
Modular methods for polynomial and matrix
arithmetic

Marc Moreno Maza

CS 9652, October 4, 2017

Plan

Euclidean Domains

The Euclidean algorithm

The Extended Euclidean algorithm

Evaluation, interpolation

Modular arithmetic

The Chinese remaindering algorithm

Rational function reconstruction

Modular computation of the determinant

Modular computation of the matrix product

Plan

Euclidean Domains

The Euclidean algorithm

The Extended Euclidean algorithm

Evaluation, interpolation

Modular arithmetic

The Chinese remaindering algorithm

Rational function reconstruction

Modular computation of the determinant

Modular computation of the matrix product

Euclidean domains: definition

Definition
An integral domain R endowed with a function d ∶ R z→ N ∪ {−∞} is an
Euclidean domain if the following two conditions hold

▸ for all a,b ∈ R with a ≠ 0 and b ≠ 0 we have d(a b) ≥ d(a),

▸ for all a,b ∈ R with b ≠ 0 there exist q, r ∈ R such that

a = bq + r and d(r) < d(b). (1)

The elements q and r are called the quotient and the remainder of a
w.r.t. b (although q and r may not be unique). The function d is called
the Euclidean size.

Euclidean domains: examples (1/3)

▸ R = Z with d(a) =∣ a ∣ for a ∈ Z. Here the quotient q and the
remainder r of a w.r.t. b (with b ≠ 0) can be made unique by
requiring r ≥ 0 (hence we have 0 ≤ r < b).

▸ R = k[x] where k is a field with d(a) = deg(a) the degree of a for
a ∈ R, a ≠ 0 and d(0) = −∞. Uniqueness of the quotient and the
remainder is easy to show in that case. Indeed

a = b q1+r1 = b q2+r2 with deg(r1) < deg(b) and deg(r2) < deg(b)
(2)

implies

r1 − r2 = b (q1 − q2) with deg(r1 − r2) < deg(b) (3)

Hence we must have q1 − q2 = 0 and thus r1 − r2 = 0.

▸ R = k is a field with d(a) = 1 for a ∈ k, a ≠ 0 and d(0) = 0. In this
case the quotient q and the remainder r of a w.r.t. b are a/b and 0
respectively.

Euclidean domains: examples (2/3)

▸ Let R be the ring of the complex numbers whose real and imaginary
parts are integer numbers. Hence

R = {x + ıy ∣ x , y ∈ Z} (4)

▸ Consider as a map d from R to N ∪ {−∞} the norm of an element.
Hence d(x + ıy) = x2 + y2 with x , y ∈ Z.

▸ It is easy to check that for every a,b ∈ R with a,b ≠ 0 we have
d(a b) ≥ d(a). Indeed for x , y , z , t ∈ Z we have

d((x + ıy)(z + ıt)) = d(x z − t y + (y z + t x) i)
= (x z − t y)2 + (y z + t x)2
= x2 z2 + t2 y2 − 2x z t y + y2 z2 + t2 x2 + 2x z t y
= x2 (z2 + t2) + y2 (z2 + t2)
= (y2 + x2) (z2 + t2)
= d(x + iy)d(z + it)

(5)

Euclidean domains: examples (3/3)
▸ Moreover for every a ≠ 0 we have d(a) ≥ 1. Therefore we have

proved that d(a b) ≥ d(a) holds for every a,b ∈ R with a,b ≠ 0.
▸ Now given a,b ∈ R with b ≠ 0 we are looking for a quotient and a

remainder of a w.r.t. b. Hence we are looking for q such that
d(a − b q) < d(b).

▸ Such a q = x + ıy can be constructed as follows. Let q′ be such that
a − q′ b = 0 that is q′ = a/b = ab/d(b) where b is the conjugate of b.
Hence q′ writes x ′ + ıy ′ with x ′, y ′ ∈ Q.

▸ Let x , y ∈ Z be such that ∣ x − x ′ ∣≤ 1/2 and ∣ y − y ′ ∣≤ 1/2. Then

d(a − b q) = d(a − b q + b q′ − b q′)
= d(b(q′ − q))
= d(b) (∣ x − x ′ ∣2 + ∣ y − y ′ ∣2)
≤ d(b)/2
< d(b).

(6)

▸ It turns out that several q can be chosen. For instance with a = 1 + ı
and b = 2 − 2 ı we have a − b q = −1 − ı with q = ı and a − b q = 1 + ı
with q = 0. In both cases d(a − b q) = 2 < 8 = d(b).

▸ Finally this shows that a quotient and a remainder of a w.r.t. b may
not be uniquely defined in R

Plan

Euclidean Domains

The Euclidean algorithm

The Extended Euclidean algorithm

Evaluation, interpolation

Modular arithmetic

The Chinese remaindering algorithm

Rational function reconstruction

Modular computation of the determinant

Modular computation of the matrix product

Preliminary remark

Let R be an Euclidean domain. Let a,b ∈ R with b ≠ 0.

Remark
Let r be the remainder of a w.r.t. b. Let c ∈ R. It is easy to see that

{ c ∣ a
c ∣ b

⇐⇒ { c ∣ b
c ∣ r

(7)

where x ∣ z means that x divides z , that is there exists y such that xy = z .

Definition
We say that g ∈ R is a GCD (greatest common divisor) of a,b whenever
the following conditions hold:

1. g divides both a and b,

2. any common divisor of a and b divides g as well.

The algorithm: statement

Input: a,b ∈ R.

Output: g ∈ R a gcd of a and b.

r0 := a
r1 := b
i := 2
while ri−1 ≠ 0 repeat

ri := ri−2 rem ri−1
i := i + 1

return ri−2

The algorithm: proof

Let k be the greatest value of i in the algorithm such that ri ≠ 0. From
the preliminary remark, we have

{ c ∣ a
c ∣ b

⇐⇒ { c ∣ b
c ∣ r2

⇐⇒ ⋯ ⇐⇒ { c ∣ rk−1
c ∣ rk

⇐⇒ { c ∣ rk
c ∣ 0

(8)
Hence the following properties hold:

▸ every divisor of a and b divides rk ,

▸ rk divides a and b.

Therefore, the algorithm computes a gcd of a and b.

The algorithm: exmaple
However this gcd may not be the nicest one.

(37) -> a:= (4*x-1/2) * (x+2) * (5*x+1) * (1/20*x+1)

4 883 3 333 2 49

(37) x + --- x + --- x + -- x - 1

40 8 20

(38) -> b := (4*x-1/2) * (x+4) * (5*x-1) * (1/20*x+1)

4 947 3 2889 2 127

(38) x + --- x + ---- x - --- x + 2

40 40 5

(39) -> r2 := a rem b

8 3 153 2 557

(39) - - x - --- x + --- x - 3

5 5 20

(40) -> r3 := b rem r2

209 2 33231 209

(40) --- x + ----- x - ---

80 640 32

(41) -> r4 := r2 rem r3

(41) 0

Normal form of a GCD

Definition
Let R be an Euclidean domain such for every a ∈ R we can choose a
canonical associate denoted by normal(a) and called the normal form of a.
Because of the polynomial case, the unit u such that a = u normal(a) is
denoted lc(a) and called the leading coefficient of a. Then normal(rk)
where rk is the result of the EA can be called the gcd of a and b.

The algorithm with normal form

(2) -> a: P := (4*x-1/2) * (x+2) * (5*x+1) * (1/20*x+1)

4 883 3 333 2 49

(2) x + --- x + --- x + -- x - 1

40 8 20

(3) -> b: P := (4*x-1/2) * (x+4) * (5*x-1) * (1/20*x+1)

4 947 3 2889 2 127

(3) x + --- x + ---- x - --- x + 2

40 40 5

(4) -> r2 := unitCanonical(a rem b)

3 153 2 557 15

(4) x + --- x - --- x + --

8 32 8

(5) -> r3 := unitCanonical(b rem r2)

2 159 5

(5) x + --- x - -

8 2

(6) -> r4 := unitCanonical(r2 rem r3)

(6) 0

Plan

Euclidean Domains

The Euclidean algorithm

The Extended Euclidean algorithm

Evaluation, interpolation

Modular arithmetic

The Chinese remaindering algorithm

Rational function reconstruction

Modular computation of the determinant

Modular computation of the matrix product

Bézout coefficients (1/2)

▸ Let r0 = a, r1 = b, r2 = r0 rem r1, . . ., ri = ri−2 rem ri−1, . . .,
gcd(a,b) = rk = rk−2 rem rk−1 be as before.

▸ For i = 2⋯k let qi be the quotient of ri−2 w.r.t. ri−1, that is,

ri−2 = qi ri−1 + ri . (9)

▸ Hence we have
r2 = r0 − q2 r1
r3 = r1 − q3 r2
⋮ ⋮ ⋮
ri = ri−2 − qi ri−1
⋮ ⋮ ⋮

rk = rk−2 − qk rk−1

(10)

Bézout coefficients (2/2)

Observe that each ri writes si a + ti b. Indeed we have

r0 = s0 a + t0 b with s0 = 1 and t0 = 0
r1 = s1 a + t1 b with s1 = 0 and t1 = 1
r2 = s2 a + t2 b with s2 = s0 − q2 s1 and t2 = t0 − q2 t1
r3 = s3 a + t3 b with s3 = s1 − q3 s2 and t3 = t1 − q2 t2
⋮ ⋮ ⋮ ⋮ ⋮
ri = si a + ti b with si = si−2 − qi si−1 and ti = ti−2 − qi ti−1
⋮ ⋮ ⋮ ⋮ ⋮
rk = sk a + tk b with sk = sk−2 − qk sk−1 and tk = tk−2 − qk tk−1

(11)

▸ The elements sk and tk are called the Bézout coefficients of
gcd(a,b).

▸ In order to compute a gcd together with its Bézout coefficients one
needs to enhance the previous algorithm into the so-called Extended
Euclidean Algorithm (EEA).

The extended algorithm

Input: a,b ∈ R.

Output: g ∈ R a gcd of a and b together with s, t ∈ R such
that g = s a + t b.

r0 := a; s0 := 1; t0 := 0
r1 := b; s1 := 0; t1 := 1
i := 2
while ri−1 ≠ 0 repeat

qi := ri−2 quo ri−1
ri := ri−2 rem ri−1
si := si−2 − qi si−1
ti := ti−2 − qi ti−1
i := i + 1

return(ri−2, si−2, ti−2)

The extended algorithm with normalization

Input: a,b ∈ R.

Output: g ∈ R the gcd of a and b together with s, t ∈ R such that
g = s a + t b.

u0 := lc(a); r0 := normal(a); s0 := u−10 ; t0 := 0
u1 := lc(b); r1 := normal(b); s1 := 0; t1 := u−11
i := 2
while ri−1 ≠ 0 repeat

qi := ri−2 quo ri−1
ri := ri−2 rem ri−1
ui := lc(ri)
ri := normal(ri)
si := (si−2 − qi si−1)/ui
ti := (ti−2 − qi ti−1)/ui
i := i + 1

return(ri−2, si−2, ti−2)

EEA: analyis (1/5)

In order to analyze the extended algorithms, we introduce the following
matrices

R0 = (s0 t0
s1 t1

) and Qi = (0 1
u−1i+1 −qi+1u−1i+1

) for 1 ≤ i ≤ k (12)

with coefficients in R. Then, we define

Ri = Qi⋯Q1R0 for 1 ≤ i ≤ k . (13)

The following proposition collects some invariants of the Extended
Euclidean Algorithm.

EEA: analyis (2/5)
Proposition
With the convention that rk+1 = 0 and uk+1 = 1, for 0 ≤ i ≤ k we have

(i) Ri (
a
b

) = (ri
ri+1

),

(ii) Ri = (si ti
si+1 ti+1

),

(iii) gcd(a,b) = gcd(ri , ri+1) = rk ,

(iv) sia + tib = ri and sk+1a + tk+1b = 0,

(v) si ti+1 − ti si+1 = (−1)i(u0⋯ui+1)−1,

(vi) gcd(si , ti) = 1,

(vii) gcd(ri , ti) = gcd(a, ti),

(viii) the matrices Ri and Qi are invertible; Q−1
i = (qi+1 ui+1

1 0
) and

R−1
i = (−1)i(u0⋯ui+1)(

ti+1 −ti
−si+1 si

),

(ix) a = (−1)i(u0⋯ui+1)(ti+1ri − ti ri+1),

(x) b = (−1)i+1(u0⋯ui+1)(si+1ri − si ri+1).

EEA: analyis (3/5)

Proof (1/3)
We prove (i) and (ii) by induction on i . The case i = 0 follows
immediately from the definitions of s0, r0, s1, r1 and R0. We assume that
(i) and (ii) hold for 0 ≤ i < k . By induction hypothesis, we have

Ri+1 (
a
b

) = Qi+1Ri (
a
b

)

= Qi+1 (
ri
ri+1

)

= (0 1
u−1i+2 −qi+2u−1i+2

)(ri
ri+1

)

= (ri+1
u−1i+2(ri − qi+2ri+1)

)

= (ri+1
ri+2

) .

(14)

EEA: analyis (4/5)
Proof (2/3)
Similarly, we have

Ri+1 = Qi+1Ri

= Qi+1 (
si ti
si+1 ti+1

)

= (0 1
u−1i+2 −qi+2u−1i+2

)(si ti
si+1 ti+1

)

= (si+1 ti+1
si+2 ti+2

) .

(15)

Property (iii) follows.
Claim (iv) follows from (i) and (ii).
Taking the determinant of each side of (ii) we prove (v) as follows:

si ti+1 − ti si+1 = det(si ti
si+1 ti+1

)

= detRi

= detQi⋯detQ1det(
s0 t0
s1 t1

)

= (−1)i(ui+1⋯u2)−1(u−10 u−11 − 0).

(16)

EEA: analyis (5/5)

Proof (3/3)

▸ Now, we prove (vi). If si and ti would have a non-invertible
common factor, then it would divide si ti+1 − ti si+1. This contradicts
(v) and proves (vi).

▸ We prove (vii). Let p ∈ R be a divisor of ti . If p ∣ a, then p ∣ ri holds
since we have ri = sia + tib from (i). If p ∣ ri , then p ∣ sia and, thus,
p ∣ a since ti and si are relatively prime, from (vi).

▸ We prove (viii). From (v), we deduce that Qi is invertible. Then,
the invertibility of Ri follows easily from that of Qi . It is routine to
check that the proposed inverses are correct.

▸ Finally, claims (ix) and (x) are derived from (i) by multiplying each
side with the inverse of Ri given in (viii).

Remark
When R = k[x] and k is a field, the following proposition shows that the
degrees of the Bézout coefficients of the EEA grow linearly. The second
following proposition shows that the Bézout coefficients are essentially
unique, provided that their degrees are small enough.

EEA: case of R = k[x] (1/7)

Proposition
With the same notations as in the previous proposition, we assume that
R = k[x] where k is a field. Then, for 2 ≤ i ≤ k + 1, we have

deg(si) =∑2≤j<ideg(qj) = n1 − ni−1 (17)

and, for 1 ≤ i ≤ k + 1, we have

deg(ti) =∑1≤j<ideg(qj) = n0 − ni−1 (18)

where ni = degri for 0 ≤ i ≤ k .

EEA: case of R = k[x] (2/7)

Proof (1/2)
We only prove the first equality since the second one can be verified in a
similar way. In fact, we prove this first equality together with

deg(si−1) < deg(si) (19)

by induction on 2 ≤ i ≤ k + 1. For i = 2, the first equality holds since we
have

deg(si) = deg(s0 − q2s1) = deg(1 − 0q2) = 0 = n1 − ni−1 (20)

and the inequality holds since we have

−∞ = deg(s1) < deg(s2) = 0. (21)

EEA: case of R = k[x] (3/7)

Proof (2/2)
Now we consider i ≥ 2 and we assume that both properties hold for
2 ≤ j ≤ i . Then, by induction hypothesis, we have

deg(si−1) < deg(si) < ni−1−ni +deg(si) = deg(qi+1)+deg(si) = deg(qi+1si)
(22)

which implies

deg(si+1) = deg(si−1 − qi+1si) = deg(qi+1si) > deg(si) (23)

and

deg(si+1) = deg(qi+1)+deg(si) = deg(qi+1)+∑2≤j≤ideg(qj) =∑2≤j≤i+1deg(qj)
(24)

where we used the induction hypothesis also.

EEA: case of R = k[x] (4/7)

Proposition
With the same notations as in the previous proposition, we assume that
R = k[x] where k is a field. We recall n = dega. Let r , s, t ∈ k[x], with
t ≠ 0, be polynomials such that

r = sa + tb and degr + degt < dega. (25)

Let j ∈ {1, . . . , k + 1} be such that

degrj ≤ degr < degrj−1. (26)

Then, there exists a non-zero α ∈ k[x] such that we have

r = αrj , s = αsj and t = αtj . (27)

EEA: case of R = k[x] (5/7)

Proof (1/3)
First, we observe that the index j exists and is unique. Indeed, we have
−∞ < degr < n and,

−∞ = degrk+1 < degrk < ⋯ < degri+1 < degri < ⋯ < dega = n. (28)

Second, we claim that
sj t = stj (29)

holds. Suppose that the claim is false and consider the following linear

system over R with (f
g

) as unknown:

(sj tj
s t

)(f
g

) = (rj
r

) (30)

EEA: case of R = k[x] (6/7)
Proof (2/3)
Since the matrix of this linear system is non-singular, we can solve for f

over the field of fractions of R. Moreover, we know that (f
g

) = (a
b

)

is the solution. Hence, using Cramer’s rule we obtain:

a =
det(rj tj

r t
)

det(sj tj
s t

)
. (31)

The degree of the left hand side is n while the degree of the right hand
side is equal or less than:

deg(rj t − rtj) ≤ max(degrj + degt,degr + degtj)
≤ max(degr + degt,degr + n − degrj−1)
< max(n,degrj−1 + n − degrj−1) = n.

(32)

by virtue of the definition of j , Relation (25) and the previous
proposition. This leads to a contradiction.

EEA: case of R = k[x] (7/7)

Proof (3/3)
Hence, we have sj t = stj . This implies that tj divides tsj . Since sj and tj
are relatively prime (Point (vi) of the second previous proposition we
deduce that tj divides t. So let α ∈ k[x] such that we have

t = αtj . (33)

Hence we obtain sjαtj = stj . Since t ≠ 0 holds, we have tj ≠ 0, leading to

s = sjα. (34)

Finally, plugging Equation (33) and Equation (34) in Equation (25), we
obtain r = αrj , as claimed.

EA and EEA: complexity estimates

Proposition
Let a,b ∈ k[x] where k is a field. Assume deg(a) = n ≥ deg(b) = m.

▸ the EEA requires at most m + 2 inversions and 13/2mn +O(n)
additions and multiplications in k.

▸ If we do not compute the coefficients si , ti then EEA requires at
most m + 2 inversions and 5/2mn +O(n) additions and
multiplications in k.

Proposition
Let a,b ∈ Z be multi-precision integers written with m and m words.
Then, the EEA can be performed within O(mn) word operations.

Plan

Euclidean Domains

The Euclidean algorithm

The Extended Euclidean algorithm

Evaluation, interpolation

Modular arithmetic

The Chinese remaindering algorithm

Rational function reconstruction

Modular computation of the determinant

Modular computation of the matrix product

Evaluation

Notatins
Let k be a field and let u = (u0, . . . ,un−1) be a sequence of pairwise
distinct elements of k.

Horner’s rule

▸ A polynomial in k[x] with degree n − 1, say

f = f0 + f1x +⋯ + fn−1xn−1 (35)

can be evaluated at x = x0 using Horner’s rule

f (x0) = (⋯(fn−1x0 + fn−2)x0 +⋯ + f1)x0 + f0 (36)

with n − 1 additions and n − 1 multiplications leading to 2n − 2
operations in the base field k.

▸ The proof is easy by induction on n ≥ 1.

Lagrange interpolant (1/2)

Definition
For i = 0⋯n − 1 the i-th Lagrange interpolant is the polynomial

Li(u, x) = ∏ 0 ≤ j < n
j ≠ i

x − uj

ui − uj
(37)

with the property that

Li(u,uj) = { 0 if i ≠ j
1 otherwise

(38)

Lagrange interpolant (2/2)

Proposition
Let v0, . . . , vn−1 be in k. There is a unique polynomial f ∈ k[x] with
degree less than n and such that

f (ui) = vi for i = 0⋯n − 1. (39)

Moreover this polynomial is given by

f (x) = ∑0≤i<n vi Li(u, x). (40)

Proof
Clearly the polynomial f of Relation (40) satisfies Relation (39). Hence
the existence is clear. The unicity follows from the fact that the
difference of two such polynomials has

▸ degree less than n and,

▸ n roots.

Hence is the zero polynomial.

Lagrange interpolation: complexity estimates (1/3)

Proposition
Evaluating a polynomial f ∈ k[x] of degree less than n at n distinct
points u0, . . . ,un−1 or computing an interpolating polynomial at these
points can be done in O(n2) operations in k.

Proof (1/3)

▸ We saw that evaluating the polynomial f of degree n − 1 at one
point costs 2n − 2 operations in k. So evaluating f at u0, . . . ,un−1
amounts to 2n2 − 2n. Let us prove now that interpolating a
polynomial at u0, . . . ,un−1 can be done in O(n2) operations in k.

▸ We first need to estimate the cost of computing the i-th interpolant
Li(u, x). Consider m0m1, m0m1m2, . . .m = m0⋯mn−1 where mi is
the monic polynomial mi = x − ui . Let pi = m0m1⋯mi−1 and
qi = m/mi for i = 1⋯n. We have

Li(u, x) = qi(x)
qi(ui)

(41)

Lagrange interpolation: complexity estimates (2/3)

Proof (2/3)
To estimate the cost of computing the Li(u, x)’s let us start with that of
m. Computing the product of the monic polynomial pi = m0m1⋯mi−1 of
degree i by the monic polynomial mi = x − ui of degree 1 costs

▸ i multiplications (in the field k) to get −ui pi plus

▸ i additions (in the field k) to add −ui pi (of degree i) to x pi (of
degree i + 1 but without constant term)

leading to 2 i . Hence computing p2, . . . ,pn = m amounts to

Σ1≤i≤n−1 2 i = 2Σ1≤i≤n−1i
= 2n (n − 1)/2
= n(n − 1).

(42)

Lagrange interpolation: complexity estimates (3/3)

Proof (3/3)

▸ Computing qi implies a division-with-remainder of the polynomial m
of degree n by the polynomial mi of degree 1. This division will have
n − 1 + 1 steps, each step requiring 2 operations in k. Hence
computing all qi ’s amounts to 2n2.

▸ Since qi has degree n − 1 computing each qi(ui)’s amounts to 2n − 2
operations in the base field k Then computing all qi(ui)’s amounts
to 2n2 − 2n. Then computing each Li(u, x) = qi(x)/qi(ui) from the
qi ’s and qi(ui)’s costs n. Therefore computing all Li(u)’s from
scratch amounts to n(n + 1) + 2n2 + 2n2 − 2n + n2 = 6n2 − n.

▸ Computing f from the Li(u)’s requires
▸ to multiply each Li(u, x) (which is a polynomial of degree n − 1) by
the number vi leading to n2 operations in k and

▸ to add these vi Li(u, x) leading to n − 1 additions of polynomials of
degree at most n − 1 costing (n − 1)n operations in k

amounting to 2n2 − n.

▸ Finally the total cost is 6n2 − 2n − 1 + 2n2 − n = 8n2 − 2n.

Vandermonde matrix

We consider the map

E ∶ kn → kn

(f0, . . . , fn−1) z→ (Σ0≤j<nfju
j
0, . . . ,Σ0≤j<nfju

j
n−1)

(43)

This is just the map corresponding to evaluation of polynomials of degree
less than n at points u0, . . . ,un−1. It is obvious that E is k-linear and it
can be represented by the Vandermonde matrix

VDM(u0, . . . ,un−1) =

⎛
⎜⎜⎜⎜⎜
⎝

1 u0 u20 ⋯ un−10

1 u1 u21 ⋯ un−11

1 u2 u22 ⋯ un−12

⋮ ⋮ ⋮ ⋮
1 un−1 u2n−1 ⋯ un−1n−1

⎞
⎟⎟⎟⎟⎟
⎠

(44)

From the above discussion, this matrix is invertible iff ui ≠ uj for all
0 ≤ i < j ≤ n − 1. To conclude observe that both evaluation and
interpolation are linear maps between coefficients and value vectors.

Plan

Euclidean Domains

The Euclidean algorithm

The Extended Euclidean algorithm

Evaluation, interpolation

Modular arithmetic

The Chinese remaindering algorithm

Rational function reconstruction

Modular computation of the determinant

Modular computation of the matrix product

Modular addition and mutiplication

Let R be a (commutative) ring (with unity) and I be an ideal of R. For
a,b ∈ R the relation

a − b ∈ I (45)

usually denoted by
a ≡ b mod I (46)

defines an equivalence relation. If we denote by aI (or a if not
ambiguous) the class of the element a, then the residue classes of this
relation forms a (commutative) ring (with unity) denoted by R/I where
addition and multiplication are defined by

a + b = a + b and ab = ab. (47)

Modular computation in an Euclidean domain

▸ Let R be an Euclidean domain and let p ∈ R with p ≠ 0. We consider
the ideal I generated by p.

▸ The residue class ring R/I is often denoted by R/p and the class of
a ∈ R in R/p by a mod p.

▸ For a,b ∈ R the relation a − b ∈ I means that a − b is a multiple of p.

▸ Let (qa, ra) and (qb, rb) be the quotient-remainder pairs of a and b
w.r.t. p respectively. Then, we have

p ∣ a− b ⇐⇒ p ∣ (qa − qb)p + ra − rb ⇐⇒ p ∣ ra − rb. (48)

▸ For R = Z with positive remainder or for R = k[x] we have in fact

a ≡ b mod p ⇐⇒ ra = rb. (49)

▸ Explain why!

Modular computation in R = k[x]

Let R = k[x] for a field k. Let u ∈ k and let I be the ideal generated by
the polynomial p ∶= x − u. For every a ∈ R there exists q ∈ R such that

a = q(x − u) + a(u) (50)

So in that case for every a,b ∈ R we have

a ≡ b mod p ⇐⇒ a(u) = b(u) (51)

Modular inversion

Proposition
Let R be an Euclidean domain and let a,m be in R. Then a mod m is a
unit of R/m iff gcd(a,m) = 1. In this case the Extended Euclidean
Algorithm can be used to compute the inverse of a mod m.

Proof
Indeed, let g be the gcd of a and m and let s, t be the corresponding
Bézout coefficients. Hence we have

s a + t m = g (52)

If g = 1 then s mod m is the inverse of a mod m. Conversely if a
mod m is invertible there exists b ∈ R such that

a b ≡ 1 mod m (53)

That is, there exists c ∈ R such that a b − 1 = c m. If a and m could be
divided by an element d which is not a unit then we would be led to a
contradiction (d(a′ b + c m′) = 1). Hence gcd(a,m) = 1.

Modular computations in k[x]: complexity estimates

Proposition
Let k be a field and f ∈ k[x] with degree n ∈ N. One arithmetic operation
in the residue class ring k[x]/f , that is, addition, multiplication or
division by an invertible element can be done using O(n2) arithmetic
operations in k.

Explain why!

Proof

Euler’s totient function

Let m be a positive integer. The set

(Z/m)∗ = {a mod m ∣ gcd(a,m) = 1} (54)

is the group of units of the ring Z/m. The Euler’s totient function
m z→ φ(m) counts the number of elements of (Z/m)∗. By convention
φ(1) = 1. Then, if p is a prime, we have φ(p) = p − 1. If m is a power pe

of the prime p, then we have

φ(m) = (p − 1)pe−1 (55)

Explain why!

Fermat’s little theorem (1/2)

Proposition
If p ∈ N is a prime and a ∈ Z then we have

ap ≡ a mod p (56)

Moreover if p does not divide a then we have ap−1 ≡ 1 mod p.

Proof
It is sufficient to prove the claim for a = 0⋯p − 1 which we do by
induction on a. The cases a = 0 and a = 1 are trivial. For a > 1 we have

ap = ((a − 1) + 1)p ≡ (a − 1)p + 1p ≡ (a − 1) + 1 = a mod p (57)

Fermat’s little theorem (2/2)

For a prime p ∈ N and a ∈ Z such that a ≠ 0 and such that p does not
divide a. It follows from Fermat’s little theorem that the inverse of a
mod p can be computed by

a−1 ≡ ap−2 mod p (58)

Explain why this leads to an algorithm requiring O(log3
2(p)) word

operations. Is this better than the modular inversion via Euclide’s
algorithm?

Plan

Euclidean Domains

The Euclidean algorithm

The Extended Euclidean algorithm

Evaluation, interpolation

Modular arithmetic

The Chinese remaindering algorithm

Rational function reconstruction

Modular computation of the determinant

Modular computation of the matrix product

CRT (Sun-Tsu, first century AD)

Proposition
Let m and n be two relatively prime integers. Let s, t ∈ Z be such that
s m + t n = 1. For every a,b ∈ Z there exists c ∈ Z such that

(∀x ∈ Z) { x ≡ a mod m
x ≡ b mod n

⇐⇒ x ≡ c mod mn (59)

where a convenient c is given by

c = a + (b − a) s m = b + (a − b)t n (60)

Therefore for every a,b ∈ Z the system of equations

{ x ≡ a mod m
x ≡ b mod n

(61)

has a solution.

CRT: Proof

First observe that Relation (60) implies

c ≡ a mod m and c ≡ b mod n. (62)

Now assume that x ≡ c mod mn holds. This implies

x ≡ c mod m and x ≡ c mod n (63)

Thus Relations (62) and (63) lead to

x ≡ a mod m and x ≡ b mod n (64)

Conversly

▸ x ≡ a mod m implies x ≡ c mod m, that is, m divides x − c and

▸ x ≡ b mod n implies x ≡ c mod n, that is, n divides x − c .

Since m and n are relatively prime it follows that mn divides x − c .
(Gauss Lemma).

CRT: a more modern version

Proposition
Let m0, . . . ,mn−1 be n elements pairwise coprime in the Euclidean
domain R. (Hence, for all 0 ≤ i < j < n we have gcd(mi ,mj) = 1.) Let
m = m0⋯mr−1. Then, we have the ring isomorphism

R/m ≃ R/m0 ×⋯ × R/mn−1 (65)

and the group isomorphism of the multiplicative groups

(R/m)∗ ≃ (R/m0)∗ ×⋯ × (R/mn−1)∗ (66)

Proof
Read the Chinese Remaindering Algorithm (long) section in
http://www.csd.uwo.ca/~moreno//CS424/Lectures/

EuclideanMethods.html/index.html

http://www.csd.uwo.ca/~moreno//CS424/Lectures/EuclideanMethods.html/index.html
http://www.csd.uwo.ca/~moreno//CS424/Lectures/EuclideanMethods.html/index.html

Chinese Remaindering Algorithm (CRA)

Input: m0, . . . ,mn−1 ∈ R pairwise coprime and
r0, . . . rn−1 ∈ R.

Output: r ∈ R such that r ≡ ri mod mi for i = 0⋯n − 1.

m := m0⋯mn−1.
r := 0
for i = 0⋯n − 1 repeat

(ui , vi ,gi) := extendedEuclidean(mi ,
m
mi

)

if gi ≠ 1 then error
ci := rivi rem mi

r := r + ci
m
mi

return r

Proof of CRA

Proof
Assume that the algorithm terminates without error, which is the case if
every gi is the gcd of mi and m

mi
(which are assumed to be coprime).

Then, for i = 0⋯n − 1 we have

ui mi + vi
m

mi
= 1 (67)

Hence
rivi

m

mi
≡ ri mod mi (68)

and for j = 0⋯n − 1 with j ≠ i we have

rivi
m

mi
≡ 0 mod mj (69)

The conclusion follows easily from Relation (68) and (69).

Remark about CRA

It is important to observe that the CRA computes a solution r of the
system of equations given by

r ≡ ri mod mi for i = 0⋯n − 1 (70)

Any other solution r ′ of (70) satisfies r ≡ r ′ mod m where m is the
product of the moduli m0, . . . ,mr−1. This follows from the fact the mi ’s
are pairwise coprime.
Therefore the set all solutions of (70) is of the form

{r + k m ∣ k ∈ R} (71)

However, in practice, we need only one solution. In the next two results
by imposing

d(r) < d(m) (72)

where d is the Euclidean size of R, we manage to restrict to a unique
solution.

CRA in R = k[x] (1/2)

Proposition

▸ Let R = k[x] for a field k.

▸ Let m0, . . . ,mr−1 ∈ R be polynomials pairwise coprime
(gcd(mi ,mj) = 1 for 0 ≤ i < j ≤ r − 1).

▸ Let m be their product.

▸ For 0 ≤ i ≤ r − 1 let di ≥ 1 be the degree of mi and n = Σr−1
i=0 di be the

degree of m.

▸ For 0 ≤ i ≤ r −1 let fi ∈ k[x] be a polynomial with degree deg(fi) < di .

Then, there is a unique polynomial f ∈ k[x] such that

deg(f) < n and f ≡ fi mod mi for i = 0⋯r − 1. (73)

Moreover it can be computed in O(n2) operations in k.

CRA in R = k[x] (2/2)

Proof
Except for the complexity result (which can be found in Modern
Computer Algebra) and the uniqueness, this theorem follows from
previous discussions. The uniqueness follows from the constraint
deg(f) < n. Indeed, assume that there are two polynomials f and g
solutions of (73). Then we have

f ≡ g mod mi for i = 0⋯r − 1. (74)

and thus
f ≡ g mod m (75)

Hence m divides f − g although deg(m) = n > deg(f − g) holds.
Therefore f = g .

CRA in R = Z

Proposition

▸ Let m0, . . . ,mr−1,m be in R = Z such that the mi ’s are pairwise
coprime and m is their product.

▸ Let n be the word length of m.

▸ Let a0, . . . , ar−1 ∈ R be such that 0 ≤ ai < mi for i = 0⋯r − 1.

Then there is a unique a ∈ R such that

0 ≤ a < m and a ≡ ai mod mi for i = 0⋯r − 1. (76)

Moreover it can be computed in O(n2) word operations.

Except for the complexity result (which can be found in Modern
Computer Algebra) and the uniqueness, this theorem follows from
previous discussions. The proof of the uniqueness is quite easy to
establish.

Plan

Euclidean Domains

The Euclidean algorithm

The Extended Euclidean algorithm

Evaluation, interpolation

Modular arithmetic

The Chinese remaindering algorithm

Rational function reconstruction

Modular computation of the determinant

Modular computation of the matrix product

Rational function reconstruction

Read the Rational Function Reconstruction (technical) section in
http://www.csd.uwo.ca/~moreno//CS424/Lectures/

EuclideanMethods.html/index.html

http://www.csd.uwo.ca/~moreno//CS424/Lectures/EuclideanMethods.html/index.html
http://www.csd.uwo.ca/~moreno//CS424/Lectures/EuclideanMethods.html/index.html

Plan

Euclidean Domains

The Euclidean algorithm

The Extended Euclidean algorithm

Evaluation, interpolation

Modular arithmetic

The Chinese remaindering algorithm

Rational function reconstruction

Modular computation of the determinant

Modular computation of the matrix product

Introduction (1/2)
Consider a square matrix A of order n with coefficients in Z. It is known
that det(A), the determinant of A, can be computed in at most 2n3

operations in Q by means of Gaussian elimination. Let us estimate the
growth of the coefficients. For simplicity, assume

▸ A is not singular,
▸ no row or column permutations are necessary,

After k − 1 pivoting stages the current matrxi A(k−1) looks like

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

∗
0 ∗

0 ∗
0 a

(k)
kk ⋯ a

(k)
kj ⋯

⋮ ⋮ ⋮
0 a

(k)
ik ⋯ a

(k)
ij ⋯

⋮ ⋮ ⋮

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(77)

The entries of the matrix for k < i ≤ n and k ≤ j ≤ n change according to
the formula

a
(k+1)
ij = a

(k)
ij −

a
(k)
ik

a
(k)
kk

a
(k)
kj . (78)

Introduction (2/2)

We consider the following numbers.

▸ Let bk be an upper bound for the absolute value of the numerators

and the denominators of all a
(k)
ij .

▸ In particular for 1 ≤ i , j ≤ n we have ∣ aij ∣ ≤ b0.

From Relation (78) we obtain

bk ≤ 2b4k−1 ≤ 4b4
2

k−2 ≤ ⋯ ≤ 2kb0
4k (79)

This shows an exponential upper bound. (However a polynomial bound
in b0,n can be established but the proof is far from trivial and the
formula still not be very encouraging.)
In what follows, we present an approach whose goal is to control the
growth of the intermediate computations when calculating the
determinant of A.

Preliminaries (1/3)

Let d be this determinant. Let us choose a prime number p ∈ Z such that

p > 2 ∣ d ∣ (80)

Let r be the determinant of A regarded as a matrix over Z/pZ and let us
choose for representing Z/pZ the integers in the symmetric range

−p − 1

2
⋯p − 1

2
(81)

Hence we have
−p

2
< r < p

2
and − p

2
< d < p

2
(82)

leading to
− p < d − r < p (83)

Observe that det(A) is a polynomial in the coefficients of A. For instance
with n = 2 we have

det(A) = a11 a22 − a12 a21 (84)

which shows that det(A) (for n = 2) is a polynomial in a11, a22, a12, a21.

Preliminaries (2/3)
Observe also the map

h ∶ Z Ð→ Z/pZ
x Ð→ x mod p = xp

(85)

is a ring homomorphism. In other words for every x , y ∈ Z we have

x + yp = xp + yp and xyp = xpyp (86)

Hence for n = 2 we have

det(A)
p
= a11

p a22
p − a12

p a21
p (87)

More generally we have

det(A)
p
= det(A mod p) (88)

that is
d ≡ r mod p (89)

which means that p divides d − r . This with Relation (83) leads to

d = r (90)

Preliminaries (3/3)

Hence the determinant of A as a matrix over Z is equal to the
determinant of A regarded as a matrix over Z/pZ. Therefore the
computation of the determinant of A as a matrix over Z can be done
modulo p, which provides a control on the intermediate computations.
Now we have to answer the following questions:

1. How to choose p?

2. What do we win?

For choosing p we need an a-priori bound for the determinant of A. This
is given by the following Hadamard’s inequality.

Proposition
Let B be the maximal absolute value of an entry of A. Then we have

∣ d ∣ ≤ nn/2Bn (91)

Example

Consider

A = (4 5
6 −7

) (92)

Gaussian elimination leads to

A = (4 5
0 −29/2

) (93)

Hence det(A) = −58. The Hadamard’s inequality gives

∣ det(A) ∣ ≤ 21 72 = 98 (94)

The number p = 199 is prime and satisfies p > 2 × 98. Gaussian
elimination mod p leads to

A = (4 5
0 85

) (95)

So det(A mod p) = 141 = −58 in Z/199Z.

Cost analysis (1/2)

Let us study what is the cost of this approach. Let us denote by C the
determinant bound of Hadamard’s inequality. Assume that our machine
words are N-bit long. We make the following observations.

▸ The word length of C is in the order of magnitude of

` = ⌈ 1

N
log2(C)⌉ + 1 = ⌈ 1

N
n (1

2
log2n + log2B)⌉ + 1. (96)

▸ Prime numbers are frequent enough to find one with a word length
in the same order of magnitude as C .

▸ So each element of Z/pZ can be coded by an array with at most
O(`) words.

▸ Hence, each operation (like addition, multiplication, inverse
computation) in Z/pZ costs at most O(`2) word operations.

▸ Gaussian elimination mod p will require O(n3) operations in Z/pZ.

Therefore we have proved the following theorem

Cost analysis (2/2)

Proposition
The determinant of a square matrix with order n, coefficients in Z and B
as the maximal absolute value of a coefficient can be computed in
O(n3 n2 (logn + logB)2) word operations.

This is not in fact a big progress w.r.t. Gaussian elimination over Q. But
this can be improved using a small primes modular computation as
follows.

Small prime approach (1/4)

Input: A = (aij) a square matrix over Z of order n with
∣ aij ∣≤ B for 1 ≤ i , j ≤ n.

Output: det(A) ∈ Z.

C := nn/2Bn

r := ⌈log2(2C + 1)⌉
choose r distinct prime numbers 2 < m0 < ⋯ < mr−1 ∈ N
for i = 0⋯r − 1 repeat

di := det(A mod mi)
d := interpolate([m0, . . . ,mr−1], [d0, . . . ,dr−1])
d := d rem m
if d ≥ m

2
then

d := d −m
return(d)

Small prime approach (2/4)

Recall that det(A) is a polynomial expression in the coefficients of A.
Hence by using the ring homomorphism between Z and Z/miZ for
i = 0⋯r − 1 we have

det(A) ≡ di mod mi (97)

Using the CRT
Z/m ≃ Z/m0 ×⋯ ×Z/mr−1 (98)

we deduce
det(A) ≡ d mod m (99)

where m is the product of the moduli m0, . . . ,mr−1. Now observe that

m = m0⋯mr−1
≥ 2r

≥ 2C + 1

≥ 2nn/2Bn

≥ 2 ∣ d ∣

(100)

Hence actually we have det(A) = d .

Small prime approach (3/4)

Consider again

A = (4 5
6 −7

) (101)

We choose the four primes 2,3,5,7 so that m = 210. We get

det(A) ≡ 0 mod 2 det(A) ≡ 2 mod 3
det(A) ≡ 2 mod 5 det(A) ≡ −2 mod 7

(102)

The solutions of the system d ≡ di mod mi for 1 ≤ i ≤ 4 are in

−58 + 210Z = {. . . ,−268,−58,152,362, . . .} (103)

Finally det(A) = −58 again.

Small prime approach (4/4)

Proposition
The determinant of a square matrix with order n, coefficients in Z and B
as the maximal absolute value of a coefficient can be computed in
O(n4log2(nB)(log2n + log2B)) word operations.

Proof
See Theorem 5.12 in Modern Computed Algebra.

Remark
With the above algorithm, we achieve the following goals.

▸ All intermediate computations can be made modulo small prime
numbers. In practice these small primes are machine integers
allowing fast computations.

▸ The only possible large value is the determinant itself.

▸ The space and the time required for the whole computation can be
estimated in advance.

Moreover the computations of the modular determinants (the di ’s) are
pairwise independent and thus can be distributed.

Plan

Euclidean Domains

The Euclidean algorithm

The Extended Euclidean algorithm

Evaluation, interpolation

Modular arithmetic

The Chinese remaindering algorithm

Rational function reconstruction

Modular computation of the determinant

Modular computation of the matrix product

Overview

We conclude this chapter with another modular algorithm. We assume
that we have a highly efficient matrix multiplication over Z/pZ, for any
machine-word size prime number p, and would like to take advantage of
it for multipying matrcies with integer coefficients. This can be achieved
by means of a modular algorithm, based on the Chinese Remaindering
Algorithm.

Preliminaries (1/3)

Consider two square matrices A = (ai,j ,1 ≤ i ≤ j ≤ n) and
B = (bi,j ,1 ≤ i ≤ j ≤ n) of order n with coefficients in Z. Let ∣∣A∣∣∞ and
∣∣B ∣∣∞ be the maximum absolute value of a coefficient in A and B,
respectively. Let C = (ci,j ,1 ≤ i ≤ j ≤ n) be the matrix product AB and let
m > 2 be any odd integer (prime or not). For all 1 ≤ i ≤ j ≤ n, we have

ci,j = Σk=n
k=1 ai,kbk,j , (104)

and thus
ci,j ≡ Σk=n

k=1 ai,kbk,j mod m. (105)

Preliminaries (2/3)

Now, let A
m
= (ami,j ,1 ≤ i ≤ j ≤ n) and B

m
= (b

m

i,j ,1 ≤ i ≤ j ≤ n) be the

images of A and B modulo m. (Hence the coefficient ami,j of A
m

is the

remainder of ai,j modulo m.) Let C
m
= (cmi,j ,1 ≤ i ≤ j ≤ n) be the matrix

product A
m
B

m
computed in Z/mZ. Hence, we have

cmi,j = Σk=n
k=1a

m
i,kb

m

k,j (106)

Combining the relations

ami,k ≡ ai,k mod m and b
m

i,k ≡ bi,k mod m (107)

with Equations (105) and (106) we obtain

ci,j ≡ cmi,j mod m. (108)

Preliminaries (3/3)

In particular, if we use a symmetric representation −m−1
2
⋯m−1

2
for

representing the elements of Z/mZ and if we have ∣ci,j ∣ < m
2

, then
Equation (108) simply becomes ci,j = cmi,j .
Observe that for all 1 ≤ i ≤ j ≤ n, we have

∣ ci,j ∣ ≤ Σk=n
k=1 ∣ ai,k ∣∣ bk,j ∣ ≤ n∣∣ A ∣∣∞ ∣∣ B ∣∣∞. (109)

Hence we define M = n∣∣A∣∣∞∣∣B ∣∣∞. We are ready to state a modular
algorithm.

Algorithm (1/2)
Input: A = (aij) and B = (bij) two square matrices over Z of

order n with ∣ aij ∣≤ ∣∣A∣∣∞ and ∣ bij ∣≤ ∣∣B ∣∣∞, for
1 ≤ i , j ≤ n.

Output: C = (cij) the matrix product A B.

M := n∣∣A∣∣∞∣∣B ∣∣∞
r := ⌈log2(2M + 1)⌉
choose r distinct prime numbers 2 < m0 < ⋯ < mr−1 ∈ N
m := m0⋯mr−1
for ` = 0⋯r − 1 repeat

for i = 1⋯n repeat
for j = 1⋯n repeat

cm`

i,j := Σk=n
k=1 am`

i,kb
m`

k,j

for i = 1⋯n repeat
for j = 1⋯n repeat

ci,j := interpolate([m0, . . . ,mr−1], [cm0

i,j , . . . , c
mr−1

i,j])
ci,j := ci,j rem m
if ci,j ≥ m

2
then

ci,j := ci,j −m
return((cij))

Algorithm (2/2)

Note that the first for loop computes the matrcies C
m0
, . . . ,C

mr−1
by the

classical method. However, one can use instead any other algorithm (like
Strassen’s) computing these matrices. Let us give an upper bound for the
number of machine-word operations required by Algorithm ??. It suffices
to estimate each of the two for loops. The first one runs in O(rn3) and
the second one in O(n2r2). This is a better estimate than the one which
can be given for the naive (non-modular approach): O(n3r2).

	Euclidean Domains
	The Euclidean algorithm
	The Extended Euclidean algorithm
	Evaluation, interpolation
	Modular arithmetic
	The Chinese remaindering algorithm
	Rational function reconstruction
	Modular computation of the determinant
	Modular computation of the matrix product

