METAFORK: A Metalanguage for Concurrency
Platforms Targeting Multicores

Xiaohui Chen', Marc Moreno Maza!, Sushek Shekar! and Priya Unnikrishnan?

! Department of Computer Science, University of Western Ontario
2 Compiler Development Team, IBM Toronto Lab

Abstract. We present METAFORK, a metalanguage for multithreaded
algorithms based on the fork-join concurrency model and targeting mul-
ticore architectures. METAFORK is implemented as a source-to-source
compilation framework allowing automatic translation of programs from
one concurrency platform to another. The current version of this frame-
work supports CILKPLUS and OPENMP. We evaluate the benefits of
the METAFORK framework through a series of experiments, such as nar-
rowing performance bottlenecks in multithreaded programs. Our exper-
iments show also that, if a native program, written either in CILKPLUS
or OPENMP, has little parallelism overhead, then the same holds for its
OPENMP or CILKPLUS counterpart translated by METAFORK.

1 Introduction

In the past decade the pervasive ubiquity of multicore processors has stimulated
a constantly increasing effort in the development of concurrency platforms, such
as CILKPLUS, OPENMP, INTEL TBB. While those programming languages are
all based on the fork-join concurrency model, they largely differ in their way of
expressing parallel algorithms and scheduling the corresponding tasks. There-
fore, developing software code involving libraries written with several of those
languages is a challenge.

Nevertheless there is a real need for facilitating interoperability between con-
currency platforms. Consider for instance the field of symbolic computation.
The DMPMC library (from the TRIP project www.imcce.fr/trip|developed at
the Observatoire de Paris) provides sparse polynomial arithmetic and is entirely
written in OPENMP meanwhile the BPAS library (from the Basic Polynomial
Algebra Subprograms jwww.bpaslib.org developed at the University of Western
Ontario) provides dense polynomial arithmetic is entirely written in CILKPLUS.
Polynomial system solvers require both sparse and dense polynomial arithmetic
and thus could take advantage of a combination of the DMPMC and BPAS
libraries. However, CILKPLUS and OPENMP have different run-time systems.
In order to achieve interoperability between them, we propose an automatic
source-to-source translation mechanism.

Another motivation for such a software tool is comparative implementa-
tion with the objective of narrowing performance bottlenecks. The underlying

www.imcce.fr/trip
www.bpaslib.org

observation is that the same multithreaded algorithm, based on the fork-join
parallelism model, implemented with two different concurrency platforms, say
CiLKPLUS and OPENMP, could result in very different performance, often very
hard to analyze and compare. If one code scales well while the other does not,
one may suspect an inefficient implementation of the latter as well as other
possible causes such as higher parallelism overheads. Translating the inefficient
code to the other language can help narrowing the problem. Indeed, if the trans-
lated code still does not scale one can suspect an implementation issue (say the
programmer missed to parallelize one portion of the algorithm) whereas if the
translated code does scale, then one can suspect a parallelism overhead issue in
the original code (say the grain-size of a parallel for-loop is too small).

In this paper, we propose METAFORK, a metalanguage for multithreaded
algorithms based on the fork-join parallelism model [4] and targeting multicore
architectures. By its parallel programming constructs, the METAFORK language
is currently a super-set of CiILKPLUs [3] [I1],[10] and includes the following widely
used parallel constructs of OPENMP [13] [1]: #pragma omp parallel, #pragma
omp task, #pragma omp sections, #pragma omp section, #pragma omp
for, #pragma omp taskwait, #pragma omp barrier, #pragma omp single
and #pragma omp master. However, METAFORK does not bind itself to any
scheduling strategies (work stealing [5], work sharing, etc.) thus ignores for-loop
scheduling policies. More generally, METAFORK does not make any assumptions
about the run-time system.

The syntax and the semantics of METAFORK’s parallel constructs are spec-
ified in Sections and [Since METAFORK is a faithful extension of the
C/C++ language, this is actually sufficient to completely define METAFORK.

Recall that a driving motivation of the METAFORK project is to facili-
tate automatic translation of programs between the above mentioned concur-
rency platforms. To date, our experimental framework includes translators be-
tween CILKPLUS and METAFORK (both ways) and, between OPENMP and
METAFORK (both ways). Hence, through METAFORK, we are able to perform
program translations between CILKPLUS and OPENMP (both ways). Despite of
the fact that it does not support all features of OPENMP, the METAFORK lan-
guage is rich enough to capture the semantics of large bodies of OPENMP code,
such as the Barcelona OpenMP Tasks Suite (BOTS) [8] and translate faithfully
to CILKPLUS each of the BOTS test cases.

In Section [5] we briefly explain how the translators of the METAFORK com-
pilation framework are implemented. In particular, we specify which OPENMP
data-sharing clauses are captured by METAFORK translators. Simple examples

of code translation are provided through Figures [2] 3] @ [Bl [} [7 [[9] and [I0]

In Section [f] we evaluate the benefits of the METAFORK framework through
a series of experiments. First, we show that METAFORK can help narrow down
performance bottlenecks in multithreaded programs by means of comparative
implementation, as discussed above. See the running time comparisons displayed
on Figures Secondly, we observe that, if a native CILKPLUS (resp.
OPENMP) program has little parallelism overhead, then the same holds for its

OPENMP (resp. CILKPLUS) counterpart translated by METAFORK, see Table [1}
We tested more than 20 examples in total for which experimental results can be
found in the technical report [6] and for which code can be found on the web site
of METAFORK project. Moreover, the source code of the METAFORK translators
can be downloaded from the same web site at http://www.metafork.org.

2 Parallel Constructs of METAFORK

METAFORK extends both the C and C++4 languages into a multithreaded lan-
guage based on the fork-join concurrency model. Thus, concurrent execution is
obtained by a parent thread creating and launching one or more child threads so
that, the parent and its children execute a so-called parallel region. An important
example of parallel regions are for-loop bodies. METAFORK has the following
natural requirement regarding parallel regions: control flow cannot branch into
or out of a parallel region.

METAFORK has four parallel constructs: function call spawn, block spawn,
parallel for-loop and synchronization barrier. The first two use the keyword
meta_fork while the other two use respectively the keywords meta_for and
meta_join. The parallel constructs of METAFORK grant permission for con-
current execution but do not command it. Hence, a METAFORK program can
execute on a single core machine. We emphasize that meta_fork allows the pro-
grammer to spawn a function call (like in CILKPLUS) as well as a block (like in
OPENMP). Examples of METAFORK code with CILKPLUS and OPENMP, can
be found through Figures [Bl 6l [7 8l [0 and

As mentioned, the meta_fork keyword is used to express the fact that a func-
tion call or a block is executed by a child thread, concurrently to the execution of
the parent thread. If the program is run by a single processor, the parent thread is
suspended during the execution of the child thread; when this latter terminates,
the parent thread resumes its execution after the function call (or block) spawn.
If the program is run by multiple processors, the parent thread may continue
its execution after the function call (or block) spawn, without being suspended,
meanwhile the child thread executes the function call (or block) spawn. In this
latter scenario, the parent thread waits for the completion of the execution of
the child thread, as soon as the parent thread reaches a synchronization point.

Spawning a function call with meta_fork. Spawning a call to the function f,
called on the argument sequence args, is done by meta_fork f(args). The
semantics is similar to that of the CILKPLUS counterpart cilk_spawn f(args).
In particular, all the arguments in the argument sequence args are evaluated
before spawning the function call f (args). However, the execution of meta_fork
f(args) differs from that of cilk spawn f(args) on one aspect. There is an
implicit cilk_sync at the end of the Cilk block [I0] surrounding this latter
cilk_spawn, while no such implicit barriers are assumed with meta_fork. This
design decision is motivated by the fact that, in addition to fork-join parallelism,
the METAFORK language may be extended to other forms of parallelism such as
parallel futures [14 2].

http://www.metafork.org

Spawning a block with meta fork. The other usage of the meta_fork construct
is for spawning a basic block B, which is done as follows: meta fork { B }. IfB
consists of a single instruction, then the surrounding curly braces can be omitted.
We also refer to this construction as a parallel region. There is no equivalent in
CILKPLUS while it is offered by OPENMP. Similarly to a function call spawn, this
parallel region is executed by a child thread (once the parent thread reaches the
meta_fork construct) meanwhile the parent thread continues its execution after
the parallel region. Similarly also to a function call spawn, no implicit barrier is
assumed at the end of the surrounding region. Hence synchronization points have
to be added explicitly, using meta_join. A variable v which is not local to B may
be either shared by both the parent and child threads; alternatively, the child
thread may be granted a private copy of v. Precise rules about data attributes,
for both parallel regions and parallel for-loops, are stated in Section [3]

Parallel for-loops with meta_for. Parallel for-loops in METAFORK have the fol-
lowing format meta_for (I, C, S) { B } where I is the initialization expres-
sion of the loop, C is the condition expression of the loop, S is the stride of
the loop and B is the loop body. The specifications of C, S, B are standard
and similar to the initialization expression, condition expression and stride of a
CiLKPLUS for-loop. We refer to the METAFORK specifications document [7] for
details. An implicit synchronization point is assumed after the loop body. That
is, the execution of the parent thread is suspended when it reaches meta_for
and resumes when all children threads (executing the loop body iterations) have
completed their execution. As one can expect, the iterations of the parallel loop

meta for (I, C, S) { B } must execute independently of each other in
order to guarantee that this parallel loop is semantically equivalent to its serial
version for (I, C, 8) { B }.

Synchronization point with meta_join. The construct meta_join indicates a
synchronization point (or barrier) for a parent thread and its children tasks.
More precisely, a parent thread reaching this point must wait for the completion
of its children tasks but not for those of the subsequent descendant tasks.

3 Variable Attribute Rules

Variables that are non-local to the block of a parallel region may be either shared
by or private to the threads executing the code pathes where those variables are
defined. After a terminology review, we specify the rules that METAFORK uses
in order to decide whether such a non-local variable is shared or private.

Shared and private variables. Consider a parallel region with block Y (resp. a
parallel for-loop with loop body Y'). We denote by X the immediate outer scope
of Y. We say that X is the parent region of Y and that Y is a child region of X. A

variable v which is defined in Y is said local to Y'; otherwise we call v a non-local
variable for Y. Let v be a non-local variable for Y. Assume v gives access to a
block of storage before reaching Y. (Thus, v cannot be a non-initialized pointer.)
We say that v is shared by X and Y if its name gives access to the same block
of storage in both X and Y; otherwise we say that v is private to Y. If Y is a
parallel for-loop, we say that a local variable w is shared within Y whenever the
name of w gives access to the same block of storage in any loop iteration of Y;
otherwise we say that w is private within Y.

Value-type and reference-type variables. In the C programming language, a
value-type variable contains its data directly as opposed to a reference-type vari-
able, which contains a reference to its data. Value-type variables are either of
primitive types (char, float, int, double, void) or user-defined types (enum,
struct, union). Reference-type variables are pointers, arrays and functions.

static and const type variables. In the C programming language, a static vari-
able is a variable that has been allocated statically and whose lifetime extends
across the entire run of the program. This is in contrast to automatic variables
(local variables are generally automatic) whose storage is allocated and deallo-
cated on the call stack and, other variables (such as objects) whose storage is
dynamically allocated in heap memory. When a variable is declared with the
qualifier const, the value of that variable cannot typically be altered by the
program during its execution.

/* This file starts here ... */ /* ... and continues here ... */
#include<stdio.h> void subcall(int *a, int *b){
#include<time.h> for(int i=0;i<10;i++)
#include<stdlib.h> printf("%d %d\n",alil,b[il);
int a; }
long par_region(long n){ int main(int argc, char **argv){
int b; long n=10;
int *c = (int *)malloc(sizeof (int)*10); par_region(n);
int d[10]; return O;
const int f=0; }
static int g=0; /* ... and finishes here. */
meta_fork{
int e = b;
subcall(c,d);
}
}

Fig. 1: Various variable attributes in a parallel region.

Variable attribute rules of meta_fork. A non-local variable v which gives access
to a block of storage before reaching Y is shared between the parent X and
the child Y whenever v is: (1) a global variable, (2) a file scope variable, (3) a
reference-type variable, (4) declared static or const, or (5) qualified shared.
In all other cases, the variable v is private to the child. In particular, value-type
variables (that are not declared static or const, or qualified shared and, that

are not global or file scope variables) are private to the child. In Figure |1} the
variables a, c, d, f and g are shared, meanwhile the b and e are still private.

Variable attribute rules of meta_for. A non-local variable which gives access
to a block of storage before reaching Y is shared between parent and child. A
variable local to Y is shared within Y whenever it is declared static, otherwise
it is private within Y. In particular, loop control variables are private within
Y. In the example of Figure [f] the variable b is private, thus the OPENMP,
METAFORK, CILKPLUS codes of Figures] [] and [7] are semantically equivalent.

The shared qualifier. Programmers can explicitly qualify a given variable as
shared by using the directive shared. In the parallel regions of the example
of Figure [0} the variables sum_a and sum b are qualified shared. Hence the
OPENMP, METAFORK and CILKPLUS programs of Figure [§] [0] and [I0] are se-
mantically equivalent.

4 Semantics of the Parallel Constructs in METAFORK

In order to formally define the semantics of each of the parallel constructs in
METAFORK, we introduce the serial C-elision of a METAFORK program M: this
is a C-language program C with same semantics as M. In [7], we obtain such a
serial C-elision C from the program M by means of a series of rewriting rules
stated as Algorithms 1, 2, 3 and 4. We emphasize the fact that this algorithmic
construction of such a C is a definition, not the statement of a property. Due to
space consideration, we cannot include those rules here. However, we believe that
sketching their principle is sufficient for understanding the rest of this paper.

As mentioned before, spawning a function call in METAFORK has the same
semantics as spawning a function call in CILKPLUS. More precisely: meta_fork
f(args) and cilk_spawn f(args) are semantically equivalent.

A meta_for loop allows iterations of the loop body to be executed in par-
allel. By default, each iteration of the loop body is executed by a separate
thread. However, using the grainsize compilation directive, one can specify
the number of loop iterations executed per threa(ﬂ #pragma meta grainsize =
expression. Nevertheless, in order to obtain the serial C-elision of a METAFORK
for-loop, we require that the meta for construct could be replaced by the C-
language for, whatever is the grainsize of this METAFORK for loop, and without
changing the initialization expression, condition expression and stride, and by
replacing the loop-body with its serial C-elision.

Specifying the semantics of the spawning of a block in METAFORK is the
difficult part. We do it in [7] in an algorithmic fashion, using rewriting rules,
that are similar to a LEX-YACC program. The main idea is to use outlining, a
widely used technique in the OPENMP community, see [12]. To have a taste of
that transformation, one should observe how the METAFORK code of Figure [J]
is transformed into the CILKPLUS code of Figure Obtaining the serial elision

3 The loop iterations of a thread are then executed one after another by that thread.

of that latter code is easy and one can finally derive a serial C-elision for our
input METAFORK code.

5 Translation

From CILKPLUS code to METAFORK code. Translating code from CILKPLUS
to METAFORK is easy in principle since, up to the vectorization constructs of
CiLKPLUS, the METAFORK language is a superset of CILKPLUS. However, im-
plicit CILKPLUS barriers need to be explicitly inserted in the target METAFORK
code. This implies that, during translation, it is necessary to trace the instruc-
tion stream DAG of the CILKPLUS program in order to properly insert barriers
in the generated METAFORK code.

From METAFORK code to CILKPLUS code. Since CILKPLUS has no constructs
for spawning a block of code, we naturally use the outlining technique to: (1) wrap
the parallel region as a function, and then (2) call that function concurrently. In
fact, the problem of translating code from METAFORK to CILKPLUS is equivalent
to that of defining the serial elision of a METAFORK program.

From OPENMP code to METAFORK code. We first consider the translation of
an OPENMP task directive: if it is a function call spawn, as in Figure [we
use the METAFORK construct for spawning a function call. Otherwise, we use
the METAFORK construct for spawning a block. Currently, we translate faith-
fully the following OPENMP optional clause directives: shared, private and
firstprivate. For the translation of OPENMP sections to the METAFORK
parallel regions we only support the default variable attribute and note that
this case leads us to insert extra synchronization points. Finally, for the trans-
lation of an OPENMP parallel for-loop to METAFORK, we note that: (1) the
private and firstprivate optional clause directives are faithfully translated,
(2) every variable specified private is re-declared in the parallel for-loop of the
METAFORK translation, (3) the loop control variables are initialized inside the
loop, and (4) scheduling strategies of OPENMP parallel for loops are ignored,

From METAFORK code to OPENMP code. This is easy in principle, since the
METAFORK language can be regarded as a subset of the OPENMP language. We
note that function calls spawned with the meta_fork construct are translated
using the task constructs of OPENMP.

6 Experimentation

We evaluate the performance and the usefulness of the four METAFORK trans-
lators (METAFORK to CiLKPLUS, CILKPLUS to METAFORK, METAFORK to
OPENMP, OPENMP to METAFORK). To this end, we run these translators on
various input programs written either in CILKPLUS or OPENMP, or both.

long fib(long n)

long fib(long n) long fib(long n) {
{ { long x, y;
long x, y; long x, y; if (n<2) return n;
if (n<2) return n; if (n<2) return n; else if (n<BASE)
else if (n<BASE) else if (n<BASE) return fib_serial(n);
return fib_serial(n); return fib_serial(n); else
else else {
{ { #pragma omp task shared(x)
x = cilk_spawn fib(n-1); x = meta_fork fib(n-1); x = fib(n-1);
y = fib(n-2); y = fib(n-2); y = fib(n-2);
cilk_sync; meta_join; #pragma omp taskwait
return (x+y); return (x+y); return (x+y);
} ¥ }
¥ } ¥
Fig. 2: CiLKPLUS code Fig. 3: METAFORK code Fig. 4: OPENMP code
int main() int main() int main()
{ { {
int a[N]; int a[N]; int a[N];
int b = 0; int b = 03 int b = 0;
#pragma omp parallel
#pragma omp for private(b) meta_for(int i = 0; i < N; i++) cilk_for(int i = 0; i < N; i++)
for(int i = 0; i < N; i++) { {
{ int b; int b;
b=1i; b=1i; b=1i;
al[i] = b; al[i] = b; al[i] = b;
} } }
} } }
Fig. 5: OPENMP code Fig. 6: METAFORK code Fig. 7: CiLKPLUS code

We emphasize the fact that our purpose is not to compare the performance of
the CILKPLUS or OPENMP run-time systems. The reader should notice that the
codes used in this study were written by different persons with different levels of
expertise. In addition, the reported experimentation is essentially limited to one
architecture (AMD Opteron) and one compiler (GCC). Therefore, it is delicate
to draw any clear conclusions comparing CILKPLUS and OPENMP.

We conducted two experiments. In the first one, we compared the perfor-
mance of hand-written codes. The motivation, specified in the introduction, is
comparative implementation. For this first purpose, we use a series of test-cases,
each of them consisting of a pair of programs, one hand-written OPENMP pro-
gram and one hand-written CILKPLUS program. Within each pair, one program
(written by a student) has a performance bottleneck while its counterpart (writ-
ten by an expert) does not. We translate the inefficient program to the other
language, then check whether the performance bottleneck remains or not, so as
to narrow down the performance bottleneck in the inefficient program.

Our second experiment, also motivated in the introduction, is dedicated to
automatic translation of highly optimized code. Now, for each test-case, we have
either a hand-written-and-optimized CILKPLUS program or a hand-written-and-
optimized OPENMP. Our goal is to determine whether or not the translated

int main(){
int sum_a=0, sum_b=0;
int a[5] = {0,1,2,3,4};
int b[6] = {0,1,2,3,4};
#pragma omp parallel
{
#pragma omp sections
#pragma omp section
for(int i=0; i<5; i++)
sum_a += al[i];
}
#pragma omp section
{
for(int i=0; i<5;
sum_b += b[i];

}r o3

i++)

Fig. 8: OPENMP code

int main()

{
int sum_a=0, sum_b=0;
int a[6] = {0,1,2,3,4};
int b[5] = {0,1,2,3,4};

meta_fork shared(sum_a){
for(int i=0; i<5; i++)
sum_a += a[il;

}

meta_fork shared(sum_b){
for(int i=0; i<5; i++)
sum_b += b[i];

}

meta_join;

}

Fig. 9: METAFORK code

void fork_funcO(int* sum_a, int* a)

{
for(int i=0; i<5; i++)
(*¥sum_a) += alil;
}
void fork_funcl(int* sum_b, int* b)
{
for(int i=0; i<5; i++)
(ksum_b) += b[il;
}
int main()
{

int sum_a=0, sum_b=0;
int a[5] = {0,1,2,3,4};
int b[5] = {0,1,2,3,4};

cilk_spawn fork_funcO(&sum_a, a);
cilk_spawn fork_funcil(&sum_b, b);

cilk_sync;

Fig. 10: CiLkPLUS code

Table 1: Timings on AMD 48-core: underlined timings refer to original code and
non-underlined timings to translated code.

Test |Input size|CILKPLUS |OPENMP
‘ ‘ Serial T ‘ Serial Ty

Protein alignment (for)| 100 568.07 566.10| 568.79 568.16
quicksort 5-108 94.42 96.23 | 94.15 97.20
prefixsum 1-10° 27.06 28.48 | 27.14 28.42
Fibonacci 1-10° 96.24 96.26| 97.56 97.69
DnC_MM 1-10° 752.04 752.74| 751.79 750.34
Mandelbrot 500 x 500/ 0.64 0.64 0.64 0.65

programs have similar serial and parallel running times as their hand-written-
and-optimized counterparts.

Ezxperimentation setup. For both experiments, apart from student’s code, we use
codes from the following sources: John Burkardt’s Home Pagehttp://people.
sc.fsu.edu/~%20jburkardt/c_src/openmp/openmp.html, http://hpc.mines|
edu/examples/examples/openmp/index.html, the BOTS [§] and the CiLk dis-
tribution exampleshttp://sourceforge.net/projects/cilk/. The source code
of those test cases was compiled as follows:

- CiLKPLUS code with GCC 4.8 using -02 -g -lcilkrts -fcilkplus

- OPENMP code with GCC 4.8 using -02 -g -fopenmp
All our compiled programs were tested on AMD Opteron 6168 48-core nodes
(with 256GB RAM and 12MB L3) and Intel Xeon 2.66GHz/6.4GT with 12
physical cores and hyper-threading,. For the first (resp. second) experiment, we
measure running time (resp. scalability) by running our compiled OPENMP and
CILKPLUS programs on 1 < p < 48 processors, as displayed on Figures

http://people.sc.fsu.edu/~%20jburkardt/c_src/openmp/openmp.html
http://people.sc.fsu.edu/~%20jburkardt/c_src/openmp/openmp.html
http://hpc.mines.edu/examples/examples/openmp/index.html
http://hpc.mines.edu/examples/examples/openmp/index.html
http://sourceforge.net/projects/cilk/

(resp. Figures [L6]). These measurements were repeated on Intel

Xeon nodes, where we obtained results coherent with those obtained on the
AMD Opteron nodes. We also measured parallelism overheads by running our
compiled OPENMP and CILKPLUS programs on p = 1 processor against their
serial elisions. This is shown in Table [Il

For each experiment, we report below on three test cases. More test cases
can be found in this technical report [6]. For our comparative implementation
study, we consider three problems: Parallel mergesort, Matriz inversion, Matriz
transposition. For Parallel mergesort, the original OPENMP code (written by a
student) misses to parallelize the merge phase (and simply spawns the two recur-
sive calls using OPENMP sections) while the original CILKPLUS code (written
by an expert) does both. On Figure the running time curve of the translated
OPENMP code is as theoretically expected while the speedup curve of the orig-
inal OPENMP code shows a limited scalability. Hence, the translated OPENMP
(and the original CILKPLUS program) exposes more parallelism, thus narrowing
the performance bottleneck in the original hand-written OPENMP code.

For Matriz inversion, the two original parallel programs are based on different
serial algorithms for matrix inversion. The original OPENMP code uses Gauss-
Jordan elimination while the original CILKPLUS code uses a divide-and-conquer
approach based on Schur’s complement. Figure[I2]shows that the code translated
from CILKPLUS to OPENMP is more appropriate for fork-join multithreaded
languages targeting multicores.

Matriz transposition is a challenging operation on multicore architectures.
Without doing complexity analysis, discovering the fact that the OPENMP code
(written by a student) runs in O(n? log(n)) bit operations instead of O(n?) as the
CIiLKPLUS (written by Matteo Frigo) is very subtle. Here again, the translation
narrows the algorithmic issue, as shown on Figure [I3]

For the automatic translation of highly optimized code. we consider: Divide-
and-conquer matriz multiplication (DnC MM), Protein alignment, Mandelbrot
set computation. For DnC MM, we have translated the original CILKPLUS code
to OPENMP. This algorithm has high parallelism and optimal cache complex-
ity [9]. The speedup curves with inputs of order 8192 are shown in Figure|14] For
Protein alignment, the underlying algorithm uses dynamic programming, and
runs in quadratic time w.r.t. input size. Load balancing is challenging for this
application. The speedup curves with 100 input proteins are shown in Figure
Mandelbrot set computation is a compute-intensive application with simpler data
traversal than the previous two. The speedup curves for a 500-by-500 grid and
2000 iterations is shown in Figure [I6}

7 Conclusion

METAFORK allows for rapidly prototyping algorithms written for one concur-
rency platform to another. As we have seen in Section [, METAFORK can be ap-
plied for (1) comparing algorithms written with different concurrency platforms
and (2) porting more programs to systems that may have a highly optimized

run-time for one paradigm (say divide-and-conquer algorithms, or producer-
consumer). The METAFORK translation framework may also avoid the negative
interferences of having multiple interfaces between the different components of
a large solver written with various concurrency platforms. Along the same idea,
the METAFORK translators can be used to transform legacy code into a more
adequate concurrency platform.

Acknowledgments. This work was supported in part by NSERC of Canada and
in part by an IBM CAS Fellowship in 2013 and 2014. We are also grateful to
Abdoul-Kader Keita (IBM Toronto Lab) for his advice and technical support.

References

(1]

2]

3]

[10]
[11]

[12]

[13]

[14]

E. Ayguadé, N. Copty, A. Duran, J. Hoeflinger, Y. Lin, F. Massaioli, X. Teruel,
P. Unnikrishnan, and G. Zhang. The design of OpenMP Tasks. IEEE Trans.
Parallel Distrib. Syst., 20(3):404-418, 2009.

G. E. Blelloch and M. Reid-Miller. Pipelining with futures. Theory Comput. Syst.,
32(3):213-239, 1999.

R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H. Randall,
and Y. Zhou. Cilk: An efficient multithreaded runtime system. In Proceedings
of the Fifth ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPOPP ’95, pages 207-216, New York, NY, USA, 1995. ACM.

R. D. Blumofe and C. E. Leiserson. Space-efficient scheduling of multithreaded
computations. STAM J. Comput., 27(1):202-229, 1998.

R. D. Blumofe and C. E. Leiserson. Scheduling multithreaded computations by
work stealing. J. ACM, 46(5):720-748, 1999.

X. Chen, M. Moreno Maza, and S. Shekar. Experimenting with the MetaFork
framework targeting multicores. Technical report, Univ. of Western Ontario, 2013.
X. Chen, M. Moreno Maza, and S. Shekar. Metafork: A metalanguage for concur-
rency platforms targeting multicores. Technical report, Univ. of Western Ontario,
2013.

A. Duran, X. Teruel, R. Ferrer, X. Martorell, and E. Ayguade. Barcelona OpenMP
Tasks Suite: A set of benchmarks targeting the exploitation of task parallelism in
OpenMP. In Proc. of the 2009 International Conference on Parallel Processing,
ICPP ’09, pages 124-131, Washington, DC, USA, 2009. IEEE Computer Society.
M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran. Cache-oblivious
Algorithms. In Proceedings of the 40th Annual Symposium on Foundations of
Computer Science, FOCS 99, pages 285-297, New York, USA, October 1999.
Intel Corporation. Intel CilkPlus language specification, version 0.9, 2013.

C. E. Leiserson. The Cilk++ concurrency platform. The Journal of Supercom-
puting, 51(3):244-257, 2010.

C. Liao, O. Hernandez, B. Chapman, W. Chen, and W. Zheng. OpenUH: An
optimizing, portable OpenMP compiler: Research articles. Concurr. Comput. :
Pract. Ezper., 19(18):2317-2332, Dec. 2007.

OpenMP Architecture Review Board. OpenMP application program interface,
version 4.0, 2013.

D. Spoonhower, G. E. Blelloch, P. B. Gibbons, and R. Harper. Beyond nested par-
allelism: tight bounds on work-stealing overheads for parallel futures. In F. Meyer
auf der Heide and M. A. Bender, editors, SPAA, pages 91-100. ACM, 2009.

200

180

160

140

120

100

80

Running time

60

40

20

o]

OpenMP (original) —#—
OpenMP (translated from CilkPlus) —&—

0

4 8

12 16 20 24 28 32 36 40 44 48
Number of cores

Fig. 11: Parallel mergesort of size 5 X

108

50
45
40
35
30

25

Running time

20

15

10

GpentP (original) —s—
OpenMP (translated from CilkPlus) —e&—

4 8 12 16 20 24

Number of cores

Fig. 13: Matrix transposition of order

32768

a8
a4
a0
36
32
28
24
20
16
12

Speedup

CilkPlus (translated from OpenMP) ——%—
L OpenMp (original) —a—
0 4 8 12 16 20 24 28 32 36 40 44 48

Mumber of cores

Fig. 15: Protein alignment - 100 Pro-

teins.

Running time

Fig. 12:

Speedup

510
480
450
420
3290
360
330
300
270
240
210
180
150
120
90
60
30
o]

CilkPlus (original) ——
CilkPlus (translated from OpenMP) —a—

e S

0 4 8 12 16 20 24 28 32 36 40 44 48
Number of cores

Matrix inversion of order 4096

Cilkplus (original) —x——
OpenMP (translated from CilkPlus)

0 4 8 12 16 20 24 28 32 36 40 44 48

Number of cores

Fig.14: DnC MM of order 8192

20

16

12

Speedup

dpentp (original) ———
cilkplus (translated from OpenMp) —a—
0 4 8 12 16 20 24

MNurmber of cores

Fig. 16: Mandelbrot set computation:
500 x 500 grid and 2000 iterations.

	MetaFork: A Metalanguage for Concurrency Platforms Targeting Multicores

