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GPUs

I GPUs are massively multithreaded manycore chips:
I NVIDIA Tesla products have up to 448 scalar processors with
I over 12,000 concurrent threads in flight and
I 1030.4 GFLOPS sustained performance (single precision).

I Users across science & engineering disciplines are achieving
100x or better speedups on GPUs.



CUDA design goals

I Enable heterogeneous systems (i.e., CPU+GPU)

I Scale to 100’s of cores, 1000’s of parallel threads

I Use C/C++ with minimal extensions

I Let programmers focus on parallel algorithms



Heterogeneous programming (1/3)
I A CUDA program is a serial program with parallel kernels, all

in C.
I The serial C code executes in a host (= CPU) thread
I The parallel kernel C code executes in many device threads

across multiple GPU processing elements, called streaming
processors (SP).



Heterogeneous programming (2/3)

I Thus, the parallel code (kernel) is launched and executed on a
device by many threads.

I Threads are grouped into thread blocks.

I One kernel is executed at a time on the device.

I Many threads execute each kernel.



Heterogeneous programming (3/3)

I The parallel code is written for a thread
I Each thread is free to execute a unique code path
I Built-in thread and block ID variables are used to map each

thread to a specific data tile (see next slide).

I Thus, each thread executes the same code on different data
based on its thread and block ID.



Example: increment array elements (1/2)

See our example number 4 in /usr/local/cs4402/examples/4



Example: increment array elements (2/2)



Example host code for increment array elements



Thread blocks (1/2)

I A Thread block is a group of threads that can:
I Synchronize their execution
I Communicate via shared memory

I Within a grid, thread blocks can run in any order:
I Concurrently or sequentially
I Facilitates scaling of the same code across many devices



Thread blocks (2/2)

I Thus, within a grid, any possible interleaving of blocks must
be valid.

I Thread blocks may coordinate but not synchronize
I they may share pointers
I they should not share locks (this can easily deadlock).

I The fact that thread blocks cannot synchronize gives
scalability:

I A kernel scales across any number of parallel cores

I However, within a thread block, threads may synchronize with
barriers.

I That is, threads wait at the barrier until all threads in the
same block reach the barrier.



Vector addition on GPU (1/4)



Vector addition on GPU (2/4)



Vector addition on GPU (3/4)



Vector addition on GPU (4/4)



Memory hierarchy (1/3)

Host (CPU) memory:

I Not directly accessible by CUDA threads



Memory hierarchy (2/3)

Global (on the device) memory:

I Also called device memory

I Accessible by all threads as well as host (CPU)

I Data lifetime = from allocation to deallocation



Memory hierarchy (3/3)

Shared memory:

I Each thread block has its own shared memory, which is
accessible only by the threads within that block

I Data lifetime = block lifetime

Local storage:

I Each thread has its own local storage

I Data lifetime = thread lifetime



Blocks run on multiprocessors



Streaming processors and multiprocessors



Hardware multithreading
I Hardware allocates resources to blocks:

I blocks need: thread slots, registers, shared memory
I blocks don’t run until resources are available

I Hardware schedules threads:
I threads have their own registers
I any thread not waiting for something can run
I context switching is free every cycle

I Hardware relies on threads to hide latency:
I thus high parallelism is necessary for performance.



SIMT thread execution
I At each clock cycle, a multiprocessor executes the same

instruction on a group of threads called a warp
I The number of threads in a warp is the warp size (32 on G80)
I A half-warp is the first or second half of a warp.

I Within a warp, threads
I share instruction fetch/dispatch
I some become inactive when code path diverges
I hardware automatically handles divergence

I Warps are the primitive unit of scheduling:
I each active block is split into warps in a well-defined way
I threads within a warp are executed physically in parallel while

warps and blocks are executed logically in parallel.
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Code executed on the GPU

I The GPU code defines and calls C function with some
restrictions:

I Can only access GPU memory
I No variable number of arguments
I No static variables
I No recursion (. . . well this has changed recently)
I No dynamic polymorphism

I GPU functions must be declared with a qualifier:

global : launched by CPU, cannot be called from GPU,
must return void

device : called from other GPU functions, cannot be
launched by the CPU

host : can be executed by CPU

I qualifiers can be combined.

I Built-in variables: gridDim, blockDim, blockIdx,
threadIdx



Variable qualifiers (GPU code)

device : I stored in global memory (not cached, high
latency)

I accessible by all threads
I lifetime: application

constant : I stored in global memory (cached)
I read-only for threads, written by host
I Lifetime: application

shared : I stored in shared memory (latency comparable
to registers)

I accessible by all threads in the same threadblock
I lifetime: block lifetime

Unqualified variables: I scalars and built-in vector types are
stored in registers

I arrays are stored in device (= global) memory



Launching kernels on GPU

Launch parameters:

I grid dimensions (up to 2D)

I thread-block dimensions (up to 3D)
I shared memory: number of bytes per block

I for extern smem variables declared without size
I optional, 0 by default

I stream ID:
I Optional, 0 by default

dim3 grid(16, 16);

dim3 block(16,16);

kernel<<<grid, block, 0, 0>>>(...);

kernel<<<32, 512>>>(...);



GPU memory allocation / release

Host (CPU) manages GPU memory:

I cudaMalloc (void ** pointer, size t nbytes)

I cudaMemset (void * pointer, int value, size t

count)

I cudaFree (void* pointer)

int n = 1024;

int nbytes = 1024*sizeof(int);

int * d_a = 0;

cudaMalloc( (void**)&d_a, nbytes );

cudaMemset( d_a, 0, nbytes);

cudaFree(d_a);



Data copies

I cudaMemcpy( void *dst, void *src, size t nbytes,
enum cudaMemcpyKind direction);

I returns after the copy is complete,
I blocks the CPU thread,
I doesn’t start copying until previous CUDA calls complete.

I enum cudaMemcpyKind
I cudaMemcpyHostToDevice
I cudaMemcpyDeviceToHost
I cudaMemcpyDeviceToDevice

I Non-blocking memcopies are provided (more on this later)



Thread synchronization function

I void syncthreads();

I Synchronizes all threads in a block:
I once all threads have reached this point, execution resumes

normally.
I this is used to avoid hazards when accessing shared memory.

I Should be used in conditional code only if the condition is
uniform across the entire thread block.



Kernel variations and output: what is in a?



Kernel variations and utput: answers



Example kernel source code: what does this do?



Example kernel source code: solution



Kernel with 2D Indexing (1/2)



Kernel with 2D Indexing (2/2)
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Four principles
I Expose as much parallelism as possible

I If threads of same block need to communicate, use shared
memory and syncthreads()

I If threads of different blocks need to communicate, use global
memory and split computation into multiple kernels

I High parallelism is especially important to hide memory latency
by overlapping memory accesses with computation

I Optimize memory usage for maximum bandwidth
I Effective bandwidth can vary by an order of magnitude
I Optimize access patterns to get:

I Coalesced global memory accesses, and
I Shared memory accesses with no or few bank conflicts.

I Maximize occupancy to hide latency
I Leverage parallelism to hide memory latency by overlapping

memory accesses with computation as much as possible
I Sometimes recompute data rather than cache it
I Write kernels with high arithmetic intensity

I Optimize instruction usage for maximum throughput
I For instance some 32-bit instructions may yield better

throughput than 64-bit counterpart instructions.
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A popular programming strategy (1/5)

Partition data into subsets that fit into shared memory



A popular programming strategy (2/5)

Handle each data subset with one thread block



A popular programming strategy (3/5)

Load the subset from global memory to shared memory, using
multiple threads to exploit memory-level parallelism.



A popular programming strategy (4/5)

Perform the computation on the subset from shared memory.



A popular programming strategy (5/5)

Copy the result from shared memory back to global memory.
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Matrix transpose characteristics (1/2)
I We optimize a transposition code for a matrix of floats. This operates

out-of-place:
I input and output matrices address separate memory locations.

I For simplicity, we consider an n × n matrix where 32 divides n.
I We focus on the device code:

I the host code performs typical tasks: data allocation and transfer
between host and device, the launching and timing of several kernels,
result validation, and the deallocation of host and device memory.

I Benchmarks illustrate this section:
I we compare our matrix transpose kernels against a matrix copy

kernel,
I for each kernel, we compute the effective bandwidth, calculated in

GB/s as twice the size of the matrix (once for reading the matrix and
once for writing) divided by the time of execution,

I Each operation is run NUM REFS times (for normalizing the
measurements),

I This looping is performed once over the kernel and once within the
kernel,

I The difference between these two timings is kernel launch and
synchronization overheads.



Matrix transpose characteristics (2/2)

I We present hereafter different kernels called from the host
code, each addressing different performance issues.

I All kernels in this study launch thread blocks of dimension
32x8, where each block transposes (or copies) a tile of
dimension 32x32.

I As such, the parameters TILE DIM and BLOCK ROWS are set to
32 and 8, respectively.

I Using a thread block with fewer threads than elements in a
tile is advantageous for the matrix transpose:

I each thread transposes several matrix elements, four in our
case, and much of the cost of calculating the indices is
amortized over these elements.

I This study is based on a technical report by Greg Ruetsch
(NVIDIA) and Paulius Micikevicius (NVIDIA).



A simple copy kernel (1/2)

__global__ void copy(float *odata, float* idata, int width,

int height, int nreps)

{

int xIndex = blockIdx.x*TILE_DIM + threadIdx.x;

int yIndex = blockIdx.y*TILE_DIM + threadIdx.y;

int index = xIndex + width*yIndex;

for (int r=0; r < nreps; r++) { // normalization outer loop

for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) {

odata[index+i*width] = idata[index+i*width];

}

}

}



A simple copy kernel (2/2)

I odata and idata are pointers to the input and output matrices,
I width and height are the matrix x and y dimensions,
I nreps determines how many times the loop over data movement

between matrices is performed.
I In this kernel, xIndex and yIndex are global 2D matrix indices,
I used to calculate index, the 1D index used to access matrix

elements.

__global__ void copy(float *odata, float* idata, int width,

int height, int nreps)

{

int xIndex = blockIdx.x*TILE_DIM + threadIdx.x;

int yIndex = blockIdx.y*TILE_DIM + threadIdx.y;

int index = xIndex + width*yIndex;

for (int r=0; r < nreps; r++) {

for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) {

odata[index+i*width] = idata[index+i*width];

} } }



A naive transpose kernel

_global__ void transposeNaive(float *odata, float* idata,

int width, int height, int nreps)

{

int xIndex = blockIdx.x*TILE_DIM + threadIdx.x;

int yIndex = blockIdx.y*TILE_DIM + threadIdx.y;

int index_in = xIndex + width * yIndex;

int index_out = yIndex + height * xIndex;

for (int r=0; r < nreps; r++) {

for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) {

odata[index_out+i] = idata[index_in+i*width];

}

}

}



Naive transpose kernel vs copy kernel

The performance of these two kernels on a 2048x2048 matrix using
a GTX280 is given in the following table:

Routine Bandwidth (GB/s)

copy 105.14

naive transpose 18.82

The minor differences in code between the copy and nave
transpose kernels have a profound effect on performance.



Coalesced Transpose (1/10)
I Because device memory has a much higher latency and lower

bandwidth than on-chip memory, special attention must be
paid to: how global memory accesses are performed?

I The simultaneous global memory accesses by each thread of a
half-warp (16 threads on G80) during the execution of a single
read or write instruction will be coalesced into a single access
if:

1. The size of the memory element accessed by each thread is
either 4, 8, or 16 bytes.

2. The address of the first element is aligned to 16 times the
element’s size.

3. The elements form a contiguous block of memory.
4. The i-th element is accessed by the i-th thread in the

half-warp.

I Last two requirements are relaxed with compute capabilities of
1.2.

I Coalescing happens even if some threads do not access
memory (divergent warp)



Coalesced Transpose (2/10)



Coalesced Transpose (3/10)



Coalesced Transpose (4/10)



Coalesced Transpose (5/10)

I Allocating device memory through cudaMalloc() and
choosing TILE DIM to be a multiple of 16 ensures
alignment with a segment of memory, therefore all loads from
idata are coalesced.

I Coalescing behavior differs between the simple copy and naive
transpose kernels when writing to odata.

I In the case of the naive transpose, for each iteration of the
i-loop a half warp writes one half of a column of floats to
different segments of memory:

I resulting in 16 separate memory transactions,
I regardless of the compute capability.



Coalesced Transpose (6/10)

I The way to avoid uncoalesced global memory access is

1. to read the data into shared memory and,
2. have each half warp access non-contiguous locations in shared

memory in order to write contiguous data to odata.

I There is no performance penalty for non-contiguous access
patterns in shared memory as there is in global memory.

I a synchthreads() call is required to ensure that all reads
from idata to shared memory have completed before writes
from shared memory to odata commence.



Coalesced Transpose (7/10)

__global__ void transposeCoalesced(float *odata,

float *idata, int width, int height) // no nreps param

{

__shared__ float tile[TILE_DIM][TILE_DIM];

int xIndex = blockIdx.x*TILE_DIM + threadIdx.x;

int yIndex = blockIdx.y*TILE_DIM + threadIdx.y;

int index_in = xIndex + (yIndex)*width;

xIndex = blockIdx.y * TILE_DIM + threadIdx.x;

yIndex = blockIdx.x * TILE_DIM + threadIdx.y;

int index_out = xIndex + (yIndex)*height;

for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) {

tile[threadIdx.y+i][threadIdx.x] =

idata[index_in+i*width];

} __syncthreads();

for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) {

odata[index_out+i*height] =

tile[threadIdx.x][threadIdx.y+i];

} }



Coalesced Transpose (8/10)

1. The half warp writes four half rows of the idata matrix tile to
the shared memory 32x32 array tile indicated by the yellow
line segments.

2. After a syncthreads() call to ensure all writes to tile are
completed,

3. the half warp writes four half columns of tile to four half rows
of an odata matrix tile, indicated by the green line segments.



Coalesced Transpose (9/10)

_global__ void copySharedMem(float *odata, float *idata,

int width, int height) // no nreps param

{

__shared__ float tile[TILE_DIM][TILE_DIM];

int xIndex = blockIdx.x*TILE_DIM + threadIdx.x;

int yIndex = blockIdx.y*TILE_DIM + threadIdx.y;

int index = xIndex + width*yIndex;

for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) {

tile[threadIdx.y+i][threadIdx.x] =

idata[index+i*width];

}

__syncthreads();

for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) {

odata[index+i*width] =

tile[threadIdx.y+i][threadIdx.x];

} }



Coalesced Transpose (10/10)

Routine Bandwidth (GB/s)

copy 105.14

shared memory copy 104.49

naive transpose 18.82

coalesced transpose 51.42

The shared memory copy results seem to suggest that the use of
shared memory with a synchronization barrier has little effect on
the performance, certainly as far as the Loop in kernel column
indicates when comparing the simple copy and shared memory
copy.



Shared memory bank conflicts (1/6)

1. Shared memory is divided into 16 equally-sized memory
modules, called banks, which are organized such that
successive 32-bit words are assigned to successive banks.

2. These banks can be accessed simultaneously, and to achieve
maximum bandwidth to and from shared memory the threads
in a half warp should access shared memory associated
with different banks.

3. The exception to this rule is when all threads in a half warp
read the same shared memory address, which results in a
broadcast where the data at that address is sent to all threads
of the half warp in one transaction.

4. One can use the warp serialize flag when profiling CUDA
applications to determine whether shared memory bank
conflicts occur in any kernel.



Shared memory bank conflicts (2/6)



Shared memory bank conflicts (3/6)



Shared memory bank conflicts (4/6)

1. The coalesced transpose uses a 32× 32 shared memory array
of floats.

2. For this sized array, all data in columns k and k+16 are
mapped to the same bank.

3. As a result, when writing partial columns from tile in shared
memory to rows in odata the half warp experiences a 16-way
bank conflict and serializes the request.

4. A simple way to avoid this conflict is to pad the shared
memory array by one column:

__shared__ float tile[TILE_DIM][TILE_DIM+1];



Shared memory bank conflicts (5/6)

I The padding does not affect shared memory bank access
pattern when writing a half warp to shared memory, which
remains conflict free,

I but by adding a single column now the access of a half warp
of data in a column is also conflict free.

I The performance of the kernel, now coalesced and memory
bank conflict free, is added to our table on the next slide.



Shared memory bank conflicts (6/6)

Device : Tesla M2050

Matrix size: 1024 1024, Block size: 32 8, Tile size: 32 32

Routine Bandwidth (GB/s)

copy 105.14

shared memory copy 104.49

naive transpose 18.82

coalesced transpose 51.42

conflict-free transpose 99.83

I While padding the shared memory array did eliminate shared
memory bank conflicts, as was confirmed by checking the
warp serialize flag with the CUDA profiler, it has little
effect (when implemented at this stage) on performance.

I As a result, there is still a large performance gap between the
coalesced and shared memory bank conflict free transpose and
the shared memory copy.
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Matrix multiplication (1/16)

I The goals of this example are:
I Understanding how to write a kernel for a non-toy example
I Understanding how to map work (and data) to the thread

blocks
I Understanding the importance of using shared memory

I We start by writing a naive kernel for matrix multiplication
which does not use shared memory.

I Then we analyze the performance of this kernel and realize
that it is limited by the global memory latency.

I Finally, we present a more efficient kernel, which takes
advantage of a tile decomposition and makes use of shared
memory.



Matrix multiplication (2/16)

I Consider multiplying two rectangular matrices A and B with
respective formats m × n and n × p. Define C = A× B.

I Principle: each thread computes an element of C through a
2D grid with 2D thread blocks.



Matrix multiplication (3/16)

__global__ void mat_mul(float *a, float *b,

float *ab, int width)

{

// calculate the row & col index of the element

int row = blockIdx.y*blockDim.y + threadIdx.y;

int col = blockIdx.x*blockDim.x + threadIdx.x;

float result = 0;

// do dot product between row of a and col of b

for(int k = 0; k < width; ++k)

result += a[row*width+k] * b[k*width+col];

ab[row*width+col] = result;

}



Matrix multiplication (4/16)

I Analyze the previous CUDA kernel for multiplying two
rectangular matrices A and B with respective formats m × n
and n × p. Define C = A× B.

I Each element of C is computed by one thread:
I then each row of A is read p times and
I each column of B is read m times, thus
I 2mn p reads in total for 2mn p flops.

I Let t be an integer dividing m and p. We decompose C into
t × t tiles. If tiles are computed one after another, then:

I (m/t)(t n)(p/t) slots are read in A
I (p/t)(t n)(m/t) slots are read in B, thus
I 2mn p/t reads in total for 2mn p flops.

I For a CUDA implementation, t = 16 such that each tile is
computed by one thread block.



Matrix multiplication (5/16)

I The previous explanation can be adapted to a particular GPU
architecture, so as to estimate the performance of the first
(naive) kernel.

I The first kernel has a global memory access to flop ratio
(GMAC) of 8 Bytes / 2 ops, that is, 4 B/op.

I Suppose using a GeForce GTX 260, which has 805 GFLOPS
peak performance.

I In order to reach peak fp performance we would need a
memory bandwidth of GMAC× Peak FLOPS = 3.2 TB/s.

I Unfortunately, we only have 112 GB/s of actual memory
bandwidth (BW) on a GeForce GTX 260.

I Therefore an upper bound on the performance of our
implementation is BW / GMAC = 28 GFLOPS.



Matrix multiplication (6/16)

I The picture below illustrates our second kernel

I Each thread block computes a tile in C , which is obtained as
a dot product of tile-vector of A by a tile-vector of B.

I Tile size is chosen in order to maximize data locality.



Matrix multiplication (7/16)

I So a thread block computes a t × t tile of C .

I Each element in that tile is a dot-product of a row from A and
a column from B.

I We view each of these dot-products as a sum of small dot
products:

ci ,j = Σt−1
k=oai ,kbk,j + Σ2t−1

k=t ai ,kbk,j + · · ·Σn−1
k=n−1−tai ,kbk,j

I Therefore we fix ` and then compute Σ
(`+1)t−1
k=`t ai ,kbk,j for all

i , j in the working thread block.

I We do this for ` = 0, 1, . . . , (n/t − 1).

I This allows us to store the working tiles of A and B in shared
memory.



Matrix multiplication (8/16)

I We assume that A, B, C are stored in row-major layout.

I Observe that for computing a tile in C our kernel code does
need to know the number of rows in A.

I It just needs to know the width (number of columns) of A
and B.

#define BLOCK_SIZE 16

template <typename T>

__global__ void matrix_mul_ker(T* C, const T *A, const T *B,

size_t wa, size_t wb)

// Block index; WARNING: should be at most 2^16 - 1

int bx = blockIdx.x; int by = blockIdx.y;

// Thread index

int tx = threadIdx.x; int ty = threadIdx.y;



Matrix multiplication (9/16)

I We need the position in *A of the first element of the first
working tile from A; we call it aBegin.

I We will need also the position in *A of the last element of the
first working tile from A; we call it aEnd.

I Moreover, we will need the offset between two consecutive
working tiles of A; we call it aStep.

int aBegin = wa * BLOCK_SIZE * by;

int aEnd = aBegin + wa - 1;

int aStep = BLOCK_SIZE;



Matrix multiplication (10/16)

I Similarly for B we have bBegin and bStep.

I We will not need a bEnd since once we are done with a row of
A, we are also done with a column of B.

I Finally, we initialize the accumulator of the working thread;
we call it Csub.

int bBegin = BLOCK_SIZE * bx;

int bStep = BLOCK_SIZE * wb;

int Csub = 0;



Matrix multiplication (11/16)

I The main loop starts by copying the working tiles of A and B to
shared memory.

for(int a = aBegin, b = bBegin; a <= aEnd; a += aStep, b += bStep) {

// shared memory for the tile of A

__shared__ int As[BLOCK_SIZE][BLOCK_SIZE];

// shared memory for the tile of B

__shared__ int Bs[BLOCK_SIZE][BLOCK_SIZE];

// Load the tiles from global memory to shared memory

// each thread loads one element of each tile

As[ty][tx] = A[a + wa * ty + tx];

Bs[ty][tx] = B[b + wb * ty + tx];

// synchronize to make sure the matrices are loaded

__syncthreads();



Matrix multiplication (12/16)

I Compute a small “dot-product” for each element in the working tile
of C .

// Multiply the two tiles together

// each thread computes one element of the tile of C

for(int k = 0; k < BLOCK_SIZE; ++k) {

Csub += As[ty][k] * Bs[k][tx];

}

// synchronize to make sure that the preceding computation is

// done before loading two new tiles of A dnd B in the next iteration

__syncthreads();

}



Matrix multiplication (13/16)

I Once computed, the working tile of C is written to global
memory.

// Write the working tile of $C$ to global memory;

// each thread writes one element

int c = wb * BLOCK_SIZE * by + BLOCK_SIZE * bx;

C[c + wb * ty + tx] = Csub;



Matrix multiplication (14/16)

I Each thread block should have many threads:
I TILE WIDTH = 16 implies 16× 16 = 256 threads

I There should be many thread blocks:
I A 1024× 1024 matrix would require 4096 thread blocks.
I Since one streaming multiprocessor (SM) can handle 768

threads, each SM will process 3 thread blocks, leading it full
occupancy.

I Each thread block performs 2× 256 reads of a 4-byte float
while performing 256× (2× 16) = 8, 192 fp ops:

I Memory bandwidth is no longer limiting factor



Matrix multiplication (15/16)
I Experimentation performed on a GT200.
I Tiling and using shared memory were clearly worth the

effort.



Matrix multiplication (16/16)

I Effective use of different memory resources reduces the
number of accesses to global memory

I But these resources are finite!

I The more memory locations each thread requires, the fewer
threads an SM can accommodate.
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Prefix sum

Prefix sum of a vector: specification

Input: a vector ~x = (x1, x2, . . . , xn)

Ouput: the vector ~y = (y1, y2, . . . , yn) such that
yi =

∑j=i
i=1 xj for 1 ≤ j ≤ n.

Prefix sum of a vector: example

The prefix sum of ~x = (1, 2, 3, 4, 5, 6, 7, 8) is
~y = (1, 3, 6, 10, 15, 21, 28, 36).



Prefix sum: a recursive work-efficient algorithm (1/2)

Algorithm

I Input: x [1], x [2], . . . , x [n] where n is a power of 2.
I Step 1: x [k] = x [k] + x [k − 1] for all even k ’s.
I Step 2: Recursive call on x [2], x [4], . . . , x [n]
I Step 3: x [k − 1] = x [k]− x [k − 1] for all even k ’s.



Prefix sum: a recursive work-efficient algorithm (2/2)

Analysis

I Since the recursive call is applied to an array of size n/2, the total
number of recursive calls is log(n).

I Before the recursive call, one performs n/2 additions
I After the recursive call, one performs n/2 subtractions
I Elementary calculations show that this recursive algorithm performs

at most a total of 2n additions and subtractions
I Thus, this algorithm is work-efficient. In addition, it can run in

2log(n) parallel steps.



Application to parallel addition (1/2)



Application to parallel addition (2/2)

Call Mi the above matrix. Computing all Mi · · ·M2M1 computes
all carries in log(n) steps by means of parallel prefix sum.



Parallel addition of big integers: experimental results

I Number of words per big integer: 256

I Number of pairs to be added: 1024

I test cases: random and 4 corner cases, each one run 100 times

I Architecture: NVIDIA Tesla 2050C
I Implementation bases on 32-bit:

I Average GPU time = 0.166726ms
I Average CPU time = 1.770852ms

I Implementation bases on 64-bit:
I Average GPU time = 0.330151ms
I Average CPU time = 1.944842ms
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Optimize algorithms targeting GPU-like many-core devices

Desirable goals

I Given a CUDA code, an experimented programmer may
attempt well-known strategies to improve the code
performance in terms of arithmetic intensity and memory
bandwidth.

I Given a CUDA-like algorithm, one would like to derive code
for which much of this optimization process has been lifted at
the design level, i.e. before the code is written.

Problem
We need a model of computation which

I captures the computer hardware characteristics that have a
dominant impact on program performance.

I combines its complexity measures (work, span) so as to
determine the best algorithm among different possible
algorithmic solutions to a given problem.



Challenges in designing a model of computation for GPUs

Theoretical aspects

I GPU-like architectures introduces many machine parameters
(like memory sizes, number of cores), and too many could
lead to intractable calculations.

I GPU-like code depends also on program parameters (like
number of threads per thread-block) which specify how the
work is divided among the computing resources.

Practical aspects

I One wants to avoid answers like: Algorithm 1 is better than
Algorithm 2 providing that the machine parameters satisfy a
system of constraints.

I We prefer analysis results independent of machine parameters.

I We expect that this should be achieved by selecting program
parameters in appropriate ranges.



Fork-join model
This model has become popular with the development of the
concurrency platform CilkPlus, targeting multi-core architectures.

I The work T1 is the total time to execute the entire program
on one processor.

I The span T∞ is the longest time to execute along any path in
the DAG.

I We recall that the Graham-Brent theorem states that the
running time TP on P processors satisfies TP ≤ T1/P + T∞.
A refinement of this theorem captures scheduling and
synchronization costs, that is, TP ≤ T1/P + 2δT̂∞, where δ is

a constant and T̂∞ is the burdened span.

Figure: An example of computation DAG: 4-th Fibonacci number



Parallel random access machine (PRAM) model

Figure: Abstract machine of PRAM model

I Instructions on a processor execute in a 3-phase cycle:
read-compute-write.

I Processors access to the global memory in a unit time (unless
an access conflict occurs).

I These strategies deal with read/write conflicts to the same
global memory cell: EREW, CREW and CRCW (exclusive or
concurrent).

I A refinement of PRAM integrates communication delay into
the computation time.



Recent many-core machine models

Hong and Kim 2009 present an analytical model to estimate the
execution time of parallel programs on GPU architectures.

I Their estimated running time is based on the estimated CPI
(cycles per instruction).

I It also requires machine parameters, such as the specifications
of a GPU card.

Ma, Agrawal and Chamberlain 2014 introduce the threaded
many-core memory (TMM) model which retains many important
characteristics of GPU-type architectures.

I In TMM analysis, the running time of an algorithm is
estimated by choosing the maximum quantity among the
work, span and amount of memory accesses. No
Graham-Brent theorem-like is provided.

I Such running time estimates depend on the machine
parameters.
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A many-core machine (MCM) model

We propose a many-core machine (MCM) model which aims at

I tuning program parameters to minimize parallelism overheads
of algorithms targeting GPU-like architectures as well as

I comparing different algorithms independently of the value of
machine parameters of the targeted hardware device.

In the design of this model, we insist on the following features:

I Two-level DAG programs

I Parallelism overhead

I A Graham-Brent theorem

(Sardar Anisul Haque, MMM, Ning Xie; ParCo 2015)
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Characteristics of the abstract many-core machines

Figure: A many-core machine

I It has a global memory with high latency and low throughput
while private memories have low latency and high throughput



Characteristics of the abstract many-core machines

Figure: Overview of a many-core machine program, also called kernel
DAG



Characteristics of the abstract many-core machines

Synchronization costs

I It follows that MCM kernel code needs no synchronization
statement.

I Consequently, the only form of synchronization taking place
among the threads executing a given thread-block is implied
by code divergence.

I An MCM machine handles code divergence by eliminating
the corresponding conditional branches via code replication,
and the corresponding cost will be captured by the complexity
measures (work, span and parallelism overhead) of the MCM
model.



Characteristics of the abstract many-core machines

Scheduling costs

I The kernel DAG defining an MCM program P is assumed to
be known when P starts to execute.

I Scheduling P’s kernels onto the SMs can be done in time
O(Γ) where Γ is the total length of P’s kernel code.

I We neglect those costs.



Machine parameters of the abstract many-core machines

Z: Private memory size of any SM

I It sets up an upper bound on several program parameters, for
instance, the number of threads of a thread-block or the
number of words in a data transfer between the global
memory and the private memory of a thread-block.

U: Data transfer time

I Time (expressed in clock cycles) to transfer one machine word
between the global memory and the private memory of any
SM, that is, U > 0.

I As an abstract machine, the MCM aims at capturing either
the best or the worst scenario for data transfer time of a
thread-block, that is,

TD ≤ (α + β)U, if coalesced accesses occur;
or ` (α + β)U, otherwise,

where α and β are the numbers of words respectively read and
written to the global memory by one thread of a thread-block
B and ` be the number of threads per thread-block.
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Complexity measures for the many-core machine model

For any kernel K of an MCM program,

I work W (K) is the total number of local operations of all its
threads;

I span S(K) is the maximum number of local operations of one
thread;

I parallelism overhead O(K) is the total data transfer time
among all its thread-blocks.

For the entire program P,

I work W (P) is the total work of all its kernels;

I span S(P) is the longest path, counting the weight (span) of
each vertex (kernel), in the kernel DAG;

I parallelism overhead O(P) is the total parallelism overhead
of all its kernels.



Characteristic quantities of the thread-block DAG

Figure: Thread-block DAG of a many-core machine program

N(P): number of vertices in the thread-block DAG of P,

L(P): critical path length (where length of a path is the
number of edges in that path) in the thread-block DAG of P.



Complexity measures for the many-core machine model

Theorem (A Graham-Brent theorem with parallelism overhead)

We have the following estimate for the running time TP of the
program P when executed on P SMs:

TP ≤ (N(P)/P + L(P))C(P) (1)

where C(P) is the maximum running time of local operations
(including read/write requests) and data transfer by one
thread-block.

Corollary

Let K be the maximum number of thread-blocks along an
anti-chain of the thread-block DAG of P. Then the running time
TP of the program P satisfies:

TP ≤ (N(P)/K + L(P))C(P) (2)



Plan

CUDA: programming, memory and execution models
CUDA basics
CUDA programming: more details and examples
CUDA programming practices

First CUDA programs for the computer algebraist
Tiled matrix transposition in CUDA
Tiled matrix multiplication in CUDA
Something you cannot do on multicores: parallel addition

Analyzing many-core multithreaded algorithms
A many-core machine model
Characteristics
Complexity measures

More CUDA programs for the computer algebraist
Plain univariate polynomial multiplication
The Euclidean division
The Euclidean algorithm



Tuning a program parameter with the MCM model

For an MCM program P depending on a program parameter s
varying in a range S.

I Let s0 be an “initial” value of s corresponding to an instance
P0 of P.

I Assume the work ratio Ws0/Ws remains essentially constant
meanwhile the parallelism overhead Os varies more
substantially, say Os0/Os ∈ Θ(s − s0).

I Then, we determine a value smin ∈ S maximizing the ratio
Os0/Os .

I Next, we use our version of Graham-Brent theorem to confirm
that the upper bound for the running time of P(smin) is less
than that of P(s0).
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Sequential algorithm
We denote by a and b two univariate polynomials over a (finte) field,
with sizes n ≥ m:

a = a1X
n−1 + · · ·+a1X +an and b = b1X

m−1 + · · ·+b1X +bm. (3)

We compute their product f = a× b.

a = X 5+ 8X 4+ 2X 3+ 2X 2+ 6X+ 7

b = X 5+ 2X 4+ 4X 3+ X 2+ 3X+ 2

2X 5+ 16X 4+ 4X 3+ 4X 2+ 12X+ 14

3X 6+ 24X 5+ 6X 4+ 6X 3+ 18X 2+ 21X

X 7+ 8X 6+ 2X 5+ 2X 4+ 6X 3+ 7X 2

4X 8+ 32X 7+ 8X 6+ 8X 5+ 24X 4+ 28X 3

2X 9+ 16X 8+ 4X 7+ 4X 6+ 12X 5+ 14X 4

X 10+ 8X 9+ 2X 8+ 2X 7+ 6X 6+ 7X 5

X 10+ 10X 9+ 22X 8+ 39X 7+ 29X 6+ 55X 5+ 62X 4+ 44X 3+ 29X 2+ 33X+ 14

Table: A plain multiplication n = m = 6.



Principle of parallelization

Figure: Dividing the work among threadblocks and threads.

I Multiplication phase: every coefficient of a is multiplied with
every coefficients of b; each thread accumulates s partial sums
into an auxiliary array M.

I Addition phase: these partial sums are added together
repeatedly to form the polynomial f .



Complexity analysis
The work, span and parallelism overhead ratios between s0 = 1
(initial program) and an arbitrary s are, respectively1,

W1

Ws
=

n

n + s − 1
,

S1
Ss

=
log2(m) + 1

s (log2 (m/s) + 2 s − 1)
,

O1

Os
=

n s2 (7m − 3)

(n + s − 1) (5m s + 2m − 3 s2)
.

I Let m esacpe to infinity with m ≤ n.
I Increasing s leaves work essentially constant, while span

increases and parallelism overhead decreases in the same
order.

I Hence, should s be large or close to s0 = 1?
1See the detailed analysis in the form of executable Maple worksheets of

three applications: http://www.csd.uwo.ca/~nxie6/projects/mcm/

http://www.csd.uwo.ca/~nxie6/projects/mcm/


Narrowing the value of the program parameter (1/2)

Applying our version of the Graham-Brent theorem, the ratio R of
the estimated running times on Θ( (n+s−1)m

` s2
) SMs is

R =
(m log2(m) + 3m − 1) (1 + 4U)

(m log2(ms ) + 3m − s) (2U s + 2U + 2 s2 − s)
.

which is asymptotically equivalent to 2U log2(m)
s (s+U) log2 (m/s) .

I This latter ratio is less than 1 for s > 1, since U > 0.

I In other words, increasing s makes the algorithm performance
worse.



Narrowing the value of the program parameter (2/2)

Figure: Running time of the plain polynomial multiplication algorithm
with polynomials a (deg(a) = n − 1) and b (deg(b) = m − 1) and the
parameter s on GeForce GTX 670.



Plan

CUDA: programming, memory and execution models
CUDA basics
CUDA programming: more details and examples
CUDA programming practices

First CUDA programs for the computer algebraist
Tiled matrix transposition in CUDA
Tiled matrix multiplication in CUDA
Something you cannot do on multicores: parallel addition

Analyzing many-core multithreaded algorithms
A many-core machine model
Characteristics
Complexity measures

More CUDA programs for the computer algebraist
Plain univariate polynomial multiplication
The Euclidean division
The Euclidean algorithm



Plain division for polynomials

Given two polynomials a and b over a finite field K, where
deg(a) = n − z1, and deg(b) = m − 1, we compute the remainder
in the Euclidean division of a by b, using:

I a naive division algorithm

I an optimized division algorithm

We assume that

I b is not zero

I n ≥ m



Naive and optimized approaches

Naive Division Algorithm Optimized Division Algorithm

I Each kernel performs 1
division step

I n −m + 1 kernel calls are
executed sequentially

I Each kernel performs (at
least) s division steps

I dn−m+1
s e kernel calls are

executed sequentially



Complexity analysis
We obtain the work ratio and the overhead ratio as

Wnai

Wopt
=

8 (Z + 1)

9Z + 7
and

Onai

Oopt
=

20

441
Z

Applying Theorem 1,

R =
(Nnai/p + Lnai) · Cnai

(Nopt/p + Lopt) · Copt
=

2

3

(3 + 5U) (2m + Z p)Z

(Z + 21U) (7m + 2Z p)

When m escapes to infinity, the ratio R is equivalent to

4

21

(3 + 5U)Z

Z + 21U

I We observe that this latter ratio is larger than 1 if and only if
Z > 441U

20U−9 holds

I The optimized algorithm is overall better than the naive one



Experimental results
Optimized vs naive

Optimized division is almost 4 times faster than naive division with
s = 256.

Optimized vs NTL library
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Principle of parallelization

Let s > 0. We proceed by repeatedly calling a subroutine which

I takes as input a pair (a, b) of polynomials and

I returns another pair (a′, b′) of polynomials such that
gcd(a, b) = gcd(a′, b′) and, either b′ = 0 or we have
deg(a′) + deg(b′) ≤ deg(a) + deg(b)− s.

I When s = Θ(`) (the number of threads per thread-block), the
work is increased by a constant factor and the parallelism
overhead will reduce by a factor in Θ(s).

I Further, the estimated running time ratio T1/Ts on Θ(m` )
SMs is greater than 1 if and only if s > 1.



Analysis of the Euclidean algorithm
We obtain the work ratio and the overhead ratio, replacing m by n
as

Wnai
Wopt

= (284Z+2) n2+(Z−2) n
(1296Z+7488) n2+(348Z2+2208Z) n−(115Z3+616Z2)

Onai
Oopt

= 5
48

Z(2 n+2+Z)
6 n+Z

I As n escapes to infinity, the additional work Wopt −Wnai is
only a portion of Wnai,

I Meanwhile the data transfer overhead decreases as Z
increases.

Applying Theorem 1, when n escapes to infinity, the ratio R is
equivalent to

R =
(Nnai/p + Lnai) · Cnai

(Nopt/p + Lopt) · Copt
' (3 + 5U)Z

9 (Z + 16U)

I We observe that this latter ratio is larger than 1 if and only if
Z > 144U

5U−6 holds

I The optimized algorithm is overall better than the naive one



Experimental results (1/2)

Figure: Running time on GeForce GTX 670 of our multithreaded
Euclidean algorithm for univariate polynomials of sizes n and m over
Z/pZ where p is a 30-bit prime; the program parameter takes values
s = 1 and s = 256.



Experimental results (2/2)

Optimized vs NTL library
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