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1 Introduction

The work reported in this report evaluates the correctness, performance and usefulness of the
four METAFORK translators (METAFORK to CILKPLUS, CILKPLUS to METAFORK, METAFORK
to OPENMP, OPENMP to METAFORK). To this end, we run these translates on various input
programs written either in CILKPLUS or OPENMP, or both.

We stress the fact that our purpose is not to compare the performance of the CiLKPLUS or
OPENMP run-time systems and programming environments. The reader should notice that the
codes used in this experimental study were written by different persons with different levels of
expertise. In addition, the reported experimentation is essentially limited to one architecture
(Intel Xeon) and one compiler (GCC). Therefore, it is delicate to draw any clear conclusions that
would compare CILKPLUS or OPENMP. For this reason, this questions is not addressed in this
thesis And, once again, this is not the purpose of this work.

2 Experimentation set up

We conducted two experiments. In the first one, we compared the performance of hand-written
codes. The motivation, recalled from the introduction, is comparative implementation. The un-
derlying observation is that the same multithreaded algorithm, based on the fork-join parallelism
model, implemented with two different concurrency platforms, say CILKPLUS and OPENMP,
could result in very different performance, often very hard to analyze and compare. If one code
scales well while the other does not, one may suspect an efficient implementation of the latter
as well as other possible causes such as higher parallelism overheads. Translating the inefficient
code to the other language can help narrowing the problem. Indeed, if the translated code still
does not scale one can suspect an implementation issue (say the programmer missed to paral-
lelize one portion of the algorithm) whereas if it does scale, then one can suspect a parallelism
overhead issue in the original code (say the grain-size of the parallel for-loop is too small).

For this experience, we use a series of test-cases consisting of a pair of programs, one hand-
written OPENMP program and one, hand-written CILKPLUS program. We observe that one
program (written by a student) has a performance bottleneck while its counterpart (written by
an expert programmer) does not. We translate the inefficient program to the other language,
then check whether the performance bottleneck remains or not, so as to narrow the performance
bottleneck in the inefficient program.

Our second experience, also motivated in the introduction, is dedicated to automatic trans-
lation of highly optimized code. Now, for each test-case, we have either a hand-written-and-
optimized CILKPLUS program or a hand-written-and-optimized OPENMP. Our goal is to deter-
mine whether or not the translated programs have similar serial and parallel running times as
their hand-written-and-optimized counterparts.



For both experiences, apart from student’s code, the code that we use comes from the fol-
lowing the sources:

- John Burkardt’s Home Page (Florida State University) http://people.sc.fsu.edu/~%20jburkardt/c_src/

- Barcelona OpenMP Tasks Suite (BOTS) [6]

- CiLkPLus distribution examples http://sourceforge.net/projects/cilk/

The source code of those test case was compiled as follows:

- CiLkPLUS code with GCC 4.8 using -02 -g -lcilkrts -fcilkplus

- CiLkPLUS code with GCC 4.8 using -02 -g -fopenmp
All our compiled programs were tested on

- AMD Opteron 6168 48core nodes with 256GB RAM and 12MB L3

- Intel Xeon 2.66GHz/6.4GT with 12 physical cores and hyper-threading,

The two main quantities that we measure are:

- scalability by running our compiled OPENMP and CILKPLUS programsonp =1,2,4,6,8, ...

processors; speedup curves data are shown in Figures 6] O
and is mainly collected on Intel Xeon’s nodes (for convenience)

and repeated/verified on AMD Opteron nodes.

- parallelism overheads by running our compiled OPENMP and CILKPLUS programs on p = 1
against their serial elisions. This is shown in Table

As mentioned in the introduction, validating the correctness of our translators was a major

requirement of our work. Depending on the test-case, we could use one or the other following
strategy.

- Assume that the original program, say P, contains both a parallel code and its serial elision
(manually written). When program P is executed, both codes run and compare their
results. Let us call Q the translated version of P. Since serial elisions are unchanged by
our translation procedures, then Q can be verified by the same process used for program P.
This first strategy applies to the Cilk++ distribution examples and the BOTS (Barcelona
OpenMP Tasks Suite) examples

- If the original program P does not include a serial elision of the parallel code, then the
translated program Q is verified by comparing the output of P and Q. This second strategy
had to be applied to the FSU (Florida State University) examples.

3 Comparing hand-written codes

3.1 Matrix transpose

In this example, the two original parallel programs are based on different algorithms for matrix
transposition which is a challenging operation on multi-core architectures. Without doing com-
plexity analysis, discovering that the OPENMP code (written by a student) runs in O(n?log(n))
bit operations instead of O(n?) as the CILKPLUS (written by Matteo Frigo) is very subtle.

Figure 1| shows code snippet for the matrix transpose program for both original CILKPLUS
and translated OPENMP. Figure [2] shows the running time of both the original OPENMP
and the translated OPENMP code from the original CILKPLUS code and it suggests that the
code translated from CILKPLUS to OPENMP is more appropriate for fork-join multi-threaded
languages targeting multicores because of the algorithm used in CILKPLUS code.


http://people.sc.fsu.edu/~%20jburkardt/c_src/openmp/openmp.html
http://sourceforge.net/projects/cilk/

template <typename T>
void transpose(T *A, int 1da, T *B, int 1db,
int i0, int i1, int jO, int j1)

{
tail:
int di = i1 - i0, dj = j1 - jO;
if (di >= dj && di > THRESHOLD) {
int im = (10 + i1) / 2;
cilk_spawn transpose(A, lda, B, 1ldb, i0, im, jO, j1);
i0 = im; goto tail;
} else if (dj > THRESHOLD) {
int jm = (jO + j1) / 2;
cilk_spawn transpose(A, 1lda, B, 1db, i0, il, jO, jm);
jO = jm; goto tail;
} else {
for (dnt i = i0; i < i1; ++i)
for (int j = jO; j < ji; ++j)
B[j * 1db + i] = A[i * lda + jl;
}
}

template <typename T>
void transpose(T *A, int 1lda, T *B, int 1db,
int i0, int i1, int jO, int j1)
{
tail:
int di = i1 - i0, dj = j1 - jO;
if (di >= dj && di > THRESHOLD) {
int im =(i0 + i1) / 2;
#pragma omp task
transpose (A, lda, B, 1ldb, i0, im, jO, j1);
i0 = im; goto tail;
} else if (dj > THRESHOLD) {
int jm =(jO + j1) / 2;
#pragma omp task
transpose (A, lda, B, 1db, i0, i1, jO, jm);
jO = jm; goto tail;
} else {
for (int i = i0; i < il; ++i)
for (int j = jO; j < ji; ++j)
B[j * 1db + i] = A[i * 1lda + jl;
}
#pragma omp taskwait
}

Figure 1: Code snippet for the matrix transpose program
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Figure 2: Matrix_transpose : n = 32768

3.2 Matrix inversion

In this example, the two original parallel programs are based on different serial algorithms for
matrix inversion. The original OPENMP code uses Gauss-Jordan elimination algorithm while
the original CILKPLUS code uses a divide-and-conquer approach based on Schur’s complement.
Figure [3] shows the running time of both the original OPENMP and the translated OPENMP
code from the original CILKPLUS code.

As in the previous example, the translation narrows the algorithmic issue in this example as
well.

3.3 Mergesort

There are two different versions of this example. The original OPENMP code (written by a
student) misses to parallelize the merge phase and simply spawns the two recursive calls whereas
the original CILKPLUS code (written by an expert) does both. Figure [4| shows the running time
of both the original OPENMP and the translated OPENMP code from the original CILKPLUS
code.

As you can see in Figure [4] the speedup curve of the translated OPENMP code is as theoreti-
cally expected while the speedup curve of the original OPENMP code shows a limited scalability.

Hence, the translated OPENMP (and the original CILKPLUS program) exposes more paral-
lelism, thus narrowing the performance bottleneck in the original OPENMP code.

3.4 Naive matrix multiplication

This is the naive three-nested-loops matrix multiplication algorithm, where two loops have been
parallelized. The parallelism is O(n?) as for DnC MM. However, the ratio work-to-memory-
access is essentially equal to 2, which is much less that for DnC MM. This limits the ability
to scale and reduces performance overall on multicore processors. Figure [5| shows the speed-up
curve for naive matrix multiplication.

As you can see from Figure [5] both CILKPLUS and OPENMP scale poorly because of algo-
rithmic issues.
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Figure 3: Matrix inversion : n = 4096
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Figure 5: Naive Matrix Multiplication : n = 4096

4 Automatic translation of highly optimized code

4.1 Fibonacci number computation

In this example, we have translated the original CILKPLUS code to OPENMP. The algorithm used
in this example has high parallelism and no data traversal. The speed-up curve for computing
Fibonacci with inputs 45 and 50 are shown in Figure @(a) and Figure @(b) respectively.

As you can see from Figure [ CILKPLUS (original) and OPENMP (translated) codes scale
well.

4.2 Divide-and-conquer matrix multiplication

In this example, we have translated the original CILKPLUS code to OPENMP code. The divide-
and-conquer algorithm of [§] is used to compute matrix multiplication. This algorithm has high
parallelism and optimal cache complexity. It is also data-and-compute-intensive. The speed-up
curve after computing matrix multiplication with inputs 4096 and 8192 are shown in Figure (a)
and Figure [7[(b) respectively.

As you can see from Figure [7| CILKPLUS (original) and OPENMP (translated) codes scale
well.

4.3 Parallel prefix sum

In this example, we have translated the original CILKPLUS code to OPENMP code. The algo-
rithm [3] used in this example has high parallelism, low work-to-memory-access ratio which is
(O(log(n)) traversals for a O(n) work. The speed-up curves with inputs 5-10% and 10° are shown
in Figure [§(a) and Figure [§(b) respectively.

As you can see from Figure [7| CILKPLUS (original) and OPENMP (translated) codes scale
well at almost the same rate.

4.4  Quick sort

This is the classical quick-sort where the division phase has not been parallelized, on purpose.
Consequently, the theoretical parallelism drops to (log(n)). The ratio of work-to-memory-access
is constant. The speed-up curve for quick sort is shown in Figure [9)(a) and Figure [9|b).
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Figure 10: Mandelbrot set for a 500 x 500 grid and 2000 iterations.

As you can see from Figure [)] CILKPLUS (original) and OPENMP (translated) codes scale at
almost the same rate.

4.5 Mandelbrot set

The Mandelbrot set [[]is a mathematical set of points whose boundary is a distinctive and easily
recognizable two-dimensional fractal shape.

Mandelbrot set images are made by sampling complex numbers and determining for each
whether the result tends towards infinity when a particular mathematical operation is iterated
on it. Treating the real and imaginary parts of each number as image coordinates, pixels are
colored according to how rapidly the sequence diverges, if at all.

In this example, algorithm is compute-intensive and does not traverse large data. The running
time after computing the Mandelbrot set with grid size of 500x500 and 2000 iterations is shown
in Figure

As you can see from Figure [10] the speed-up is close to linear since this application is embar-
rassingly parallel. Both OPENMP (original) and CILKPLUS (translated) codes scale at almost
the same rate.

4.6 Linear system solving (dense method)

In this example, different methods of solving the linear system A*x=b are compared. In this ex-
ample there is a standard sequential code and slightly modified sequential code to take advantage
of OPENMP. The algorithm in this example uses Gaussian elimination.

This algorithm has lots of parallelism. However, minimizing parallelism overheads and mem-
ory traffic is a challenge for this operation. The running time of this example is shown in
Figure

As you can see from the Figure |11 both OPENMP (original) and CILKPLUS (translated)
codes scale well up to 12 cores. Note that that we are experimenting on a Xeon node with 12
physical cores with hyper-threading turned on.

"http://en.wikipedia.org/wiki/Mandelbrot_set
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Test input size | CILKPLUS OPENMP

Serial T serial T
FFT (BOTS) 33554432 7.50 8.12 7.54 7.82
MergeSort (BOTS) 33554432 3.55 3.56 3.57 3.54
Strassen 4096 17.08 17.18 16.94 17.11
SparseLLU 128 568.07 566.10 568.79 568.16

Table 1: Running times on Intel Xeon 12-physical-core nodes (with hyperthreading turned on).

4.7 FFT (FSU version)

This example demonstrates the computation of a Fast Fourier Transform in parallel. The al-
gorithm used in this example has low work-to-memory-access ratio which is challenging to im-
plement efficiently on multi-cores. The running time of this example is shown in Figure

As you can see from the Figure [12| both OPENMP (original) and CILKPLUS (translated)
codes scale well up to 8 cores.
Table |1 shows the running time of the serial version v/s single core for some of the examples.

4.8 Barcelona OpenMP Tasks Suite

Barcelona OpenMP Tasks Suite (BOTS) project [6] is a set of applications exploiting regular
and irregular parallelism, based on OPENMP tasks.

4.9 Protein alignment

Alignment application aligns all protein sequences from an input file against every other sequence
using the Myers and Miller [9] algorithm.

The alignments are scored and the best score for each pair is provided as a result. The scoring
method is a full dynamic programming algorithm. It uses a weight matrix to score mismatches,
and assigns penalties for opening and extending gaps. The output is the best score for each pair
of them. The speed-up curve for this example is shown in Figure

This algorithm is compute-intensive and has few coarse grained tasks which is a challenge for
the implementation to avoid load balance situations. As you can see from the Figure both

10
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Figure 14: FFT (BOTS).

OPENMP (original) and CILKPLUS (translated) codes scale almost same up to 8 cores.

4.10 FFT (BOTS version)

In this example, FFT computes the one-dimensional Fast Fourier Transform of a vector of n
complex values using the Cooley-Tukey [0] algorithm. It’s a divide and conquer algorithm that
recursively breaks down a Discrete Fourier Transform (DFT) into many smaller DFTs. The
speed-up curve for this example is shown in Figure

4.11 Merge sort (BOTS version)

Sort example sorts a random permutation of n 32-bit numbers with a fast parallel sorting varia-
tion [I] of the ordinary merge sort. First, it divides an array of elements in two halves, sorting
each half recursively, and then merging the sorted halves with a parallel divide-and-conquer
method rather than the conventional serial merge. The speed-up curve for this example is shown
in Figure

Hence, the translated CILKPLUS (and the original OPENMP program) exposes more paral-
lelism, thus narrowing the performance bottleneck in the original OPENMP code.

4.12 Sparse LU matrix factorization

Sparse LU computes an LU matrix factorization over sparse matrices. A first level matrix is
composed by pointers to small submatrices that may not be allocated. Due to the sparseness of
the matrix, a lot of imbalance exists.

Matrix size and submatrix size can be set at execution time which can reduce the imbalance,
a solution with tasks parallelism seems to obtain better results [2]. The speed-up curve for this
example is shown in Figure

This algorithm is compute-intensive and has few coarse grained tasks which is a challenge for
the implementation to avoid load balance situations. As you can see from the Figure both
OPENMP (original) and CILKPLUS (translated) codes scale almost same. Note that that we are
experimenting on a Xeon node with 12 physical cores with hyperthreading turned on.

12
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Figure 16: Sparse LU matrix factorization.
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Figure 17: Strassen matrix multiplication.

4.13 Strassen matrix multiplication

Strassen algorithm E| uses hierarchical decomposition of a matrix for multiplication of large dense
matrices [7]. Decomposition is done by dividing each dimension of the matrix into two sections
of equal size. The speed-up curve for this example is shown in Figure

As you can see from the Figure both OPENMP (original) and CILKPLUS (translated)
codes scale almost same.

5 Concluding remarks

Examples in Section [3] suggest that our translators can be used to narrow performance bot-
tlenecks. By translating a parallel program with low performance, we could suspect the cause
of inefficiency whether this cause was a poor implementation (in the case of mergesort, where
not enough parallelism was exposed) or an algorithm inefficient in terms of data locality (in
the case of matrix inversion) or an algorithm inefficient in terms of work (in the case of matrix
transposition).

For Section 4] we observe that, in most cases, the speed-up curves of the original and trans-
lated codes either match or have similar shape. Nevertheless in some cases, either the original
or the translated program outperforms its counterpart. For instance the original CILKPLUS pro-
grams for Fibonacci and the divide-and-conquer matrix multiplication perform better than their
translated OPENMP counterparts, see Figure [6] and Figure [7] respectively.

For the original OPENMP programs from FSU, (Mandelbrot Set, Linear solving system
and FFT (FSU version) the speed-up curves of the original programs are close to those of the
translated CILKPLUS programs. This is shown by Figures and respectively.

The original OPENMP programs from BOTS offer different scenarios. First, for the sparse LU
and Strassen matrix multiplication examples, original and translated programs scale in a similar
way, see Figure [16| and Figure [17| respectively. Secondly, for the mergesort (BOTS) and FFT
(BOTS) examples, translated programs outperform their original counterparts., see Figure
and Figure [I4] respectively. For the protein alignment example, the scalability of the translated
CILKPLUS program and the original OPENMP program are the same from 2 to 8 cores while
after 8 cores the latter outperform the former, as shown in Figure [I3]

2http://en.wikipedia.org/wiki/Strassen_algorithm
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