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Fast polynomial multiplication on a GPU

Marc Moreno Maza and Wei Pan
University of Western Ontario, London ON, Canada

E-mail: moreno@csd.uwo.ca; wpan9@csd.uwo.ca

Abstract. We present CUDA implementations of Fast Fourier Transforms over finite fields. This allows
us to develop GPU support for dense univariate polynomial multiplication leading to speedup factors in the
range 21 − 37 with respect to the best serial C-code available to us, for our largest input data sets. Since
dense univariate polynomial multiplication is a core routine in symbolic computation, this is promising
result for the integration of GPU support into computer algebra systems.

1. Introduction
Polynomials and matrices are the fundamental objects on which most computer algebra algorithms
operate. In the past 15 years, significant efforts have been deployed by different groups of researchers for
delivering highly efficient software packages for computing symbolically with polynomials and matrices,
like LINBOX, MAGMA, and NTL [16, 1, 25]. However, most of these works are dedicated to serial
implementation, in particular in the case of polynomials. Only a few studies [18, 21, 22] report on
parallel implementation (targeting multicores) of polynomial arithmetic. None of the computer algebra
software packages available today takes advantage of graphics processing units (GPUs) in support of
libraries for polynomial arithmetic. The work reported in this paper aims at filling this gap.

This contrasts sharply with the state of affairs in numerical linear algebra and in digital signal
processing. For instance, the commercialized software system MATLAB with its Parallel Computing
Toolbox [17] and GPU Toolbox [13] provides programming support for different parallelism paradigms
(data-parallelism, MPI, multithreading) and parallel architectures (GPUs, multicores, clusters) together
with many library functions taking advantage of this support. In digital signal processing, in particular
for the computation of Fast Fourier Transforms (FFTs), the use of hardware acceleration technologies,
notably GPUs, has been investigated in several works [10, 20, 12, 27].

In this paper, we present a GPU implementation of fast polynomial multiplication. We focus on
dense univariate polynomials over prime fields for the following reasons. First, many algorithms in
symbolic computation tend to densify intermediate data, even if the input and output are sparse. Second,
multivariate polynomial multiplication can be reduced to univariate multiplication through the so-called
Kronecker’s substitution. Third, computation with polynomials over non-prime fields can be reduced to
the prime field case by means of modular techniques. We refer to the landmark book Modern Computer
Algebra [11] for an extensive presentation of these ideas.

This reduction to dense univariate polynomial over coefficient fields Z/pZ, where p is a prime,
allows us to rely on FFT techniques, which is the basis of fast polynomial arithmetic [4]. However, as
detailed in Section 2.3, FFT computations over finite fields present specific challenges. For this reason,
techniques for FFTs with floating point number coefficients are not sufficient for supporting polynomial
multiplication over finite fields. This motivates the work reported in this paper.
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Most serial implementations of FFT over finite fields, see [8] and the references therein, rely on the
radix-2 Cooley-Tukey Formula [6]. On multicores, the row-column FFT algorithm is used successfully,
see [21, 22]. In the case of GPUs, to which this paper is devoted, it is natural to revisit the popular FFT
formulas of Cooley-Tukey and Stockham [26] in the context of finite fields. We review these formulas
in Section 2.2. As in [23, 5] we take advantage of the formalism of tensorial calculus to generate code
and identify our GPU kernels. The Cooley-Tukey and Stockham formulas differ only in the way that
intermediate computations are stored. We concentrated our efforts on these two formulas, despite of the
existence of other formulas for computing FFTs, for the following reasons. First, the radix-2 Cooley-
Tukey formula is well understood in the context of finite fields. Second, in numerical computing, the
Stockham formula seems to be well-suited for GPU implementation [10].

In this work, we present our detailed implementations of the Cooley-Tukey and Stockham FFT
formulas, aiming at utilizing the horsepower of Graphics Processing Units (GPUs). The organization of
the paper is as follows. In Section 2, we first formalize FFTs in terms of Kronecker (tensor) product, then
we discuss an efficiency-critical operation in a finite field, namely modular multiplication. Sections 3
and Section 4 focus on our CUDA [2] implementation of the Cooley-Tukey and Stockham FFTs. We
present experimental results in Section 5 and draw conclusions in the end.

2. The Kronecker product and FFT over finite fields
This section reviews the Fast Fourier Transform (FFT) in the language of tensorial calculus, see [28]
for an extensive presentation. This formalism facilitates code generation as explained in [5, 9], and in
particular it helps identifying GPU kernel specifications. We also highlight the specific features of FFTs
over finite fields and refer to [22] for details. Throughout this paper, we denote by K a field. In practice,
this field is often a prime field Z/pZ where p is a prime number greater than 2.

2.1. Basic operations on matrices
Let n,m, q, s be positive integers and et A,B be two matrices over K with respective formats m×n and
q× s. The tensor (or Kronecker) product of A by B is an mq×ns matrix over K denoted by A⊗B and
defined by

A⊗B = [ak`B]k,` with A = [ak`]k,` (1)

The direct sum of A and B is an (m+ q)× (n+ s) matrix over K denoted by A⊕B and defined by

A⊕B =
[
A 0
0 B

]
. (2)

More generally, for n matrices A0, . . . , An−1 over K, the direct sum of A0, . . . , An−1 is defined as
⊕n−1
i=0 Ai = A0⊕ (A1⊕ (· · · ⊕An−1) · · · ). The stride permutation matrix Lmnm permutes an input vector

x of length mn as follows
x[im+ j] 7→ x[jn+ i], (3)

for all 0 ≤ j < m, 0 ≤ i < n. If x is viewed as an n×m matrix, then Lmnm performs a transposition of
this matrix.

2.2. Discrete Fourier Transform
We fix an integer n ≥ 2 and an n-th primitive root of unity ω ∈ K. The n-point Discrete Fourier
Transform (DFT) at ω is a linear map from the K-vector space Kn to itself, defined by x 7−→ DFTn x
with the n-th DFT matrix

DFTn = [ωk`]0≤k, `<n. (4)
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In particular, the DFT of size 2 corresponds to the butterfly matrix

DFT2 =
[

1 1
1 −1

]
. (5)

The well-known Cooley-Tukey Fast Fourier Transform (FFT) [6] in its recursive form is a procedure for
computing DFTn x based on the following factorization of the matrix DFTn, for any integers q, s such
that n = qs holds:

DFTqs = (DFTq ⊗ Is)Dq,s(Iq ⊗DFTs)Lqsq , (6)

where Dq,s is the diagonal twiddle matrix defined as

Dq,s =
q−1⊕
j=0

diag(1, ωj , . . . , ωj(s−1)), (7)

Formula (8) illustrates Formula (6) with DFT4:

DFT4 = (DFT2 ⊗ I2)D2,2(I2 ⊗DFT2)L2
2

=


1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 ω




1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1



=


1 1 1 1
1 ω −1 −ω
1 −1 1 −1
1 −ω −1 ω

 =


1 1 1 1
1 ω1 ω2 ω3

1 ω2 ω4 ω6

1 ω3 ω6 ω9

 .
(8)

Assume that n is a power of 2, say n = 2k. Formula (6) can be unrolled so as to reduce DFTn

to DFT2 (or a base case DFTm, where m divides n) together with the appropriate diagonal twiddle
matrices and stride permutation matrices. This unrolling can be done in various ways. Before presenting
one of them, we introduce a notation. For integers i, j, h ≥ 1, we define

∆(i, j, h) = (Ii ⊗DFTj ⊗ Ih) (9)

which is a square matrix of size ijh. For m = 2` with 1 ≤ ` < k, the following formula holds:

DFT2k =

(
k−∏̀
i=1

∆
(

2i−1, 2, 2k−i
) (
I2i−1 ⊗D2,2k−i

))
∆
(

2k−`,m, 1
)( 1∏

i=k−`
(I2i−1 ⊗ L2k−i+1

2 )

)
.

(10)
Therefore, Formula (10) reduces the computation of DFT2k to composing DFT2, DFT2` , diagonal
twiddle endomorphisms and stride permutations. This is the basis of the implementation presented in
Section 3. Another recursive factorization of the matrix DFT2k is

DFT2k = (DFT2 ⊗ I2k−1)D2,2k−1L2k

2 (DFT2k−1 ⊗ I2), (11)

from which one can derive the Stockham FFT [26] as follows

DFT2k =
k−1∏
i=0

(DFT2 ⊗ I2k−1)(D2,2k−i−1 ⊗ I2i)(L2k−i

2 ⊗ I2i). (12)

This is the basis of the implementation presented in Section 4.
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2.3. FFTs over finite fields
As mentioned in the introduction, for FFT computations, the case where K is a finite field offers specific
challenges in comparison to the case where K is the field C of complex numbers. This explains why FFT
techniques used for numerical computation do not adapt straightforwardly to symbolic computation.

On the algebraic side, the most obvious difference is that the prime field Z/pZ admits an n-th
primitive root of unity if and only if n divides p − 1. In addition, radix 2 FFTs are often preferred
to others in symbolic computation, since many algorithms, such as those for polynomial factorization,
require the prime p to be small, say p = 3, 5, 7, . . .. Since the radix must be invertible in Z/pZ, this
essentially imposes the restriction to radix 2 FFTs. See [11] for details on these algebraic considerations.

On the implementation side, multiplying two elements a, b of Z/pZ is obviously a key routine. Unlike
the case of single and double precision floating point arithmetic, the operation (a, b, p) 7−→ (ab) mod p,
for a, b, p ∈ Z, is not provided directly by hardware. This operation is thus an efficiency-critical low-level
software routine that the programmer has to take care of. When p is a machine word size prime, which
is the assumption in this paper, two techniques are popular in the symbolic computation community.

The first one takes advantage of hardware floating point arithmetic, see [7]. We call
double mul mod our implementation of this technique, for which our CUDA code is shown below.
The fourth argument pinv is the inverse of p which is precomputed in floating point.

__device__ int double_mul_mod(int a, int b, int p, double pinv) {
int q = (int) ((((double) a) * ((double) b)) * pinv);
int res = a * b - q * p;
return (res < 0) ? (-res) : res;

}

In our implementation, double precision floating point numbers are encoded on 64 bits and make this
technique work correctly for primes p up to 30 bits.

The second technique, called the Montgomery reduction [19], relies only on hardware integer
arithmetic. We summarize this elegant trick. Consider a positive integer R ≥ p such that gcd(R, p) = 1.
Hence there exists integers R−1, p′ such that we have:

RR−1 − p p′ = 1 and 0 < p′ < R. (13)

Consider an integer x, satisfying 0 ≤ x < p2, and for which we want to compute x/R mod p. Let
c and d (resp. e and f ) be the quotient and remainder in the Euclidean division of x by R (resp. dp′

and R). Then, it is easy to prove that there exists an integer q such that x + fp = qR holds, that is,
satisfying q ≡ x/R mod p. If p > 2 then R can be chosen to be a power of 2. Therefore, with
this choice, computing x/R mod p amounts to 2 multiplications, 2 additions and 3 shifts. Now, in
order to compute products in Z/pZ, one “represents” any residue class a mod p by aR mod p. Then,
applying the previous trick to x = (aR)(bR) mod p one obtains efficiently (ab)/R mod p, that is, the
representative of (ab) mod p. An improved version of this trick was proposed in [15].

3. Implementation of the Cooley-Tukey FFT
We stick to the notations and hypotheses introduced in Section 2.2. Our purpose is to describe our
CUDA implementation of Formula (10). The idea behind this formula is that the base case DFTm can
be implemented efficiently, for m small enough, typically m = 16. This formula can be interpreted as
the composition of three computational steps:

S1: x 7−→
∏1
i=k−`(I2i−1 ⊗ L2k−i+1

2 )x,

S2: x 7−→ ∆
(
2k−`,m, 1

)
x,

S3: x 7−→
∏k−`
i=1 ∆

(
2i−1, 2, 2k−i

) (
I2i−1 ⊗D2,2k−i

)
x.
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According to the definition ∆(2k−`,m, 1) = I2k−` ⊗ DFTm, the step S2 essentially reduces to
execute a sequence of base DFTm, each of which operates on a subarray of x, independently. Therefore,
we focus hereafter on S1 and S3. Note that in steps S1 and S3 we need to double-buffer the array to
avoid synchronizations among different CUDA thread blocks, see [3] for details. That is, at the same
time, we have two arrays X and Y of length n, one of which is the input and the other is the output, and
they switch their role after a kernel call on the input.

3.1. Implementation of step S1

Step S1 consists of a sequence of calls to the following GPU kernel, with s ranging from 1 to n
2m . Its

specification is

/**
* Compute Y = (I_s x L_2ˆ{n/s})X

*
* @X, input array of length n

* @Y, output array of length n

*/
void list_transpose_kernel(int *Y, int *X, int n, int s);

Performing the product of Is ⊗ Ln/s2 by a vector x of length n is equivalent to

(i) dividing x evenly into s subarrays,
(ii) regarding each subarray as a n

2s × 2 matrix and transposing it.

Therefore, step S1 essentially consists of s matrix transpositions of size n
2s × 2. Following the spirit of

[24] for matrix transposition, we realized an efficient subroutine to transpose a list of matrices. Note
that we could not directly adapt their code since each matrix has only two columns. Without padding
the input data with zeros, our implementation is still able to utilize the shared memory of CUDA devices
effectively. For simplicity, we present our implementation with the following example.

Example 3.1 Let M be a 16 × 2 matrix. We set the thread block size to 16 × 2 with indices (i, j) for
0 ≤ i < 16 and j = 0, 1. Then we first read M into an array Ms of size 32 residing in the shared
memory space as follows

int i = threadIdx.y * 16 + threadIdx.x;
M_s[i] = M[i];

That is, the above segment of code transforms M into the shared array Ms via two coalesced reads,
without changing the data layout. Still, we look at the shared array Ms as a 16 × 2 matrix, then we
achieve the transposition by writing the data back to the global memory column-wise as follows

int i = threadIdx.y * 16 + threadIdx.x;
M[i] = M_s[threadIdx.x * 2 + threadIdx.y];

The first 16 threads (a half warp) {(i, 0) | 0 ≤ i < 16} read in Ms[0],Ms[2], . . . ,Ms[30], and write
to M [0],M [1], . . . ,M [15]. On the other hand, the second half warp of threads {(i, 1) | 0 ≤ i < 16}
read in Ms[1],Ms[3], . . . ,Ms[31] and write to M [16],M [17], . . . ,M [31]. Again all the writes to global
memory are coalesced.

The above example can be generalized to transpose a list of m×2 matrices with only coalesced reads
and writes for any m ≥ 16, which satisfies the specification of the kernel list transpose kernel.
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3.2. Implementation of step S3

We are going to map the formula

(I2i−1 ⊗DFT2 ⊗ I2k−i)(I2i−1 ⊗D2,2k−i), 1 ≤ i ≤ k − ` (14)

to a GPU kernel function. The following relation is easy to prove:

(I2i−1 ⊗DFT2 ⊗ I2k−i)(I2i−1 ⊗D2,2k−i) = I2i−1 ⊗
(
(DFT2 ⊗ I2k−i)D2,2k−i

)
(15)

Hence step S3 consists of a sequence of calls to the following GPU kernel, with q ranging from n
2 to m.

It specification is
/**
* Compute Y = (I_{n/2q} x (DFT_2 x I_q) D_{2, q}) X

*
* @X, input array of length n

* @Y, output array of length n

*/
void list_butterfly_kernel(int *Y, int *X, int n, int q);

We notice that (DFT2 ⊗ Iq)D2,q is, in fact, the classical butterfly operation, which can be realized as,
for (i = 0; i < q; ++i) {

Y[i] = X[i] + X[q+i] * W[i];
Y[q+i] = X[i] - X[q+i] * W[i];

}

with W [i] = θi and θ is a (2q)-th primitive root of unity. The formula (DFT2 ⊗ Iq)D2,q will be applied
to a segment of data of length 2q. Hence, with n/2 threads, one can realize list butterfly kernel which
implements the formula I2i−1 ⊗

(
(DFT2 ⊗ I2k−i)D2,2k−i

)
for each i.

4. Implementation of the Stockham FFT

Recall the Stockham FFT formula (12):

DFT2k =
k−1∏
i=0

(DFT2 ⊗ I2k−1)(D2,2k−i−1 ⊗ I2i)(L2k−i

2 ⊗ I2i).

For each fixed 0 ≤ i < k, it consists of three computational steps:

A1: x 7−→ (L2k−i

2 ⊗ I2i)x,
A2: x 7−→ (D2,2k−i−1 ⊗ I2i)x,
A3: x 7−→ (DFT2 ⊗ I2k−1)x.

Similar to the implementation of the Cooley-Tukey FFT, we double-buffer these steps.

4.1. Implementation of step A1

We describe how to map the formula Ln/s2 ⊗ Is to a GPU kernel, where n is the FFT size and s is the
stride size. Let M be an (n/s− 1)× 2s matrix stored in the row-major layout. The effect of this stride
permutation on M is to perform the following reordering:

M =


S0 S1

S2 S3

S4 S5
...

...
S(n/s−2) S(n/s−1)

 =⇒ T =
[

S0 S2 S4 · · · S(n/s−2)

S1 S3 S5 · · · S(n/s−1)

]
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where Si denotes the elements ofM with indices is · · · (is+s−1). When we regardM as an (n/s−1)×2
matrix (each stride Si is a single element of M ), the output matrix T , of size 2× (n/s− 1), is the matrix
transposition of M .

We describe how to realize this stride permutation in a CUDA kernel. Let τ be the number of threads
in a thread block, typically τ = 128. To use the shared memory space efficiently, τ should be a multiple
of 16. Under the above setting, the number of threads blocks required is given by λ = n

τ . We need to
distinguish the following two cases

(1) s ≥ τ , that is, δ = s
τ blocks are needed to move a stride of length s,

(2) s < τ , that is, a thread block moves δ = τ
s strides of data.

The reason to have such a case discussion is that the relation between τ and s determines the behavior of
each thread block, specified in detail as follows.

Case s ≥ τ : Given a thread block index 0 ≤ i < λ, we define

iq = quo(i, δ) and ir = rem(i, δ).

Here iq determines the stride index which thread block i is working on and ir determines the offset
inside this stride. If iq is a multiple of 2 then Siq appears in the first row of the output matrix,
otherwise it appears in the second row. Hence the offset for the thread block i is given by the
following formula:

rem(iq, 2) ∗ n
2

+ quo(iq, 2) ∗ s+ ir ∗ τ. (16)

In this case, each thread block does a direct copy, that is, no data shuffle is needed.
Case s < τ : Given a thread block index 0 ≤ i < λ, there are two offsets:

i ∗ quo(τ, 2) and i ∗ quo(τ, 2) +
n

2
. (17)

In this case, the behavior inside each thread block is not just a direct copy. Since there are δ strides
inside each thread block, those strides with even index use the first offset to move data, while the
other strides use the second offset to move data (this may be viewed as an in-block data shuffle).

4.2. Implementation of steps A2 and A3

According to its definition, D2,2k−i−1 is a diagonal matrix of size 2k−i and thus D2,2k−i−1 ⊗ I2i is again
a diagonal matrix of size n, with each diagonal element repeated 2i times. Hence step A2 simply scales
x with powers of the primitive root of unity ω. On the other hand, step A3 is a list of basic butterflies
with stride size n/2. This step is accesses data in a very uniform manner. In the following section, we
discuss the performance implications of steps A2 and A3.

5. Experimentation

We have realized in CUDA 2.2 both Cooley-Tukey FFT and Stockham FFT, and conducted a series
of benchmarks using a Geforce GTX 285 graphics card on a desktop with the processor Intel Core 2
Quad CPU Q9400 @ 2.66GHz and 6 GB main memory. This graphics card has the compute capability
1.3, consists of 30 multiprocessors, each of which has 8 cores for integer and single-precision floating-
point arithmetic operations. However, each multiprocessor has only 1 double-precision floating-point
unit. This is an important characteristic for our double mul mod routine implementing the map
(a, b, p) 7→ (ab) mod p, as described Section 2.3. We note that for the most recent NVIDIA graphics
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cards having the compute capability 2.x, the ability to perform double-precision floating-point operations
has been greatly enhanced.

The experimentation is described in the following three subsections. Section 5.1 is dedicated to
modular multiplication, and more precisely, to a comparative implementation of the map (a, b, p) 7→ (ab)
mod p on both CPU and GPU. Section 5.2 presents the results for our GPU implementation of the FFT
formulas of Cooley-Tukey and Stockham, as described in Sections 3 and 4. Section 5.3 compares the
performance of FFT-based univariate polynomial multiplication codes for CPU and GPU.

5.1. Modular multiplication
Figure 1 and Figure 2 are experimental results for modular multiplication on CPU and GPU respectively.
In both cases, each slot of an input array of length n = 2k consisting of machine word size integers
is multiplied by a given machine word size integer ω. This type of calculation is typical for FFT
algorithms. For both CPU and GPU we compare our implementations of the Montgomery reduction
and double mul mod. For the GPU kernel, we could choose to have a single thread or multiple
threads. In our experimentation, we use the latter and in this case each multiprocessor can only process
a double-precision floating-point operation at a time which downgrades the performance.

Figure 1: Modular multiplication on CPU. When we increase the number of modular multiplications,
the one relying on double-precision floating point computations outperforms the one relying on the
Montgomery reduction. Both the array length and the time are scaled by the base 2 logarithm.

Figure 1 shows that double mul mod is about 1.5 faster than the method based on the Montgomery
reduction, when running serial C code on the CPU. On the GPU, Figure 2 shows that double mul mod
is still slightly better than the method based on the Montgomery reduction, which is a surprise to us.

5.2. Cooley-Tukey and Stockham FFT over finite fields on a GPU
It is challenging to figure out what are the best implementation techniques for each of the two formulas.
During our experiments, we realized that the pre-computation of the powers 1, ω, ω2, . . . , ωn/2−1 is a
necessity, for an n-point FFT. This step is rather time-consuming if we implement it naively, that is, first
compute those powers in the host sequentially, and then transfer them to the GPU device. Fortunately, this
preprocessing is a special form of the exclusive prefix sum and the pre-computation can be achieved by a
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Figure 2: Modular multiplication on GPU. We do the same test as in Figure 1 on GPU, and run the
kernels with massive threads. Both the array length and the time are scaled by the base 2 logarithm.

sequence of GPU kernel calls to a subroutine double expand, which takes an array {1, ω, . . . , ωs−1}
of length s as input and returns {ωs, . . . , ω2s−1} by multiplying each element of the input array with ωs.

We have noticed that step S3 of the Cooley-Tukey FFT (as described in Section 3.2) was
accessing the powers of ω by performing larger and larger jumps. For example, while the following
formula (DFT2 ⊗ I2k−i)(I2i−1 ⊗ D2,2k−i) operates on a subarray of length 2k−i+1, the powers
{1, ω2i

, (ω2i
)2, . . . , (ω2i

)2
k−i−1} get accessed. We call jumped powers at level i these latter powers.

Therefore, we considered pre-computing not only the powers {1, ω, . . . , ωn/2−1} but also all jumped
powers at level i for each i.

To visualize the performance of our implementation, we use the NVIDIA’s visual profiler cudaprof
to analyze CUDA kernel calls. It is very helpful to find out the bottlenecks of an implementation. For
instance, Figure 3 shows the kernel statistics where the pre-computation of jumped powers has been done
on the host. In this figure, the x-axis shows the CUDA kernel call indices in chronological order and the
y-axis is proportional to the GPU time for each kernel. We notice that it spends a fairly large amount of
time to move the extra n/2 pre-computed powers to the GPU.

If the jumped powers were not computed in advance, the accesses to those powers harm the
performance heavily as shown by Figure 4, since those memory accesses to the global memory are non-
coalesced, in the step S3 of the Cooley-Tukey FFT. Up to our knowledge, it is hard to achieve coalesced
accesses without pre-computing jumped powers while implementing the Cooley-Tukey FFT.

However, the Stockham FFT avoids such a problem. Indeed, all the accesses to a power of ω are
packed together, resulting in a broadcasting inside a thread block. Figure 5 shows the kernel statistics
of the Stockham FFT of size 226, which is our best GPU FFT implementation. Our Stockham FFT
implementation pre-computes all powers in an extremely fast manner without computing jumped powers.
The first and last kernel are for the input and output data transfer, and all the other kernels are run
efficiently (the occupancy is 1 for each kernel).

For completeness, in Figure 6 we compare our two GPU implementations for FFT against our C
code from modpn [14]. This latter library is shipped with the computer algebra system MAPLE and
is considered as a reference code for FFT computations over finite fields. Without considering the time
spent in host-device data transfer, the speedup we achieve is about 37 for the FFT size 226 (this speedup is
about 21 if the data movement time is counted). As shown by Figure 7, our Stockham FFT code is about
2 times faster than our Cooley-Tukey FFT code, mainly due to the jumped powers pre-computation.

High Performance Computing Symposium (HPCS2010) IOP Publishing
Journal of Physics: Conference Series 256 (2010) 012009 doi:10.1088/1742-6596/256/1/012009

9



Figure 3: Kernel statistics for the Cooley-Tukey FFT with pre-computed jumped powers. The second
kernel moves the extra n/2 powers of the primitive root of unity, which affects the overall performance.
Note that those method names a or b as a suffix, since we implement the same algorithm for handling
input data in different ranges.

Figure 4: Kernel statistics for the Cooley-Tukey FFT on GPU without pre-computed jumped powers.
Time to call the kernel list butterfly kernel increases significantly, which greatly downgrades the overall
performance.

5.3. Univariate polynomial multiplication over finite fields
As a direct application of fast Fourier transforms, we have implemented FFT based univariate polynomial
multiplications over finite fields. Figure 8 compares the modpn FFT based polynomial multiplication
against our GPU Stockham FFT-based one. The input two polynomials are randomly generated with
the same given degree. When the degree is relatively large, the speedup we achieved is about 21 - 37,
comparing to the modpn polynomial multiplication.
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Figure 5: Kernel statistics for the Stockham FFT on GPU. This is our best implementation for 1D FFT.
The pre-computation is achieved by the kernel call double expand ker. The steps A1, A2 and A3 are
realized by stride transpose2 kernel, stride twiddle kernel and butterfly kernel, respectively. All of them
are running very efficiently.

CT FFT CT FFT + transfer Stockham FFT Stockham FFT + transfer modpn FFT
12 1 1 2 2 1
13 2 2 2 3 1
14 1 2 2 3 3
15 2 2 3 3 4
16 3 3 3 4 10
17 4 5 3 5 16
18 6 9 4 7 37
19 11 15 6 10 71
20 22 28 9 16 174
21 44 56 16 28 470
22 83 105 29 52 997
23 165 210 56 101 2070
24 330 418 113 201 4194
25 667 842 230 405 8611
26 1338 1686 473 822 17617

Figure 6: Timing of FFT codes on CPU and GPU in milliseconds. The first column is the logarithm
of FFT size in base 2. The second and the fourth column show the timing of our Cooley-Tukey and
Stockham FFT implementations, without counting the data transfer between GPU and CPU, respectively.
The third and the fifth column shows these FFT implementations with the data transfer. The last column
shows the modpn FFT timing.

6. Conclusion and future work

We have presented in detail various issues in implementing efficient fast Fourier transforms over finite
fields on the GPU. Our experimental results show that the Stockham formula is well-suited for massively-
threaded architectures. In particular, it avoids pre-computing extra powers of primitive roots of unity
in a natural way, without downgrading the performance. Our implementation exhibits a significant
performance improvement over a reference C implementation. For multiplying two dense univariate
polynomials, we have achieved about 30x speedup with respect to the best code available to us.
As future work, we would like to implement multidimensional FFTs, and to revisit various modular
algorithms in symbolic computation, like evaluation/interpolation based subresultant chain construction
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Figure 7: We visualize the comparison among GPU FFT implementations according to the timing from
Figure 6. Both the FFT size and the time are scaled by the base 2 logarithm.

Figure 8: FFT-based dense polynomial multiplication on GPU and CPU. The data transfer has been
counted for the GPU code.
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