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In symbolic computation, polynomial multiplication is a fundamental operation akin
to matrix multiplication in numerical computation. We present efficient implementation
strategies for FFT-based dense polynomial multiplication targeting multi-cores. We show
that balanced input data can maximize parallel speedup and minimize cache complex-
ity for bivariate multiplication. However, unbalanced input data, which are common in
symbolic computation, are challenging. We provide efficient techniques, that we call con-
traction and extension, to reduce multivariate (and univariate) multiplication to balanced
bivariate multiplication. Our implementation in Cilk++ demonstrates good speedup on
multi-cores.
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1. Introduction

Polynomials and matrices are the fundamental objects on which most computer al-

gebra algorithms operate. In the last decade, significant efforts have been deployed

by different groups of researchers for delivering highly efficient software packages

for computing symbolically with polynomials and matrices. Among them are Lin-

Box [13], MAGMA [14] and NTL [17]. However, most of these works are dedicated

to sequential implementation, in particular in the case of polynomials. None of the

computer algebra software packages available today offers parallel implementation
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of asymptotically fast algorithms for polynomial arithmetic. The work reported

hereafter aims at filling this gap.

We present high-performance techniques for the implementation of multivariate

polynomial multiplication targeting multi-cores. Symbolic computations with poly-

nomials rely, indeed, directly or indirectly on multiplication. We commit ourselves

to polynomials over finite fields since the so-called modular techniques reduce all

computations to such coefficient fields. In addition, we focus on dense polynomial

arithmetic because most computer algebra algorithms, such as the Euclidean Algo-

rithm and its variants, tend to densify intermediate data, even when the input and

output are sparse. See Chapter 5 in [7] for an extensive presentation of these ideas.

Dense representations permit the use of multiplication algorithms based on Fast

Fourier Transform (FFT) which runs in quasi-linear sequential time w.r.t. output

size, when counting the number of operations on coefficients. This result holds

for univariate as well as for multivariate polynomials. We observe that reducing

multivariate multiplication to univariate one through Kronecker’s substitution is

not an option in our context. Indeed, this would lead us to manipulate univariate

polynomials of very large degrees, say in the order of a machine word. Meanwhile,

we aim at computing over the field Z/pZ where p is a machine word prime number,

for efficiency reasons. Therefore, we would not always be able to find in Z/pZ the

appropriate primitive roots of unity for performing a 1-D FFT.

In the multivariate case, the row-column algorithm for multi-dimensional FFT,

recalled in Section 2, proceeds one dimension after another and performs several

one-dimensional FFTs along one dimension at a time. This yields concurrent ex-

ecution without even requiring that each one-dimensional FFT is computed in a

parallel fashion. We take advantage of this flexibility to make use of non-standard

and memory-efficient one-dimensional FFT techniques, such as Truncated Fourier

Transform (TFT), for which no efficient parallel algorithm is known. More impor-

tantly, we do not seek a very fine grain of parallelism in our multiplication code since

it will itself be a low-level routine in higher-level codes for computing polynomial

GCDs and solving polynomial systems, for which parallel algorithms are available

and distributed computing is desired.

Efficient implementation of algorithms on multi-cores makes necessary to con-

sider complexity measures such as parallel speedup and cache complexity. In Sec-

tion 3, we analyze the performances of dense multiplication based on the row-column

multi-dimensional FFT for these complexity measures. On bivariate input and when

the partial degrees of the product are equal, the performances are nearly optimal;

we call balanced this degree configuration. When the ratio between these two partial

degrees is large, our experimentation confirms that performances are low.

Motivated by these theoretical and experimental results, we show how multi-

variate multiplication can be efficiently reduced to balanced bivariate multiplication,

based on 2-D FFT. With respect to a multiplication based on n-dimensional FFT,

our approach may increase the input data size by at most a factor of 2. However,

it provides much larger parallel speedup as reported in our experimentation.
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Our approach combines two fundamental techniques that we call contraction

and extension, presented in Sections 4 and 5. The first one reduces multivariate

multiplication to bivariate one, without ensuring that dimension sizes are equal;

however, the work remains unchanged and in many practical cases the parallelism

and cache complexity are improved substantially.

The technique of extension turns univariate multiplication to bivariate one. This

has several applications. First, it permits to overcome the difficult cases where

primitive roots of unity of “large” orders cannot be found in the field of coefficients.

Secondly, combined with the technique of contraction, this leads in Section 6 to

balanced bivariate multiplication.

The techniques proposed in this paper are implemented in the Cilk++ lan-

guage [9], which extends C++ to the realm of multi-core programming based on

the multi-threaded model realized in [6]. The Cilk++ language is also equipped

with a provably efficient parallel scheduler by work-stealing [2]. We use the sequen-

tial C routines for 1-D FFT and 1-D TFT from the modpn library [11]. Our integer

arithmetic modulo a prime number relies also on the efficient functions from modpn,

in particular the improved Montgomery trick [15], presented in [12]. This trick is

another important specific feature of 1-D FFTs over finite fields

All our benchmarks, except the last one, are carried out on an Intel 16-core

machine with 16 GB memory. Its processors are Xeon E7340 @ 2.40 GHz. Both

L1 instruction cache and L1 data cache have 32 KB and are 8-way set-associative.

There is a 16-way set-associative L2 unified cache with 4 MB. The cache line size

of both L1 and L2 is 64 bytes. The last benchmark is a repeat of the second last

one using 16 cores on an AMD 32-core machine with 128 GB memory. All the

CPUs are Opteron 8354 @ 2.2 GHz. This machine has three layers of cache. The

L1 instruction and L1 data caches both have 64 KB and are 2-way set-associative.

Each quad-core shares a 512 KB 8-way set-associative L2 cache. All the cores share

a 32-way set-associative L3 cache with 2 MB. At each level, the cache line size is

64 bytes.

2. Background

Throughout this paper K designates the finite field Z/pZ with p elements, where

p > 2 is a prime number. In this section, we review algorithms and complexity results

for multiplying multivariate polynomials over K by means of FFT techniques. We

start by stressing the specific features of FFT computations over finite fields.

2.1. FFTs over finite fields

Using the Cooley-Tukey algorithm [3] (and other algorithms such as Bluestein’s)

one can compute the Discrete Fourier Transform (DFT) of a vector of s complex

numbers within O(s lg(s)) scalar operations. For vectors with coordinates in the

prime field K two difficulties appear with respect to the complex case.
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First, in the context of symbolic computation, it is desirable to restrict ourselves

to radix 2 FFTs since the radix must be invertible in K and one may want to keep

the ability of computing modulo small primes p, even p = 3, 5, 7, . . . for certain

types of modular methods, such as those for polynomial factorization; see [7] for

details. As a consequence the FFT of a vector of size s over K has the same running

time for all s in a range of the form [2`, 2`+1). This staircase phenomenon can

be smoothened by the so-called Truncated Fourier Transform (TFT) [8]. In most

practical cases, the TFT performs better in terms of running time and memory

consumption than the radix-2 Cooley-Tukey Algorithm; see the experimentation

reported in [12]. However, the TFT has its own practical limitations. In particular,

no efficient parallel algorithm is known for it.

Another difficulty with FFTs over finite fields comes from the following fact: a

primitive s-th root of unity exists in K if and only if s divides p− 1. Therefore, the

product of two univariate polynomials f, g over K can be computed by evaluation

and interpolation based on the radix 2 Cooley-Tukey Algorithm (see the algorithm

of Section 2.2 with n = 1) if and only if the degree d of the product fg is less than

the largest power of 2 dividing p − 1. When this holds, computing fg amounts to
9

2
lg(s)s+3s operations in K using the Cooley-Tukey Algorithm (and 9

2
(lg(s)+1)(d+

1)+ 3s operations in K using TFT) where s is the smallest power of 2 greater than

d. When this does not hold, one can use other techniques, such as the Schönage-

Strassen Algorithm [7] which introduces “virtual primitive roots of unity”. However,

this increases the running time to O(s lg(s) lg(lg(s))) scalar operations.

2.2. Multivariate multiplication

Let f, g ∈ K[x1, . . . , xn] be two multivariate polynomials with coefficients in K and

with n ordered variables x1 < · · · < xn. For each i, let di and d′i be the degree in

xi of f and g respectively. For instance, if f = x3
1x2 + x3x

2
2 + x2

3x
2
1 + 1 we have

d1 = 3 and d2 = d3 = 2. We assume the existence of primitive si-th roots of unity

ωi, for all i, where si is a power of 2 satisfying si > di + d′i. Then, the product fg

is computed as follows.

Step 1: Evaluate f and g at each point of the n-dimensional grid

((ωe1
1 , . . . , ωen

n ), 0 ≤ e1 < s1, . . . , 0 ≤ en < sn) via multi-dimensional FFT.

Step 2: Evaluate fg at each point P of the grid, simply by computing f(P ) g(P ),

Step 3: Interpolate fg (from its values on the grid) via multi-dimensional FFT.

Assuming that, for 1 ≤ i ≤ n, for 0 ≤ ej < si, all ω
ej
i are precomputed, the above

procedure amounts to

9

2

n
∑

i=1

(
∏

j 6=i

sj)si lg(si) + (n+ 1)s =
9

2
s lg(s) + (n+ 1)s (1)

operations in K, where s = s1 · · · sn. In practice the benefit of using 1-D TFT

instead of 1-D FFT increases with the number of variables and the number of cores
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in use. The cut-off criteria and a detail performance evaluation are reported in [16].

Consider now the following map from the monomials of K[x1, . . . , xn] to those of

K[x1]:

xe1
1 xe2

2 xe3
3 · · ·xen

n 7−→ xe1+α2e2+α3e3+···+αnen
1

where α2 = d1 + d′1 + 1, α3 = α2(d2 + d′2 + 1), . . . , αn = αn−1(dn−1 + d′n−1 + 1).

This induces a polynomial ring homomorphism Ψ (called the Kronecker substitution)

from K[x1, . . . , xn] to K[x1], hence a map satisfying Ψ(a + b) = Ψ(a) + Ψ(b) and

Ψ(ab) = Ψ(a)Ψ(b), for all polynomials a, b. Moreover, one can check that fg is the

only pre-image of Ψ(f)Ψ(g). This latter polynomial has degree

δn := (d1 + d′1 + 1) · · · (dn + d′n + 1)− 1.

It follows from this construction that one can reduce multivariate multiplication

to univariate one. If K admits primitive s-th roots of unity for δn < s = 2` for

some `, then using the FFT-based multiplication, one can compute fg in at most
9

2
lg(s)s+3s operations in K. Using the TFT approach, this upper bound becomes

9

2
(lg(s) + 1)(δn + 1) + 3s.

Multivariate multiplications based on multi-dimensional FFT and Kronecker’s

substitution have similar sequential running time. However, the latter approach has

at least two drawbacks. First, the field K may not admit primitive s-th roots of

unity. Recall that primitive s-th roots of unity exist in K if and only if s divides

p − 1, see [7] . Secondly, as mentioned above, it is desirable to achieve efficient

parallel multiplication without assuming that 1-D FFTs are performed in a parallel

fashion.

3. Main Results

The specific features of 1-D FFTs over finite fields, see Section 2.1, lead us to the

following hypothesis. We assume throughout this paper that we have at our disposal

a black box computing the DFT at a primitive 2`-th root of unity (when K admits

such value) of any vector of size s in the range (2`−1, 2`] in time O(s lg(s)). However,

we do not make any assumptions about the algorithm and its implementation.

In particular, we do not assume that this implementation is a parallel one. As

mentioned in the introduction, we do not seek a very fine-grained parallelism for

our polynomial multiplication since it is meant to be a core-routine in higher-level

parallel code. Therefore, we rely on the row-columnmulti-dimensional FFT to create

concurrent execution in the multiplication algorithm presented in Section 2.2.

This strategy has its own challenges. Suppose that the dimension x1 has a small

size s1, say in the order of units, whereas the dimension x2 has a size s2 in the

thousands. This implies that a lot of small FFTs have to be performed along x1

while only a few large FFTs can be run simultaneously along x2. Therefore, along

x1, the parallelization overhead may dominate, reducing severely the benefits of

concurrent runs. Meanwhile, along x2, the measured speedup factor may simply be

too small by lack of parallelism.



July 19, 2011 14:48 WSPC/INSTRUCTION FILE S0129054111008556

1040 M. Moreno Maza & Y. Xie

We formalize this remark in Section 3.1 where we give a lower bound for the

parallel running time of the algorithm of Section 2.2. Then, in Section 3.2 we give an

upper bound for the number of cache misses of the same algorithm. We observe that

these lower and upper bounds reach a “local” maximum and minimum respectively,

when the number n of variables equals 2 and the dimension sizes of the 2-D FFT

are equal. Therefore, the algorithm of Section 2.2 performs very well in terms of

parallelism and cache complexity on bivariate polynomial input when the partial

degrees of the product are equal. For this reason, we introduce in Section 3.3 the

concept of balanced bivariate multiplication.

In Section 3.4, we claim that dense multivariate multiplication can be efficiently

reduced to balanced bivariate multiplication. “Efficiently” means here that the over-

heads of the reduction are in general much less than the performance gains. Sec-

tions 4 to 6 formally establish this reduction and demonstrate its performances.

3.1. Parallel running time estimates

Let us consider the parallel running time of the algorithm of Section 2.2 with the

multi-threaded programming model of [6]. Under the assumption that 1-D FFT

may be run sequentially, the following estimate holds for the span of Step 1:

9

2
(s1 lg(s1) + · · ·+ sn lg(sn)) (4)

if the parallelization of the for-loops are omitted, for instance in the PRAM model.

Since we rely on the fork-join multi-threaded model of [6], we shall take these

overheads into account as follows. Following the way a cilk for loop is implemented

in the cilk++ language [9], we assume that the span of a for-loop of the form

for i = 1 · · ·n do BODY(i); end for;

is upper bounded by O(lg(n) + S) where S is the maximum span of BODY(i) for i

in the range 1 · · ·n. Consequently, the term
∑i=n

i=0
lg(s/si) = (n− 1) lg(s) should be

added to the expression in (4). However, when all si are large enough, say greater

than n, which is a reasonable assumption in practice, this additional term can be

neglected. Therefore, the parallelism (i.e. theoretical speedup) of Step 1 equals

s1 · · · sn lg(s1 · · · sn)
s1 lg(s1) + · · ·+ sn lg(sn)

(5)

which is lower bounded by s/maxi=1···n(si). Similar estimates can be given for Step

3 while the costs of Step 2 can be neglected comparing to the others. Observe that

for a fixed n and a fixed s, the quantity maxi=1···n(si) is lower bounded by s1/n.

Therefore, under these conditions the lower bound s/maxi=1···n(si) is maximized

when each dimension size is equal to s1/n; in this case the parallelism is given by

s/(s1/n). (6)

These calculations suggest that the dimension sizes s1, . . . , sn should be equal in

order to maximize parallelism.
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3.2. Cache complexity estimates

We now turn to cache complexity estimates, using the theoretical model introduced

in [5]. We focus on Step 1 again. Let L be the size of a cache line. We assume

that the cache size is large enough such that all data involved by P concurrent runs

of 1-D FFT (where P is the number of processors) fit in cache. This is justified

in the experimentation with our balanced bivariate multiplication (see Section 6)

where our 16-core machine has 4MB of L2 unified cache and each FFT vector has

at most size 128KB. We also assume that our n-D FFT is performed without data

transposition by loading directly from main memory to cache the vectors on which

1-D FFT is run. This technique is used in the implementation of the FFTW [4].

Therefore, cache misses arise essentially when reading data before performing a 1-D

FFT. For a vector of size si the number of cache misses is at most si/L + 1. Thus

the number of cache misses at Step 1 and Step 3 fits in

O(Σi=1···n (Πj 6=isj)(si/L+ 1)).

At Step 2, this number is within O( s
L + 1). Hence, if Q(s1, . . . , sn) denotes the

total number of cache misses for the whole algorithm, we obtain

Q(s1, . . . , sn) ≤ cs
n+ 1

L
+ cs(

1

s1
+ · · ·+ 1

sn
) (8)

for some constant c. As in Section 3.1, let us consider s = s1 · · · sn to be fixed. The

following is easy to prove:

n

s1/n
≤ 1

s1
+ · · ·+ 1

sn
.

Moreover this latter inequality is an equality when each si equals s1/n. Noting
n+1

n ≤ 2 for n ≥ 1 we deduce:

Q(s1, . . . , sn) ≤ ncs(
2

L
+

1

s1/n
) (10)

when si = s1/n holds for all i. This suggests to minimize n, thus setting n = 2.

Therefore, for a fixed s, the upper bound of (8) reaches a local minimum at n = 2

and s1 = s2 =
√
s.

3.3. Balanced bivariate multiplication

The analysis of Sections 3.1 and 3.2 suggests that, for a fixed n, the algorithm of

Section 2.2 is nearly optimum in terms of parallelism and cache complexity when

s1 = · · · = sn, that is, when the partial degrees of the product are equal. This yields

the definition and proposition below.

Definition 1. The pair of polynomials f, g ∈ K[x1, . . . , xn] is balanced if all the

partial degrees of their product are equal, that is, if d1 + d′1 = di + d′i holds for all

2 ≤ i ≤ n.



July 19, 2011 14:48 WSPC/INSTRUCTION FILE S0129054111008556

1042 M. Moreno Maza & Y. Xie

Proposition 1. Under our assumption of 1-D FFT black box, for two multivari-

ate polynomials f, g, the theoretical speedup of the algorithm in Section 2.2 is

(s1 · · · sn lg(s1 · · · sn))/(s1 lg(s1)+ · · ·+sn lg(sn)) and its cache complexity is within

O(sn+1

L +s( 1

s1
+· · ·+ 1

sn
)). For fixed s and n, these bounds are respectively maximized

and minimized when the pair f, g is balanced. In addition, when s and n vary, these

bounds reach respectively a local maximum and a local minimum whenever n = 2

and s1 = s2 =
√
s both hold.

We present here experimental results which confirm the above analysis. Figure 1

provides speedup factors of our program for multiplying different balanced pairs of

bivariate polynomials. The number associated with each curve is the common partial

degree of the input. This illustrates the good performances of the algorithm of

Section 2.2 for such input. For the partial degree 8191, our implementation reaches a

speedup factor of 14 on 16 cores. Figure 2 provides speedup factors of different pairs

which are either non-bivariate or non-balanced. The performances reported there

are clearly much less satisfactory than what could be observed on Figure 1. Note

that these poor results are obtained on both non-balanced bivariate and balanced

non-bivariate input.

We also use VTune [10] to evaluate the instruction efficiency and cache effi-

ciency of our multiplication code run with balanced bivariate input polynomials

and compared to non-bivariate and/or non-balanced input polynomials. More pre-

cisely, we study a pair of bivariate polynomials with partial degrees both equal to

8191. Then, the non-balanced bivariate and balanced non-bivariate input pairs of

polynomials are designed so that for each pair the size of the product is similar.
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Fig. 1. Speedup of bivariate multiplication on balanced input on an Intel Xeon multi-core.
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Fig. 2. Speedup of multiplication for non-bivariate or non-balanced input on an Intel Xeon multi-
core.

Table 1. Features of the problems.

No. Type Size of input polynomial (int) Product size (int)

1 balanced bivariate 8191×8191 268402689
2 un-balanced bivariate 259575×258 268401067
3 balanced 4-variate 63×63×63×63 260144641
4 balanced 8-variate 5×5×5×5×5×5×5×5 214358881

Table 2. Performance evaluation by VTune.

No. INST Clocks per L2 Cache Modified Data Time on
RETIRED. Instruction Miss Rate Sharing Ratio 8 Cores
ANY×109 Retired (×10−3) (×10−3) (s)

1 659.555 0.810 0.333 0.078 16.15
2 713.882 0.890 0.735 0.192 19.52
3 714.153 0.854 1.096 0.635 22.44
4 1331.340 1.418 1.177 0.576 72.99

Thus, all these problems are comparable in terms of work. The features of these

problems are summarized in Table 1.

Table 2 lists a selection of events and ratios reported by VTune on each run for

computing the product of an input pair. Due to the availability of VTune in our

laboratory, these measurements are done on a 8-core machine with 8 GB memory.

Each processor is an Intel Xeon X5460 @3.16GHz and has 6144 KB of L2 cache.
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The number of instructions retired for the balanced bivariate case is twice less

than the balanced 8-variate case. The clocks per instruction retired for the balanced

bivariate case is also the least among all of them. This indicates the good instruction

efficiency of our balanced bivariate multiplication. The L2 cache miss ratio for the

balanced bivariate case is as low as 0.0003, while the others are 2 to 4 times higher.

The very small modified data sharing ratios (less than 0.0001) for the balanced

bivariate case imply that, chances of threads racing on using and modifying data

laid in one cache line are very low. However, it is 2 to 7 times higher for the non-

balanced bivariate or balanced 4-variate and 8-variate cases. This shows the superior

cache efficiency of the balanced bivariate multiplication. Consequently, the timing

on 8 cores for the balanced bivariate case is the best, about 4.5 times faster than the

balanced 8-variate case. These experimental results are coherent with our previous

theoretical analysis.

3.4. Reduction to balanced bivariate multiplication

The results of Sections 3.1 to 3.3 indicate that a reduction to bivariate multiplication

with balanced input could improve the performance of multivariate multiplication

based on FFT techniques. This is, indeed, possible and we achieve this reduction

through the rest of the paper.

In Section 4 we describe a first fundamental technique, that we call contraction.

This generalization of Kronecker’s substitution allows us to turn a n-variate multi-

plication (for n > 2) into a bivariate multiplication without any overheads in terms

of sequential running time. This technique provides performance improvements on

many practical cases.

In Section 5, we study how univariate polynomial multiplication can be per-

formed efficiently via bivariate multiplication based on 2-D TFT. This technique,

that we call extension, has several motivations. First, under our assumption of 1-D

FFT black-box (which may be a sequential program) this trick creates concurrent

execution for FFT-based univariate multiplication. Secondly, when the base field

K does not possess primitive roots of unity of sufficiently large orders for perform-

ing a Cooley-Tukey radix-2 FFT, this trick can reduce the computations to a case

where this latter algorithm can be applied. Finally, this technique of extension, to-

gether with that of contraction, is the basis of dense multivariate multiplication via

balanced bivariate multiplication, presented in Section 6.

Figure 3 gives the timing of a 4-variate multiplication with non-balanced input

via 4-D TFT method vs balanced 2-D TFT method. Even on 1 core, the balanced

2-D TFT method is 2.5 times faster. The work for the two methods is essentially

the same. However, our balanced 2-D TFT method has better cache efficiency.

Moreover, it scales well on 16 cores. As a result, the total “net speedup” using

balanced 2-D TFT method instead of the direct 4-D TFT method reaches 31 on 16

cores.
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Fig. 3. Timing of 4-variate multiplication with unbalanced input via 4-D TFT vs balanced 2-D
TFT methods on an Intel Xeon multi-core.

4. Contraction

Before introducing the concept of contraction in Definition 3, we specify in Defini-

tion 2 how polynomials are represented in our implementation. Proposition 2 states

that contraction can be performed essentially “at no cost” with this representation.

The experimental results reported at the end of this section illustrate the benefits

of contraction. The notations are those introduced in Section 2.

Definition 2. Let `1, . . . , `n be positive integers such that `i > di holds for all

1 ≤ i ≤ n. Define ` := (`1, . . . , `n). We call `-recursive dense representation (RDR,

for short) of f any one-dimensional array F of size ` := `1 · · · `n and with integer

indices in the range 0 · · · (`− 1) such that the following two conditions hold.

(i) the coefficient in f of the monomial xe1
1 xe2

2 · · ·xen
n , for 0 ≤ ei ≤ di, is in the

slot F [j] of F with index j = e1 + `1e2 + `1`2e3 + · · ·+ (`1 · · · `n−1)en,

(i) the coefficient F [j] is 0 whenever the index j equals e1 + `1e2 + `1`2e3 + · · · +
(`1 · · · `n−1)en where 0 ≤ ei < `i for 1 ≤ i ≤ n and di < ei holds for some i;

such a coefficient F [j] is called a padding zero.

Remark 1. When n = 1, an `-RDR of f is given by any vector F of size at least

d1 + 1 where F [i] is the coefficient of xi
1 in f when 0 ≤ i ≤ d1 and 0 otherwise.

Consider now n > 1 and let `1, . . . , `n be positive integers such that `i > di holds

for all 1 ≤ i ≤ n. For all 0 ≤ i ≤ dn, let ci ∈ K[x1, . . . , xn−1] be the coefficient of f

regarded as a univariate polynomial in xn and Ci be an (`1, . . . , `n−1)-RDR of ci.
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Let Zdn+1, . . . , Z`n−1 be zero-vectors, all of size `1 · · · `n−1. Then an `-RDR of f is

obtained by concatenating C0, C1, . . . , Cdn
, Zdn+1, . . . , Z`n−1 in this order. This fact

justifies the term recursive dense representation.

Recall how the product fg can be computed in parallel via n-dimensional FFT

in the context of our implementation. During Step 1 and Step 3 of the algo-

rithm of Section 2.2, n-dimensional FFT’s are performed by computing in parallel

one-dimensional FFT’s along xi, for i = 1, . . . , n successively. As pointed out in

Section 3, this approach suffers from the following bottleneck. In practice (and in

particular when solving systems of polynomial equations) the partial degree d1 is

likely to be large whereas d2, . . . , dn are likely to be as small as 1 or 2. This im-

plies that the n-dimensional FFT approach will compute a lot of “small 1-D FFTs”

(whereas such 1-D FFTs of short vectors are not worth the game) and only a few

“large 1-D FFTs” concurrently (leading to poor parallelism). To deal with this

“unbalanced work” the techniques developed in this paper aim at transforming the

polynomials f and g into bivariate ones in a way that they can be efficiently mul-

tiplied by a 2-D FFT approach. In this section, we accomplish a first step toward

this goal using the notion of contraction.

Definition 3. Let `1, . . . , `n be positive integers such that `i > di holds for all 1 ≤
i ≤ n. Let m be an integer satisfying 1 ≤ m < n. Define α1 = 1, α2 = `1, α3 = `1`2,

. . . , αm = `1`2 · · · `m−1, αm+1 = 1, αm+2 = `m+1, . . . , αn = `m+1`m+2 · · · `n−1.

Then, we set α := (α1, . . . , αn). Consider the following map from the monomials of

K[x1, . . . , xn] to those of K[x1, xm+1]:

xe1
1 xe2

2 · · ·xen
n 7−→ xc1

1 xc2
m+1

where c1 = α1e1 + · · ·+ αmem and c2 = αm+1em+1 + αm+2em+2 + · · ·+ αnen.

This induces a polynomial ring homomorphism Ψα, from K[x1, . . . , xn] to

K[x1, xm+1], that we call α-contraction. Hence, this map satisfies Ψα(ab) =

Ψα(a)Ψα(b), for all polynomials a, b.

Proposition 2. With the notations of Definition 3, define t1 = `1`2 · · · `m, t2 =

`m+1 · · · `n and t = (t1, t2). Let F be an one-dimensional array of size t1t2 =

`1 · · · `n. If F is an `-RDR of f , then F is also a t-RDR of Ψα(f). Conversely, if

F is a t-RDR of Ψα(f), then it is an `-RDR of f .

Proposition 2 follows easily from the recursive structure of RDR’s, as pointed

out in Remark 1. We explain now how we make use of contraction for computing

the product fg. We define `i := di + d′i +1, for all i. Then, we set ` := (`1, . . . , `n).

Let F and G be `-RDR of f and g respectively. We choose an integer m such that

the “distance” given by |`1 · · · `m− `m+1 · · · `n| is minimum. With these values for `

and m, consider the α-contraction of Definition 3. Then Ψα(f) and Ψα(g) are two

bivariate polynomials in K[x1, xm]. By the choice of `i’s, the polynomial fg is the
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only pre-image of Ψα(f) × Ψα(g) under Ψα. Therefore, this map can be used to

compute fg via a 2-D FFT approach. Moreover, it follows from Proposition 2 that

this change of representation is made at no cost! In addition, by the choice of m,

the degrees of Ψα(fg) w.r.t. x1 and xm+1 are as close to each other as possible.

Let us compare the work, the parallelism and the cache complexity of the multi-

plication based on n-D FFT with the multiplication based on contraction and 2-D

FFT approach. To keep the discussion simple, let us assume that we can choose

si = `i for all i. (Recall that si is the size of our 1-D FFT input vectors along xi.)

This is actually realistic if all 1-D FFTs are computed by TFT, which is the case

in our implementation. It follows from Proposition 2 and Expression (1) that the

work is unchanged. The inequality

3

L
+ (

1

s1 · · · sm−1

+
1

sm · · · sn
) ≤ n+ 1

L
+ (

1

s1
+ · · ·+ 1

sn
)

combined with Expression (8) suggests that contraction is likely to reduce cache

misses. As discussed in Section 3.1, “contracting dimensions” will keep enough the-

oretical speedup while reducing parallel overhead.

Experimental results. In our experimentation illustrated in Figure 4, we study

the case of multiplying two 4-variate polynomials f and g. Their partial degrees

d2, d3, d
′
2, d

′
3 are all equal to 1 while d1 = d′1 and d4 = d′4 vary in the range

1024 · · ·2047. These degree patterns are typical in computing normal forms based

on the algorithm in [12].

On 1 core, we compare three methods for computing the product fg: direct 4-D

TFT, 1-D TFT via Kronecker’s substitution (see Section 2.2) and our contraction to

2-D method. We should observe first that the Kronecker substitution method fails
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Fig. 4. Timing (s) for 4-variate multiplication by direct 4-D TFT on 1 core vs Kronecker’s sub-
stitution on 1 core vs contraction from 4-D to 2-D TFT on 1 core and 16 cores on an Intel Xeon
multi-core.
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on most input due to the fact that K does not have primitive roots of unity of suf-

ficiently large order; in those cases our contraction method clearly outperforms the

direct 4-D TFT method, which was expected, based on our complexity estimates.

When the Kronecker substitution method does not fail, our contraction method is

clearly the most efficient technique. The fact that the contraction outperforms Kro-

necker’s substitution in this case can probably be explained by cache complexity

arguments, see the discussion on FFT computation in [5]. The results also show

that the contraction method scales very well on 16 cores, reaching a speedup factor

between 8.2 to 13.2 for this large range of problems. The net speedup on 16 cores

w.r.t. the direct 4-D method on 1 core is between 16 and 30.

5. Extension

Let f, g ∈ K[x1] be two non-constant univariate polynomials with coefficients in the

prime field K = Z/pZ and with respective degrees df , dg. Let b ≥ 2 be an integer.

We consider the map Φb from K[x1] to K[x1, x2] that replaces any monomial xa
1 by

xu
1x

v
2 , where u, v are the remainder and quotient in the Euclidean division of a by

b, and that leaves all coefficients unchanged. More formally Φb is the canonical ring

homomorphism from K[x1] to the residue class ring K[x1, x2]/〈xb
1 − x2〉.

We determine a value for b such that the product fg can be obtained by com-

puting Φb(f)Φb(g) using a number of operations in K which, essentially, is at most

twice the number of operations for a direct computation in K[x1]. Moreover, we

impose that the pair Φb(f),Φb(g) is balanced, or nearly balanced. Indeed, the cache

complexity upper bound given by Expression (8) is minimized in this case.

To this end, we need some notation. Let s1, s2 be positive integers and F,G,H be

(s1, s2)-RDR’s of Φb(f), Φb(g) and Φb(f)Φb(g). According to the complexity results

of Section 3, we shall determine b, s1, s2 such that both s := s1s2 and |s1 − s2| are
as small as possible in order to reduce work and cache complexity, and improve

parallelism as well. Let qf , rf (resp. qg, rg) be the quotient and remainder in the

Euclidean division of df (resp. dg) by b. Since Φb(f)Φb(g) will be calculated by 2-D

TFTs over K, this polynomial product will be obtained as an element of K[x1, x2]

(not one of K[x1, x2]/〈xb
1 − x2〉). Hence the degrees of Φb(f)Φb(g) w.r.t. x1 and x2

will be at most 2b− 2 and qf + qg, respectively. Thus we should set

s1 = 2b− 1 and s2 = qf + qg + 1. (13)

Roughly speaking, the RDR’s F,G of f and g contain at least 50% of padding

zeros. More precisely, the size (i.e. number of slots) of each of the arrays F,G,H is

s1s2 = 2b(qf + qg) + (s1 − s2) + 1

Elementary calculations show that the value of rf + rg, which ranges from 0 to

2(b − 1), has negligible impact on the value of b. This is due to the fact that b is

essentially
√

1 + (df + dg)/2. Thus we can impose rf = rg = 0. For this assumption,
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Lemma 1 in Section 6 states that it is always possible to choose b such that the

absolute value |s1 − s2| is at most equal to 2. This implies the following:

s ≤ 2(df + dg) + 3. (15)

Since the size of the univariate polynomial fg is df + dg + 1, this b “essentially”

realizes our objectives of increasing the data size at most by a factor of 2, while

ensuring that our 2-D TFT’s will operate on (nearly) square 2-D arrays.

Once the bivariate product Φb(f)Φb(g) is computed, one task remains: convert-

ing this polynomial to the univariate polynomial fg. This operation is non-trivial

since x2 stands for xb
1 meanwhile the degree of Φb(f)Φb(g) w.r.t. x1 can be larger

than b, but at most equal to 2b− 2. Elementary algebraic manipulations lead to the

pseudo-code below which constructs a (df +dg+1)-RDR of fg from H , the (s1, s2)-

RDR of Φb(f)Φb(g). Recall that s1 and s2 have been set to 2b− 1 and qf + qg + 1

respectively. Define d := df + dg and q := qf + qg. This procedure clearly runs in

O(d) operations in K. Finally, we obtain Proposition 3.

for u := 0 · · · (b− 1) do U [u] := H [u]; end for;
for w := 1 · · · q do

X := w b;
Z := w(2b − 1);
Y := (w − 1)(2b − 1) + b;
for u := 0 · · · (b− 2) do

U [X + u] := H [Y + u] +H [Z + u];
end for;
U [X + (b− 1)] := H [Z + (b− 1)];

end for;
X := (q + 1)b;
Z := d−X;
Y := q(2b− 1) + b;
for u := 0 · · ·Z do U [X + u] := H [Y + u]; end for;

Proposition 3. Let f, g ∈ K[x1] have respective positive degrees df , dg. Let d =

df + dg. Then, one can compute from f, g a pair of bivariate polynomials h, k ∈
K[x1, x2] within O(d) bit operations, such that the product fg can be recovered from

the product hk within O(d) operations in K, and such that there exist integers s1, s2
satisfying the following four constraints: deg(h, x1) + deg(k, x1) < s1, deg(h, x2) +

deg(k, x2) < s2, s1s2 ≤ 2(df + dg) + 3 and |s1 − s2| ≤ 2.

We stress the fact that, the construction that has led to Proposition 3 permits

to efficiently multiply univariate polynomials via 2-D TFT without requiring that

1-D TFTs are computed in a parallel fashion. Moreover this strategy allows us to

take advantage of FFT techniques even if K does not admit primitive roots of unity

of sufficiently large order for using the radix 2 Cooley Tukey algorithm.

Experimental results. We compare the timings of univariate polynomial multi-

plications based on direct 1-D TFT and our extension method to 2-D, for input



July 19, 2011 14:48 WSPC/INSTRUCTION FILE S0129054111008556

1050 M. Moreno Maza & Y. Xie

 8.12646
 16.2529

 24.3794
 32.5059

 8.12646
 16.2529

 24.3794
 32.5059

 0

 10

 20

 30

 40

 50

 60

 70

 80

Time

Extension of 1-D to 2-D TFT on 1 core (2.2-80.1 s)
1-D TFT method on 1 core (1.8-59.7 s)

Extension of 1-D to 2-D TFT on 2 cores (1.96-2.0x speedup, 1.5-1.7x net gain)
Extension of 1-D to 2-D TFT on 16 cores (8.0-13.9x speedup, 6.5-11.5x net gain)

d1 x 106
d1’ x 106

Time

Fig. 5. Univariate multiplication timing (s) via extension to 2-D TFT on 1, 8, 16 cores vs direct
1-D TFT on an Intel Xeon multi-core.

degree ranging between 8126460 and 32505900. The results are reported on Fig-

ure 5. On 1 core, our extension method is slower than the direct 1-D TFT method

for about 30%. This is not a surprise since we know that the extension from 1-D to

2-D can increase the size s of the product by (at most) a factor of 2. On 2 cores, the

extension method provides a speedup factor between 1.5 and 1.7 with respect to the

direct 1-D TFT method. On 16 cores, this gain ranges between 6.5 and 11.5. These

data also show that extending univariate polynomials to balanced bivariate pairs

can create substantial parallelism even when 1-D FFTs are executed sequentially.

6. Balanced Multiplication

We turn now to the question of performing multivariate polynomial multiplication

efficiently via bivariate multiplication, based on 2-D TFTs applied to (nearly) bal-

anced pairs. We call balanced multiplication the resulting strategy. As in Sections 2

and 4, let f, g ∈ K[x1, . . . , xn] be two multivariate polynomials with coefficients in

the prime field K = Z/pZ and with ordered variables x1 < · · · < xn. For each i, let

di and d′i be the degree with xi of f and g respectively.

One approach for computing the product fg via bivariate multiplication would

be to convert the polynomials f and g to univariate ones via Kronecker’s substi-

tution and then, to apply the techniques of extension developed in Section 5. This

would have the following drawback. RDR’s of the images of f and g by Kronecker’s

substitution must have padding zeros so as to recover the product fg. The exten-

sion technique of Section 5 requires also the introduction of padding zeros. A naive

combination of these two transformations would introduce far too many padding

zeros. We actually checked experimentally that this approach was unsuccessful.
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In this section, we develop a “short cut” which combines extension and con-

traction in a single transformation. In order to focus on the main ideas, we assume

first that the input polynomials are in Shape Lemma position, see Definition 4. This

assumption is actually a practical observation (formalized by the so-called Shape

Lemma [1]) for the polynomials describing the symbolic solutions of polynomial sys-

tems with finitely many solutions. Remark 2 states how to relax this assumption.

Definition 4. The pair f, g ∈ K[x1, . . . , xn] is in Shape Lemma position if (d2 +

1) · · · (dn + 1) < d1 + 1 and (d′2 + 1) · · · (d′n + 1) < d′1 + 1 both hold.

This assumption suggests to extend the variable x1 to two variables x1, y such

that f, g can be turned via a contraction Ψα from K[x1, y, x2, . . . , xn] to K[x1, y]

into a balanced pair of bivariate polynomials.

For an integer b ≥ 2, consider the map Φb that replaces any monomial xa
1 of

K[x1, x2, . . . , xn] by xu
1y

v in K[x1, y, x2, . . . , xn], where u, v are the remainder and

quotient in the Euclidean division of a by b, and that leaves all coefficients and other

monomials unchanged. More formally Φb is the canonical ring homomorphism from

K[x1, x2, . . . , xn] to the residue class ring K[x1, y, . . . , xn]/〈xb
1 − y〉.

We shall determine b such that after contracting the variables y, x2, . . . , xn onto

y in the polynomials Φb(f)Φb(g), the resulting bivariate polynomials h and k form

a balanced pair. The construction is similar to that of Section 5. Let s1, s2 be

positive integers and H,K be (s1, s2)-RDR’s of h and k. Define σ := (d2 + d′2 +

1) · · · (dn + d′n + 1). Let qf and qg be the quotients in the Euclidean division by b

of df := d1 and dg := d′1 respectively. Following the reasoning of Section 5, we set

s1 = 2b− 1 and s2 = (qf + qg + 1)σ and we aim at determining b such that both

s := s1s2 and |s1 − s2| are as small as possible, in order to reduce work and cache

complexity, and improve speedup factors. Since σ is regarded as small (comparing

to d1 and d′1), Lemma 1 hereafter provides us with a candidate b. Our experimental

results confirm that this choice achieves our goals.

Remark 2. To transform a pair f, g into a pair in Shape Lemma position within

O(s) bit operations, we proceed as follows. We re-order the variables such that there

exists an index j satisfying 1 ≤ j < n, (d1 + 1) · · · (dj + 1) ≥ (dj+1 + 1) · · · (dn + 1)

and (d′1+1) · · · (d′j +1) ≥ (d′j+1 +1) · · · (d′n+1). Then, contract x1, . . . , xj to x1.

In rare cases, such a variable ordering may not exist and one can use Kronecker’s

substitution followed by extension.

Experimental results. We study the performance of our balanced multiplication

method for 4-variate polynomial input. All partial degrees d2, d3, d4, d
′
2, d

′
3, d

′
4 are

set to 2 while d1 and d′1 range between 32768 and 65536. Figure 6 and 7 illustrates

our timing results on the Intel Xeon 16-core with two levels of cache and the AMD

Opteron 32-core with three levels of cache described in the introduction.

On the Xeon multi-core, we first compare our balanced multiplication with

the one through Kronecker’s substitution on 1 core. The latter approach performs
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Fig. 6. 4-variate multiplication timing (s) via balanced multiplication on 1, 2, 16 cores vs Kro-
necker’s substitution to 1-D TFT on an Intel Xeon multi-core.
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Fig. 7. 4-variate multiplication timing (s) via balanced multiplication on 1, 2, 16 cores vs Kro-
necker’s substitution to 1-D TFT on an AMD Opteron multi-core.

slightly better than ours; indeed our method has a higher algebraic complexity, even

though it improves on cache complexity. On 2 cores our method reaches a speedup

gain of 1.75 w.r.t Kronecker’s substitution and a speedup factor of 1.96 w.r.t. itself

on 1 core. On 16 cores, these maxima become 10.3 and 11.3. For comparison with

the direct 4-D TFT approach, see Figure 3 in Section 3.

On the Opteron machine, our balanced multiplication on 1 core is 5 to 10% faster

than Kronecker’s substitution (to 1-D) method. This indicates that our balanced
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multiplication is more cache friendly than Kronecker’s substitution method on this

Opteron multi-core. Using 16 cores, our balanced multiplication obtains speedup

factors up to 13.5 w.r.t the timing on 1 core. The timing of our balanced multi-

plication using 16 cores on the Opteron machine is even faster by about 5 to 20%

than that of using 16 cores on the Xeon multi-core, even though its CPU is slower

(2.2 GHz vs 2.4GHz). This again demonstrates the cache efficiency of our balanced

multiplication on multi-cores with multi-level memory hierarchies.

Lemma 1. With df , dg, b, qf , qg, rf , rg as above, given a positive integer σ, define

t1 := (2b− 1) and t2 := (qf + qg +1)σ. There exists at least one integer b such that

we have

−1 ≤ t1 − t2 ≤ 2σ.

In particular, for σ = 1, the inequality |s1− s2| ≤ 2 can be achieved. If, in addition,

df = dg is satisfied, there exists b such that |s1 − s2| ≤ 1 holds.

Proof. We solve for b (as positive integer) the quadratic equation 2b2 − σb− (df +

dg)σ = 0, which means s1 = s2, assuming rf = rg = 0. Its discriminant is

∆ := (σ + 1)2 + 8(df + dg)σ.

Let k be the positive integer satisfying k2 ≤ ∆ < (k + 1)2. We define:

bi :=
σ + k + i

4
.

For i = −1, 0, 1, 2, elementary calculations bring the respective inequalities: −2 ≤
t1 − t2 ≤ 2σ, −1 ≤ t1 − t2 ≤ 2σ, −1 ≤ t1 − t2 ≤ 2σ and 1 ≤ t1 − t2 ≤ 2σ. For the

case where σ = 1 and df = dg, we have |s1 − s2| ≤ 1 for either b = k′ or b = k′ + 1

with k′
2 ≤ df < (k′ + 1)2.

7. Concluding Remarks

We have presented strategies for the implementation of dense polynomial multipli-

cation on multi-core architectures. We have focused on polynomial multiplication

over finite fields based on FFT techniques since this is a fundamental operation for

symbolic computation. The techniques that we have developed for this operation

are highly efficient in terms of parallelism and cache complexity. Our results are

both theoretical and practical. We are not aware of similar work in the context of

symbolic computation.

The design of our techniques has mainly two motivations. First, we aim at sup-

porting higher-level parallel algorithms for solving systems of non-linear equations.

Therefore, our multiplication must perform efficiently in terms of sequential run-

ning time, parallelism and cache complexity, on any possible input degree patterns,

insisting on those which put code efficiency to challenge.
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Secondly, we have integrated the specificities of 1-D FFT computations over

finite fields in the context of symbolic computation with polynomials. On one hand,

these 1-D FFTs are applied to vectors which are large enough such that the base

field may not contain the appropriate primitive roots of unity for a radix 2 Cooley

Tukey algorithm. On the other hand, the length of these vectors is not large enough

for making efficient use of parallel code for 1-D FFT.

As a consequence of these constraints, we have assumed that 1-D FFTs in our

implementation could be computed by a black box program, possibly a sequential

one. Therefore, we had to take advantage of the row-column algorithm for multi-

dimensional FFT computations. Our theoretical analysis has shown that balanced

bivariate multiplication, as defined in Section 3.3, is a good kernel.

Based on this observation, we have developed two fundamental techniques, con-

traction and extension, in order to efficiently reduce any dense multivariate poly-

nomial multiplication to this kernel.

Our experimental results demonstrate that these techniques can substantially

improve performances with respect to multiplication based on a direct (and po-

tentially un-balanced) multidimensional FFT. Moreover, they can lead to efficient

parallel code for univariate multiplication, despite of our 1-D FFT black box as-

sumption. We believe that symbolic computation software packages such as Maple,

Magma, NTL can greatly benefit from our work.
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