

∣

∣

a3 a1
b2 0

∣

∣

∣

∣

, c0 =

∣

∣

∣

∣

a3 a0
b2 0

∣

∣

∣

∣

;

(S2) d1 =

∣

∣

∣

∣

c2 c1
b2 b1

∣

∣

∣

∣

, d0 =

∣

∣

∣

∣

c2 c0
b2 b0

∣

∣

∣

∣

.

As illustrated in the above example, the basic unit is to perform a single reduction step,
called list reduce, which takes two lists of univariate polynomials LF and LG as input, and
computes

hi = lc(gi)fi − lc(fi)x
deg(fi)−deg(gi)gi,

where fi is the i-th polynomial in LF and gi is the i-th polynomial in LG. We assume that
polynomials in LG have the same degree dG, and polynomials in LF have the same degree
dF. The result LH consists of the computed hi’s. The source code of this kernel is included in
Appendix B. In terms of the kernel list reduce, a list of pseudo-remainders can be computed
as in Algorithm 4 using a double-buffer method, where operation swap only exchanges two
pointers not their contents.

Algorithm 4: List of pseudo-remainders

Input : Two lists LF, LG of polynomials such that LF[i] = Fi, LG[i] = Gi for
0 ≤ i < m, deg(Fi) ≥ deg(Gi) > 0, all Fi having the same degree dF, and all Gi

having the same degree dG.
Output : The list LH of polynomials such that LH[i] = Hi = prem(Fi,−Gi, x) for

0 ≤ i < m.

list reduce(LX, dF, LF, dG, LG, p);1

for d← dF− 1 down to dG do2

list reduce(LY, d, LX, dG, LG, p);3

swap(LX, LY);4

Copy out the result from LX to LH;5



d t0 t1 t1/t0
30 0.23 0.29 1.3
40 0.23 0.43 1.9
50 0.27 1.14 4.2
60 0.27 1.53 5.7
70 0.31 3.95 12.7
80 0.32 4.88 15.3
90 0.35 5.95 17.0
100 0.50 19.10 38.2
110 0.53 17.89 33.8
120 0.58 19.72 34.0

Figure 2. Computing resultants for bivariate dense polynomials in seconds

3.2. Computing resultants
The data computed from Brown’s Algorithm, either with the coarse-grained method or with
the fine-grained method, is called a subresultant chain cube or simply an scube. It consists of
the images of all the subresultants of two polynomials on a FFT grid. Any subresultant or
any coefficient of a subresultant can be interpolated from the scube, by means an inverse FFT
computation inside the GPU.

For two bivariate polynomials of partial degree d in both x and y, the size of their scube is
in the order of d4. For instance, this size is approximately 632MB for d = 100. For applications
like computing the resultant or several subresultants (as in our bivariate solver), it is natural to
keep the scube within the GPU memory and copy only the desired result (say a subresultant)
back to the main main, whenever necessary.

Throughout this paper, our code is compiled with gcc 4.2.4 and nvcc 2.2. All the benchmarks
were conducted on a desktop with the processor Intel Core 2 Quad CPU Q9400 @ 2.66GHz
and 6 GB main memory. In Appendix A, we briefly list the specifications of two NVIDIA’s
graphics cards used in our benchmarking: Geforce GTX 285 and Telsa C2050. Without any
modifications, our code constructs a scube up to 2 times faster on the latter GPU, mainly due
to the better support double-precision floating point calculations. Please see Appendix B for
detailed description on integer multiplications modulo a prime number using floats.

In Figure 2, we report the timing for computing resultant res(F1, F2, y) with bivariate random
dense polynomials F1, F2 ∈ Zc[x, y] such that c = 469762049 and d = deg(Fi, x) = deg(Fi, y) for
i = 1, 2. In the figure, the first column, labeled by d, shows the partial degree d. The second one,
labeled by t0, is the timing for GPU implementation of the FFT-based scube method, which
includes the time for moving result back to the main memory. The third column, labeled by
t1, shows the results for the CPU implementation of the FFT-based scube serial C code in the
modpn library [14]. The last column reports the ratio between the two implementations. Note
that all the resultants in these experiments are computed with the fine-grained method. The
maximal speedup we achieve is approximately 38.

In addition to the one-dimensional Stockham FFT, we have also implemented a two-
dimensional Stockham FFT for handling trivariate polynomials. This can be applied to compute
the scube for a trivariate input. Figure 3 lists our experimental results for computing resultants
for trivariate random dense polynomials in K[x, y, z]. The first column shows the common partial
degree d in x, y and z. The other three column have the same meaning as in the bivariate case.
Note that all but d = 15 and d = 18 are based on the fine-grained approach. When the coarse-
grained method is forced to be used, the speedup it achieves drops significantly. This confirms
experimentally the merit of the fine-grained approach.

We observe that the GPU-based implementation achieves a much larger speedup factor in the



d t0 t1 t1/t0
7 0.22 0.16 0.7
8 0.23 0.76 3.3
9 0.24 0.85 3.5
10 0.25 0.98 3.9
11 0.24 1.10 4.6
12 0.30 4.96 16.5
13 0.31 5.52 17.8
14 0.32 6.07 19.0
15 0.78 8.95 11.5
16 0.65 31.65 48.7
17 0.66 34.55 52.3
18 3.46 47.54 13.7
19 0.73 51.04 69.9
20 0.75 43.12 57.5

Figure 3. Computing resultants for trivariate dense polynomials in seconds

trivariate case (approximately 70 for the best cases) than in the bivariate case (approximately
38). We are currently investigating the phenomenon.

4. Bivariate Solver
In this section, we discuss the GPU acceleration towards solving bivariate polynomials systems
over finite fields by means of triangular decompositions. This work extends the papers [12, 14].
Throughout this section, we consider two bivariate polynomials F1 and F2 are in K[x, y], with
ordered variables x < y and with coefficients in a field K.

4.1. Preliminaries
The key idea behind solving bivariate polynomials follows from the fact that the common roots
of F1 and F2 are likely to be described by the common roots of a single triangular set:

{

A(x) = 0
B(x, y) = 0

Generically, the univariate polynomial A(x) describes the projection of V (F1, F2) on the x-axis,
whereas the bivariate polynomial B(x, y) is expected to have partial degree 1 in y. We usually
obtain A(x) from the resultant of F1 and F2 in y, and compute B(x, y) in a polynomial GCD
computation.

Example 3 ([14]) Consider F1 = x2 + y + 1 and F2 = x + y2 + 1. We have res(F1, F2, y) =
x4 + 2x2 + x + 2, which is a squarefree polynomial when K = Q or K = Zc with c 6= 3, 7. It is
not hard to show that A(x) = x4 + 2x2 + x + 2 and B(x, y) = y + x2 + 1 are a desired pair of
polynomials. That is, the common solutions of F1(x) and F2(x) are exactly those of A(x) and
B(x, y). In fact, the polynomial B(x, y) is a gcd of F1 and F2 modulo A(x) in a technical sense
introduced in [16] and that we illustrate here. For a formal definition and algorithms, please
refer to [12].



Observe that A(x) writes (x2 + x+ 1)(x2 − x+ 2), thus we have
{

F1 = y − x,
F2 = (y − x)(y + x),

if x2 + x+ 1 = 0,

{

F1 = y + x− 1,
F2 = (y − x+ 1)(y + x− 1),

if x2 − x+ 2 = 0.

Hence, using the Chinese Remaindering Theorem, we obtain

B(x, y) = gcd(F1, F2) mod A(x) = y + x2 + 1.

4.2. Algorithm
Algorithm 7 is an improved version of the bivariate solver routine presented in [13]. It can
also be viewed as a specialized version of the general regular gcd algorithm presented in [12].
The improvement is two folds. First Algorithm 7 makes no genericity assumptions on the
input polynomials F1, F2, such as the resultant res(F1, F2, y) is not zero. Secondly, in some non-
generic situations, Algorithm 7 avoids unnecessary computations. However, and in order to avoid
technical details irrelevant to this paper’s objectives, Algorithm 7 computes a decomposition into
triangular sets, rather than regular chains. Regular chains have additional algebraic properties
which are often desirable in practice. Deriving a decomposition into regular chains from a
decomposition into triangular sets is easy and we refer to [16] for related procedures.

Observe that Algorithm 7 takes three polynomials as input. Indeed, in addition to F1

and F2, it takes a third polynomial g, which is univariate in x and which plays the role of
a “book keeper”. Algorithm 7 computes the common zeros of these three polynomials via a
triangular decompositions into triangular sets. Observes also that Algorithm 7 is essentially a
wrapper function for Algorithm 6. This second algorithm takes as input two bivariate (non-
univariate, non-constant) polynomials F1, F2 and two univariate polynomials g, h. Algorithm 6
computes the common zeros of F1, F2, g that do not can cancel h. It can be seen as the core
procedure of our bivariate solver. This is precisely in this procedure that the subresultant chain
of F1, F2 is computed and then manipulated to obtain the necessary subresultant polynomials.
Once calculated, the subresultant chain of F1, F2 is traversed in a bottom-up manner as in the
algorithm of [12].

Observe that Algorithm 6 starts by forwarding to Algorithm 5 the case where the resultant
of F1, F2 w.r.t. y is zero. After Line 7, the polynomial R is a squarefree factor of the resultant.
In the while loop, we maintain a level counter i, initialized to 1. During the loop execution,
we have the following invariant: R is a non-constant univariate polynomial and R divides the
coefficient in yv of Sv for all 0 < v < i. The inner while loop from Line 12 to Line 16 searches
for the first regular subresultant Sj such that R does not divide lc(Sj , y). This search skips all
the non-regular subresultants. The leading coefficient of Sj splits the squarefree polynomial R
into two parts G = gcd(R, lc(Sj , y)) and R′ = R/G. The pair (R′, Sj) is added to the output,
and the algorithm continues with G to the level j + 1.

Finally, Algorithm 5 can be seen as another wrapper function which handles the case where
the input polynomials F1 and F2 have a non-trivial factor, and thus a zero resultant.

4.3. Complexity analysis
We analyze the algebraic complexity of Algorithm 6 for the generic dense bivariate input. To
further simplify the analysis, we assume deg(F1, x) = deg(F1, y) = deg(F2, x) = deg(F2, y) = d.
That is, both F1 and F2 are random dense square polynomials with partial degrees d. We also
assume g = 0 and h = 1.

The degree of the resultant is bounded by B = 2d2+1, which can be read from the Sylvester
matrix of F1 and F2. Hence the FFT size n is the smallest power of 2 such that n = 2e ≥ B.



Algorithm 5: ModularGenericSolve2ZeroResultant(F1, F2, g, h)

Input : F1, F2 ∈ K[x, y] and g, h ∈ K[x] such that h(x) 6= 0 implies
gcd(lc(F1, y), lc(F2, y))(x) 6= 0 and such that F1, F2 have positive degree in y
and such that F1, F2 have a zero resultant in y

Output : a set of triangular sets {(A1, B1), . . ., (Ae, Be)} such that

V (F1, F2, g) \ V (h) =
e
⋃

i=1

V (Ai, Bi).

G← gcd(F1, F2);1

result← {(g,G)};2

F1 ← F1 quo G;3

F2 ← F2 quo G;4

if F1 ∈ K[x] then5

F1 ← squarefreePart(F1);6

F1 ← F1 quo gcd(F1, h);7

F1 ← gcd(g, F1);8

if F1 ∈ K then return result;9

if F2 ∈ K[x] then10

F2 ← squarefreePart(F2);11

F2 ← F2 quo gcd(F2, h);12

F2 ← gcd(g, F2);13

if F2 ∈ K then return result;14

if F1, F2 ∈ K[x] then return result ;15

if F1 ∈ K[x] then return result ∪ {(F1, F2)};16

if F2 ∈ K[x] then return result ∪ {(F2, F1)};17

return result ∪ModularGenericSolve2(F1, F2, g, h)18

Let ω be a proper n-th primitive root of unity, any power of which does not cancel the leading
coefficients of F1 and F2 in y. Then for each 0 ≤ i < n, evaluating F1 and F2 over ωi gives a
pair of univariate polynomials of degree d. The subresultant algorithm on each pair costs Θ(d2)
operations in Zc, from which we derive the cost to construct the FFT based scube Θ(d4).

For generic input F1, F2, we expect that the loop from Line 7 to Line 11 find j = 1. That
is, the expected gcd of F1 and F2 modulo their resultant in y is the subresultant of index 1.
This also implies that G = 1 at Line 19. In this case, the return value of Algorithm 6 is the
pair (A,B) where A is the squarefree part of the resultant and B is the subresultant of index 1.
Hence, the major steps are

• subresultant chain construction at Line 5,

• computation of the squarefree part at Line 7,

• interpolation of the subresultant S1 at Line 13,

• remainder computation at Line 14,

• gcd computation at Line 19.

The cost to interpolate the subresultant S1 is O∼(d2), which is the cost to interpolate
two coefficients of S1 with inverse FFTs. The classic algorithm to compute the gcd of two
univariate polynomial of degree d2 costs O(d4) field operations. However, by means of the half-
gcd technique, this can be reduced to O∼(d2). Hence, the squarefree part at Line 2 and the



Algorithm 6: ModularGenericSolve2(F1, F2, g, h)

Input : F1, F2 ∈ K[x, y] and g, h ∈ K[x] such that h(x) 6= 0 implies that
gcd(lc(F1, y), lc(F2, y))(x) 6= 0 and such that F1, F2 have positive degree in y

Output : a set of triangular sets {(A1, B1), . . ., (Ae, Be)} such that

V (F1, F2, g) \ V (h) =
e
⋃

i=1

V (Ai, Bi).

h← squarefreePart(h);1

g ← squarefreePart(g);2

g ← g quo gcd(g, h);3

if g ∈ K \ {0} then return ∅;4

if deg(F1, y) < deg(F2, y) then (F1, F2)← (F2, F1) ;5

Compute the subresultant chain S of F1, F2 in y;6

if S0 = 0 then return ModularGenericSolve2ZeroResultant(F1, F2, g, h) ;7

R← squarefreePart(S0);8

R← R quo h;9

R← gcd(R, g);10

result← ∅, i← 1;11

while R /∈ K do12

while i ≤ deg(F2, y) do13

Let Sj be the regular subresultant with i ≤ j ≤ deg(F2, y) with j minimum;14

if R divides lc(Sj , y) then i← i+ 1;15

else16

break;17

if i > deg(F2, y) then18

return result ∪ {(R,F1)};19

G← gcd(R, lc(Sj , y));20

if G ∈ K then return result ∪ {(R,Sj)};21

result← result ∪ {(R quo G,Sj)};22

R← G, i← j + 1;23

return result;24

gcd computation at Line 14 both cost O∼(d2) operations in Zc. By means of Newton iteration,
the fast remainder computation (Ch. 9 of [9]) costs O∼(d2) field operations at Line 14. In our
implementation, the subresultant construction and polynomial interpolations, of cost Θ(d4), are
performed in parallel inside the GPU; the remaining portion costs O∼(d2) operations in Zc.

4.4. Experimentation
In this section, we report our benchmarking results for solving bivariate systems. The dense
polynomials F1 and F2 are taken from Zc[x, y] randomly, with c = 469762049. In Figure 4, the
partial degrees of F1 and F2 are all d, indicated in the first column. The following four columns
indicate timing as follows:

t0: GPU implementation of FFT-based scube construction,

t1: total time for solving with GPU support,



Algorithm 7: ModularSolve2(F1, F2, g)

Input : F1, F2 ∈ K[x, y] and g ∈ K[x]
Output : a set of triangular sets {(A1, B1), . . ., (Ae, Be)} such that

V (F1, F2, g) =
e
⋃

i=1

V (Ai, Bi).

if g = F1 = F2 = 0 then return {(0, 0)} ;1

if g ∈ K \ {0} or F1 ∈ K \ {0} or F2 ∈ K \ {0} then return ∅;2

if F1 ∈ K[x] and F2 ∈ K[x] then3

A← gcd(F1, F2, g);4

if A ∈ K then return ∅;5

return {(A, 0)};6

if F1 ∈ K[y] and F2 ∈ K[y] then7

A← gcd(F1, F2);8

if A ∈ K then return ∅;9

return {(g,A)};10

if F1 ∈ K[x] then11

return ModularSolve2(F1 + F2, F2, g);12

if F2 ∈ K[x] then13

return ModularSolve2(F1, F1 + F2, g);14

h← gcd(lc(F1, y), lc(F2, y));15

G← ModularGenericSolve2(F1, F2, g, h)16

if h ∈ K then return G ;17

F1 ← reductum(F1, y), F2 ← reductum(F2, y);18

return G ∪ModularSolve2(F1, F2, gcd(g, h));19

t2: CPU implementation of FFT-based scube construction,

t3: total time for solving without any GPU support.

The fifth column shows the speedup for the subresultant chain construction and the last column
shows the speedup for solving bivariate random dense systems. Figure 5 shows the comparison
of the running time with and without GPU acceleration. The largest speedup we achieve is
approximately 7.5.

When asymptotically fast arithmetic is used for univariate polynomials, in terms of
algebraic complexity, the dominate part of solving generic bivariate system is the subresultant
construction. This could be observed from Figure 6. In the histogram, the left column (red)
indicates the time spent for subresultant chain construction, and the right column (green)
indicates the total time. After plugging the GPU support in the FFT-based subresultant
chain computations into the bivariate solver, the univariate polynomial arithmetic (for large
polynomials) dominates the total running time as shown in Figure 7. This also limits our
speedup factor, since univariate polynomials GCDs are currently all computed serially by the
CPU.



d t0 t1 t2 t3 t2/t0 t3/t1
25 0.23 0.30 0.10 0.17 0.4 0.6
30 0.25 0.35 0.14 0.25 0.6 0.7
35 0.23 0.42 0.34 0.51 1.5 1.2
40 0.25 0.46 0.42 0.64 1.7 1.4
45 0.24 0.51 0.48 0.77 2.0 1.5
50 0.28 0.67 1.14 1.56 4.1 2.3
55 0.27 0.76 1.33 1.84 4.9 2.4
60 0.29 0.88 1.54 2.20 5.3 2.5
65 0.30 1.13 3.50 4.44 11.7 3.9
70 0.31 1.20 3.94 4.94 12.7 4.1
75 0.31 1.34 4.42 5.56 14.3 4.2
80 0.32 1.42 4.84 6.06 15.1 4.3
85 0.34 1.74 5.40 6.95 15.9 4.0
90 0.33 1.80 5.94 7.54 18.0 4.2
95 0.45 2.47 13.09 15.44 29.0 6.3
100 0.48 2.56 14.23 16.66 29.7 6.5
105 0.49 2.74 15.53 18.14 31.7 6.6
110 0.52 2.93 16.78 19.58 32.1 6.7
115 0.54 3.35 18.05 21.26 33.4 6.3
120 0.55 3.80 24.41 28.60 44.4 7.5

Figure 4. Solving bivariate systems in seconds

Figure 5. Solving bivariate random dense polynomial systems over a finite field

5. Conclusions and remarks

In this paper, we have reported a GPU implementation of dense multivariate polynomial
arithmetic focusing on the computation of subresultant chains. With respect to a pure CPU code,
we obtain very large speedup factors for this task. We have also reported on the implementation
of a bivariate polynomial system solver, based on our GPU code. By speeding up subresultant
computations, our GPU-supported solver has substantially increased its performance w.r.t. its
pure CPU code counterpart.



Figure 6. Subresultant computations inside bivariate dense solver, C code only

Figure 7. Subresultant computations inside bivariate dense solver, C with GPU code

The subresultant construction also illustrates the following pattern, which is frequent in
symbolic computation and which is well-suitable for GPU computing. More precisely, the total
amount of work (in terms of number of coefficient operations) is essentially proportional (may
be up to logarithmic factors) to the size of the output, This type of algorithms seem to have
sufficient parallelism for current multicore architectures. However, due the output data size,
which is often much larger than than the L2 or L3 cache size, performance can be limited by
the memory bandwidth between the L2 (or L3) cache and the main memory.

As shown in Section 4.4, the speedup we can achieve in the bivariate solver is largely limited
by the computation of univariate polynomial gcds of large degree. In the future work, we would
like to improve this part and in turn fully utilize the speedup from our GPU scube construction.
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Appendix A. Specifications of our GPU cards
Our CUDA code has been run for the two NVIDIA GPUs and we briefly list their specifications
below.

GPU GTX 285 Tesla C2050
Capability 1.3 2.0

Multiprocessors 30 14
Cores 240 448

Clock Rate 1.15G GHz 1.15 GHz
Memory Bandwidth 159 GB/sec 144 GB/sec
Double Floating Point partially fully

Global Memory 1GB 3GB
Shared Memory 16KB 48KB or 16KB

L1 Cache none 48KB or 16KB
L2 Cache none 768KB

Concurrent Kernels no up to 16



The first card belongs to the GeForce 200 series, which starts to support double-precision
floating point numbers in hardware, but only one double-precision floating point unit (FPU)
per multiprocessor (a group of 8 or 32 cores). The second card belongs to the Fermi series
released in April 2010, in which each core is integrated with a double-precision FPU.

Appendix B. Source code
The following CUDA kernel performs a list of eliminations over a finite field Zc, which takes two
lists of univariate polynomials LF and LG, and computes

hi = lc(gi)fi − lc(fi)x
deg(fi)−deg(gi)gi,

where fi is the i-th polynomial in LF and gi is the i-th polynomial in LG. It requires that
polynomials in LG have the same degree dG, and polynomials in LF have the same degree dF.
The result LH consists of hi’s computed.

__global__ void list_reduce(int *LH, int dF, int *LF,

int dG, int *LG, int p)

{

int bid = blockIdx.x;

int tid = bid * blockDim.x + threadIdx.x;

int qtid = tid / dF; // pair index

int rtid = tid % dF;

int *F = LF + qtid * (dF + 1); // first poly

int *G = LG + qtid * (dG + 1); // second poly

int *H = LH + qtid * dF; // output poly

// The configuration is the following

// u ...... a

// v ...... b

// where a is the current coefficient to eliminate,

// b is the current leading coefficient,

// and u, v are cofficients to be adjusted.

// For each pair (u, v), compute

// a * v - u * b mod p

// and store it to H[rtid];

int dgap = dF - dG;

int a = F[dF]; // the leading coefficient of F

int b = G[dG]; // the leading coefficient of G

int u = F[rtid];

int v = ((rtid >= dgap) ? G[rtid - dgap] : 0);

int t1 = mul_mod(a, v, p); // t1 = a * v mod p

int t2 = mul_mod(b, u, p); // t2 = b * u mod p

H[rtid] = sub_mod(t1, t2, p);

}

The modular multiplication mul mod uses the following method in our code, assuming that
the inverse pinv = 1/p of p has been pre-computed.



int mul_mod(int a, int b, int p, double pinv) {

int q = (int)((((double)a) * ((double)b)) * pinv);

int result = a * b - q * p;

if (result < 0) result += p;

return result;

}

The above code requires two double-precision floating point multiplications. Up to our
knowledge, this is the simplest and best method to do the modular multiplications, even for
those GPUs which only partially support double-precision floats, like Nvidia GTX 285.

Appendix C. Profiling results
To visualize the performance of our implementations, we use the Nvidia’s visual profiler
cudaprof to analyze CUDA kernel calls. It is very helpful to find out the bottlenecks of an
implementation.

Figure C1 shows the kernel statistics of the Stockham FFT. In this figure, the x-axis shows
the kernel call indices in chronological order and the y-axis is proportional to the GPU time for
each kernel. The first kernel copies the coefficient vector of the univariate polynomial into the
GPU global memory, followed by a sequence of kernel calls to double expand ker to compute
powers {1, ω, ω2, . . . , ωn/2−1}. The last kernel copies the result back to the main memory. In the
middle, it has basic butterflies, twiddling and data transpositions. Each of those kernel names
uses a or b as a suffix, since we implement the same algorithm for handling input data in
different ranges. This enables the kernels to efficiently utilize the shared memory space of the
GPU, whenever necessary.

Figure C1 was generated using our first GPU GTX 285 and the FFT size is n = 226. The
memory bandwidth will be the only bottleneck if the goal is to speedup a single univariate FFT.
It is advisable to keep the data inside GPU global memory as long as possible, as we did for
computing the subresultant chains.

Figure C2 was generated using our second GPU Telsa C2050 for constructing the scube of
two random dense bivariate polynomials of partial degree 100 in each variable. There are three
major components: FFT evaluations of a list of univariate polynomials (the region in a rectangle
shape), initialization of the output (the highest single column), and the fine-grained Brown’s
algorithm (the region in a triangle shape). The last one dominates the overall computation,
i.e. the kernel list reduce. We gain approximately an extra speedup factor of 2 by switching
from the GTX 285 to Telsa C2050, due to the better support of double-precision floating point
calculations.



Figure C1. Kernel statistics of the Stockham FFT

Figure C2. Kernel statistics of a scube construction


