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Abstract

Monico published in [Journal of Symbolic Computation, 34(5):451–459, 2002] an al-
gorithm to compute the primary decomposition of a zero-dimensional ideal, that mostly
relies on a characteristic polynomial computation modulo the input ideal, and its fac-
torization.

We revisit this algorithm, and discuss Maple and Magma implementations that con-
tradict the somehow pessimistic conclusions of Monico’s original article: this algorithm
provides competitive, sometimes faster alternatives to built-in functions in both sys-
tems. We also give an estimation of the probability of success of the algorithm.

Keywords: Primary decomposition, zero-dimensional ideal, Gröbner basis, characteristic
polynomial.

1 Introduction

In [9], Monico presents an algorithm for computing the primary decomposition of a zero-
dimensional ideal, starting from a Gröbner basis of this ideal (see also further discussions
by Cox [4, 3]). However, the experiments in [9], conducted in the Singular computer al-
gebra system, were clearly in favor of the built-in primary decomposition routines, which
implement the algorithm of [6]. A conclusion of [9] was thus that . . . “this algorithm, while
relatively easy to implement, is only of practical interest if the vectorspace dimension of the
quotient ring is small”.

In this extended abstract, we report on new sets of experiments, in the Maple and
Magma systems, for which our implementation of Monico’s algorithm competes with, or
outperforms, the built-in primary decomposition facilities.

Algorithmically, the main issue is the computation of the characteristic polynomial of
an element modulo the input ideal. As in [11], we use a solution to this question relying on
trace computations and Newton’s formulas. Besides, Monico’s algorithm is probabilistic;
using classical zero-avoidance results [16, 13], we give estimates on the probability of failure
of this algorithm.



2 Description of the algorithm

2.1 Overview

Let I be a zero-dimensional ideal in k[X1, . . . ,Xn], where k is any field (we denote by k
one of its algebraic closures). We aim at computing a minimal primary decomposition of I,
which we will write

I = Q1 ∩ · · · ∩ Qs.

To this effect, Monico’s algorithm takes as input a Gröbner basis for the ideal I, and outputs
polynomials R1, . . . , Rs, such that for all i = 1, . . . , s, Qi = I + 〈Ri〉 holds. From this, one
may compute Gröbner bases for all Qi, if required.

The polynomials Ri are obtained as follows. Let A be the residue class ring

A = k[X1, . . . ,Xn]/I,

and let t be a “generic” element in A (the genericity assumption is discussed more precisely
in Subsection 2.3). Write χt ∈ k[T ] for the characteristic polynomial of the endomorphism

µt :
A → A
u 7→ ut,

which we call the characteristic polynomial of t. Let finally c1, . . . , cℓ ∈ k[T ] be the
irreducible factors of χt, and m1, . . . ,mℓ their multiplicities. For i = 1, . . . , ℓ, define
ri = cmi

i (t) ∈ A, and take for Ri any preimage of ri in k[X1, . . . ,Xn]. Then we have
the equality (Proposition 2.3 in [9])

I = (I + 〈R1〉) ∩ · · · ∩ (I + 〈Rℓ〉) .

Furthermore, as said above, under suitable genericity conditions on t, ℓ equals the number
s of primary components of I, and the ideals I + 〈Ri〉 are then these primary components.

2.2 Details of the implementations

Given the input Gröbner basis, and t ∈ A, the main tasks in this algorithm are:

1. computing the characteristic polynomial χt of t;

2. factoring χt as χt = cm1

1
· · · cmℓ

ℓ ;

3. computing cmi

i (t) for all i.

In this work, we concentrated on points 1 and 3, leaving factorization to the built-in routines.



Characteristic polynomial computation. Several solutions are available to compute
the characteristic polynomial of an element t in A. In our experiments, the most efficient
solution turned out to strongly depend on the implementation platform.

Built-in characteristic polynomial routines turned out to be the bottleneck in our pre-
liminary Maple implementation. Our solution for this platform comes from Rouillier’s
work [11], and is closely related to Leverrier’s algorithm [8] (note that primary decomposi-
tion is already mentioned as an application of the RUR algorithm in [11]).

Let tr be the trace linear form on the quotient A, which maps t ∈ A to the trace of
the map µt. The following classical proposition, a consequence of the so-called “Stickel-
berger Theorem” [5, Proposition 4.2.8] shows how to use this linear form for characteristic
polynomial computation.

Proposition 2.1. For all t ∈ A and i in N, tr(ti) is the ith power sum (Newton sum) of
the characteristic polynomial of t.

Our algorithm for characteristic polynomial computation then follows Rouillier’s. Note
that as input, we know a Gröbner basis of I, and thus a monomial basis B = b1, . . . , bD of
the quotient A. Due to the use of Newton’s relations below, we have to assume that D is
less than the characteristic of the base field.

1. Compute the matrix Mt of the endomorphism µt in the basis b1, . . . , bD;

2. Compute the trace form, that is, the trace of all elements b1, . . . , bD;

3. Compute the powers 1, t, . . . , tD by successively applying Mt to the vector [1, 0, . . . , 0]t;

4. Compute the traces of these vectors using the linearity of the trace;

5. Recover the polynomial χt using Newton’s relations.

More precisely, we start by computing the multiplication matrices of all variables modulo I,
and deduce the whole multiplication table of A by successive multiplications. Computing the
multiplication matrix of a variable requires D reductions by the given Gröbner basis. Then,
deducing the whole multiplication table requires at most |B × B| matrix/vector products
in size D, hence has cost in O(D4); note however that |B × B| may be smaller than D2.
The matrix Mt, as well as the traces of all elements b1, . . . , bD are then deduced from the
multiplication table, for O(D3) operations. Step 3 requires D matrix/vector multiplications,
for a cost in O(D3); Step 4 and Step 5 have cost in O(D2). See [11] for a similar analysis.

In contrast, in the system Magma, the most efficient approach we found uses the built-in
CharacteristicPolynomial function (with the default settings). Then, on this platform,
we do not need to use explicitly the trace form, and thus, we do not need to know the whole
multiplication table of A: only the matrix Mt of the multiplication map µt is required.

The element t is then taken as a random polynomial of degree 1: the algorithm is
still valid with this restriction (see below), and the computations are substantially faster.
We then determine the matrix Mt, and deduce its characteristic polynomial using built-in
routines.



Evaluation. The final step of the algorithm consists in evaluating univariate polynomials
at the element t ∈ A.

• In our Maple implementation, using Leverrier’s idea, the required powers of t are
already known, hence only constant multiplications and additions are required to
perform the evaluation.

• In the Magma implementation, some more work is required, since only the multiplica-
tion matrix Mt of t is known; hence, this evaluation is done through Horner’s scheme,
using the matrix Mt to perform the successive multiplications by t.

2.3 Probabilistic aspects

The validity of this algorithm depends of the choice of t; we now discuss conditions that
guarantee success. Recall that Q1∩ · · ·∩Qs denotes a minimal primary decomposition of I.

Proposition 2.2. Suppose that for all points α, β in V (I), t(α) 6= t(β). Then the previous
algorithm correctly computes the primary decomposition of I.

Proof. By the Chinese Remainder Theorem, one may write A =
∏

i≤s Ai, with Ai =
k[X1, . . . ,Xn]/Qi. To any t in A and i ≤ s, we associate the characteristic polynomial χt,i

of the image of t in Ai; in particular, χt is the product of the polynomials χt,i. Proposition
2.3 in [9] states that if the χt,i are pairwise coprime, the output is correct. By Stickelberger’s
theorem, the roots of χt,i are the values t(α), for α in V (Qi), and the conclusion of our
proposition follows.

¿From this proposition, we deduce through standard arguments that using generic ele-
ments will guarantee success. We first state a result for arbitrary elements in the quotient,
and then its analogue for linear forms.

Corollary 2.3. Let b1, . . . , bD be the given monomial basis of A and let d ≤ D be the
number of distinct roots of I.

• There exists a non-zero polynomial ∆ ∈ k[T1, . . . , TD] of degree d(d − 1)/2 such that,
if ∆(t1, . . . , tD) 6= 0, then using t = t1b1 + · · ·+ tDbD yields the primary decomposition
of I.

• There exists a non-zero polynomial ∆′ ∈ k[T1, . . . , Tn] of degree d(d−1)/2 such that, if
∆′(t1, . . . , tn) 6= 0, then using t = t1X1 + · · ·+ tnXn yields the primary decomposition
of I.

Proof. Let α1, . . . , αd be the points in V (I), and write αi = αi,1, . . . , αi,n. We associate to
αi the linear forms

ai(T1, . . . , TD) = b1(αi)T1 + · · · + bD(αi)TD and a′i(T1, . . . , Tn) = αi,1T1 + · · · + αi,nTn.



Finally, for i, j in 1, . . . , d, with i 6= j, we define ci,j = ai − aj and c′i,j = a′i − a′j . Then

∆ =
∏

1≤i<j≤d

ci,j and ∆′ =
∏

1≤i<j≤d

c′i,j

satisfy our requirements.

Using the Zippel-Schwartz lemma [16, 13], we deduce the following probability estimate.
We still use the notation of the previous corollary.

Corollary 2.4. Let ε > 0 and let S be a subset of k of size larger than, or equal to,
d(d − 1)/2ε.

• Suppose that t1, . . . , tD are chosen uniformly at random in S. Then the probability
that the algorithm outputs the correct result using t = t1b1 + · · · + tDbD is at least
1 − ε.

• Suppose that t1, . . . , tn are chosen uniformly at random in S. Then the probability
that the algorithm outputs the correct result using t = t1X1 + · · · + tnXn is at least
1 − ε.

3 Experimental results

We finally give our computation tables. Times are given in seconds, and are obtained on
a 2.60GHz Pentium 4 processor with 1Gb of RAM. All computations are done modulo the
prime p = 33554393, which leads, in view of Corollary 2.4 and of the corresponding degrees,
to a probability of success of at least 0.9996. Time limits were set to 1000 seconds, and
memory limits to 2Gb. Most examples below can be found on the web pages of the test
suites [1, 15].

Maple implementation. We first report on the Maple implementation, made under
Maple version 10. Our timings include the computation of the initial Gröbner basis, as
well as those of all output primary components (first and last timing columns). Strictly
speaking, these are not part of Monico’s algorithm, especially concerning the final Gröbner
bases computations. However, this information is obviously of interest for benchmarking
this algorithm, all the more as the built-in primary decomposition routine outputs Gröbner
bases for the primary components. The numbers reported in Figure 1 are then as follows:

• vars: number n of variables;

• deg: maximal degree of the input equations;

• D: dimension of the quotient A over k;

• t1: initial Gröbner basis;



System vars deg D t1 t2 t3 t4 t5 t6 t7 Total Maple

Katsura-7 8 2 128 111 149 3 1 1.2 0.2 970 1235.4 161.2
chemkin 13 3 40 19 18 0.1 0.2 0.1 0.1 5.8 43.3 22.9

Pinchon-2 10 4 48 39.2 20.9 0.2 0.2 0.2 0.1 34.9 66.4 Error
Methan61 10 2 27 24.1 6.2 0.2 0.1 0.1 0.1 10.8 41.6 27

Rose 3 9 136 0.5 2.9 4.1 1.4 1.4 0.2 32.4 42.9 Error
Cyclic 6 6 6 156 32.5 22.1 9.7 2.2 2 0.2 182.5 251.2 48.6
4 body 6 5 138 310 167.6 5.2 1.8 1.6 0.1 441 927.3 412.3

l-4 5 3 243 0.1 2.4 51.2 4.0 7.0 0.2 314.9 379.8 Error
dessin-2 10 2 42 14.2 13.7 0.1 0.2 0.1 0.1 62.1 90.5 18.5

dessin-18-3 8 3 46 6.8 10.7 1.6 1.6 0.1 0.1 22.2 43.1 12.5
gametwo-5 5 4 44 11.8 6 0.2 0.2 0.1 0.1 15.1 33.5 15.6

r-5 5 6 121 0.1 0.7 3.7 1.0 1.0 0.1 54.1 60.7 Error

Figure 1: Maple timings modulo p = 33554393.

• t2: computation of the matrices of multiplication by X1, . . . ,Xn;

• t3: computation of all multiplication matrices;

• t4: trace computations, and deduction of the characteristic polynomial;

• t5: factorization of the characteristic polynomial;

• t6: evaluation of the polynomials Ri;

• t7: Gröbner bases of all primary components;

• Total: total time, sum of t1, . . . , t7.

• Maple: built-in Maple primary decomposition, using the function PrimaryDecomposi-

tion of the PolynomialIdeals package.

On these examples, our implementation does not quite reach the efficiency of the built-in
Maple routine. However, the ratio never becomes exceedingly large, and we expect that a
better tuned, lower-level implementation of Monico’s algorithm would yield better results.

Remark next that on some of these examples, the built-in routine outputs the error (in
mod/GetAlgExt) only the single algebraic extension case is implemented. Our
algorithm does not require handling algebraic extensions of the base field, and thus avoids
these difficulties, while preserving reasonable performances.

Note finally that the implementation relies on two distinct packages: the Groebner

package for Gröbner bases computations, and the LinearAlgebra:-Modular package for
all operations on matrices (using encoding of integers mod p by hardware floats). We want
to underline that on all these examples, most of the time, by far, is spent on Gröbner-related
operations, to compute Gröbner bases, and the matrices of multiplication by the variables
X1, . . . ,Xn. All other multiplication matrices are obtained by linear algebra only, which
explains why they are often must faster to compute.



System vars deg D t1 t2 t3 t4 t5 t6 Total Magma

Katsura-7 8 2 128 0.25 0.35 0.1 0.3 0.1 0.25 1.53 mem. > 2Gb
Katsura-8 9 2 256 2.4 4 0.15 1.2 0.1 9.4 17.25 time > 1000
chemkin 13 3 40 0.1 0.1 0.1 0.1 0.1 0.1 0.6 2.0

Pinchon-2 10 4 48 0.1 0.1 0.1 0.1 0.1 1.0 1.5 mem. > 2Gb
Methan61 10 2 27 0.1 0.1 0.1 0.1 0.1 0.1 0.6 0.5

Rose 3 9 136 0.1 0.1 0.1 0.4 0.1 0.1 0.9 3.4
Cyclic 6 6 6 156 0.2 0.1 0.1 0.1 0.1 1.0 1.6 0.3
4 body 6 5 138 0.4 0.3 0.1 0.5 0.1 1.5 1.9 mem. > 2Gb

l-4 5 3 243 0.1 0.1 0.1 0.7 0.1 2.0 3.1 3.9
dessin-2 10 2 42 0.1 0.1 0.1 0.4 0.1 0.1 0.9 165.2

dessin-18-3 8 3 46 0.1 0.1 0.1 0.1 0.1 0.1 0.6 1.4
gametwo-5 5 4 44 11.8 0.1 0.1 0.1 0.1 0.1 12.3 330.6

r-5 5 6 121 0.1 0.1 0.1 0.2 0.1 0.3 0.9 0.4

Figure 2: Magma timings modulo p = 33554393.

Magma implementation. Next, we discuss the results obtained using Magma version
2.11-2. As before, we count the time for computing the initial Gröbner basis, as well as
Gröbner bases for all primary components. In Figure 2, all timings have been rounded up
to the next integer multiple of 0.1. The legend of this figure is as follows:

• vars, deg, D: as in Figure 1;

• t1: initial Gröbner basis;

• t2: computation of the matrix of multiplication by t;

• t3: computation of the characteristic polynomial;

• t4: factorization of the characteristic polynomial;

• t5: evaluation of the polynomials Ri;

• t6: Gröbner bases of all primary components;

• Total: total time, sum of t1, . . . , t6.

• Magma: built-in Magma primary decomposition, using the function PrimaryDecompo-

sition.

The results on the Magma platform are more clearly in our favor, since on most examples,
the built-in function takes a (sometimes much) longer time, or Magma fails by exhausting
all available resources.

For these examples, the Gröbner computations are much faster in Magma than in Maple,
which accounts for the large gap observed between the two systems. On the other hand,
the linear algebra computations are more balanced, though still in favor of Magma. Indeed,



for both systems, linear algebra mod p is handled by similar techniques of floating-point
encoding.

4 Conclusion and future work

Our main goal in this paper was to show that Monico’s algorithm does actually provide
a practical way to compute primary decompositions, assuming facilities for Gröbner bases
computations, and univariate polynomial factorization. We substantiated this statement
by means of Maple and Magma implementations, which, although implemented in a high-
level environment, compete, and even outperform in some cases, the available routines.
Furthermore, we stressed that the choice of implementation techniques is largely influenced
by the relative efficiencies of the available tools.

Further developments are possible along these lines. Indeed, the trace computations
used above are a special case of the power projection problem, which consists in evaluating
a linear form at the powers of a given element t in A. This question, and the dual problem
of evaluating a univariate polynomial at t, admit more elaborate solutions, using baby
steps / giant steps techniques: the use of these techniques for evaluation is due to Paterson
and Stockmeyer [10]; applying them to power projection dates to work of Kaltofen and
Shoup, see [14, 7] and references therein. In our context, this baby steps / giant steps
approach was already used in [2] and [12]. However, as reported in these references, making
profit of this idea seems not to be immediate; more work in this direction is thus required.
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