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Does the parametrization reach all points of the surface? (1/8)

Figure: Steiner's Roman surface

https://upload.wikimedia.org/wikipedia/commons/e/ea/Steiner’27s_Roman_Surface.gif

An implicit formula of Steiner's Roman surface S is f = 0, where:

fi=4z*—8yx? +9x2y —8yzw2—5y3x+8y22x+y4
-2y z+3y2z —2yz + 24 — 8yx? + 8 z2% + 8y’x (1)
—Sayz — 29° + 292 — 222 + 42% — dyx + 92


https://upload.wikimedia.org/wikipedia/commons/e/ea/Steiner%27s_Roman_Surface.gif

Does the parametrization reach all points of the surface? (2/8)

o With ¢(s,t) :== s> +t?>+s—t+ 1, consider also the following map
q\s,

7. R? — R? 2)
s2 s241%  s24sttstt
(s,8) = (q<s,t>’ ast) (i) >

e Do we have Image(7) = S?

@ A preliminary question is whether ¢(s,t) vanishes or not.

2

= Ri= PolvnomialRing([s, t » », 2]) g= s + Pas—t+1:

RealTriangularize([g], R);

[]

Figure: RegularChains:-RealTriangularize proves ¢(s,t) has no real points.



Does the parametrization reach all points of the surface? (3/8)
Let us verify that the image of the map 7 is contained in the surface S.

= f= 4. -8 y-x3 + 9-x2-y2 - 8-y-z-x2 - 5-y3-x+ 8-
y2 Z X+ y4— 2 y3-z+ 3 y2-22— 2.y Z+ - 8-y-x2+ gz +8 yz-x— B ayz—2
-y3+2 y2-2—2- y-22+4- P y-x+,v2:
= PolynomialRing([s & x » z]):
decl = Triangulavize([f], R); &= GeneralConstruct(decl[1], map(initial
Equations(deci[1], R), R), B);
decl = [regular_chain|

5= constructible_set

>q==52+32+s—t+1:
2

Fi= [q-x - 52, g-¥ - (52 + IZ), q-z- (f+st+s+ I)]:
dec? = Triangularize(F, R); ImageR = GeneralConstruct(decZ[1], map(Initial F ), R);
dec? = [regular_chain|
Imagell .= constructible_set
[+ LM1— Difference(ImageR, 5 R); IsEmpty(LM1, R);
LMI = constructible_set
true

Figure: The command Difference computes the points in the image of 7 that
do not belong to surface S, which is empty.



Does the parametrization reach all points of the surface? (4/8)
e Disproving Image(7) = S can be done by specialization
e Computing Image(7) N {y = 1} yields
202 +2x24 22 -32—-22+1=0
e While computing SN {y = 1} brings more:

(227 —2x2+4 22 —2) (222 + 2224+ 22 —32-224+1)=0
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Does the parametrization reach all points of the surface? (5/8)

> R= PolnormialRing([s ¢ x ¥, z|)

g=SAZ2+A2+s5—1t+1:

Fu= [x*q — sA2 y¥g - (sA2 4+ tA2), z¥g-(sh2 + s¥t+ s+ 1) ]
dec? = Projection([op(F), v— 1), [ [ ] []. 3 R): Dispiay(%, R)

dx+2z—3=0 x=0 24+ (22-3)x+2—-2z2+1=0
y—1=0 dy—1=0 | y—1=0
|4£—4z—1:0 z—1=0 4F - 4z<land z—1+0

srmadtogy (9P v csz—8)y+8z+4) L4 (574 (Bz+E) ¥ 4 (-Bz2—4)y) x
it zz—+ (3l r2z+ 1)+ (28— 2 ) v+ 2

R = PolynomialRing([s. ¢ » v 2]):

decl = RealTriangularize([f v — 1], R)  Display(decl, R);

o4 (2z—3)n+F—2z+1=0 [4x+2273:0
y—1=0 y—1=0
aF_az<1 |4¥—4z—1=o
2x2+£_—2z—1]>c+22=0 [4x72271=0
y—1=0 y—1=0

aF—gz<1 |4¥—4z—1=o



Does the parametrization reach all points of the surface? (6/8)

[~ Difference(decl, dec? R): Display (% R);

x—1=0 x=10 2x—1=0 [4x—22—1=0
y—1=0 _ly—1=0 y—1=0 y—1=0
z—1=0 z=10 z—1=0 |422_4Z_1=0

2+ (-1—2zZ)n+ 2 =0
»—1=0

47 4z<land z=0and z—1=0Dand 2z— 1 =0

Figure: The points on Steiner surface S and the plane y = 1 which do not belong
to the intersection of the image of the parametrization 7 and the plane y = 1.

Observe that these calculations are done over the reals!



Does the parametrization reach all points of the surface? (7/8)

The next question
@ Therefore, Image(r) = S does not hold!
@ Next question: can we recover from S what Image(7) is missing?

@ if the missing point are Image(7) \ Image(7), then the answer is yes.

v

The closure of a constructible set
@ Denote by Image() the closure of Image(7) in the Euclidean
topology (over C).

@ Thanks to a theorem of David Mumford, Image(7) is also the closure
of Image(7) in Zariski topology.

® Thus Image(7) is the intersection of all algebraic sets containing
Image(7).

@ By the way, Grobner basis techniques can capture Zariski closures
over algebraically closed fields.




Does the parametrization reach all points of the surface? (8/8)

= g=sh24tA24+5—1t+1:

Re=[x*g - sh2 y*g - (sA2+ 1A2), z¥g-(sr2+ s¥ 1+ 5+ 1) ]:
withl Polynominildeals)

sat= Saturate({op(R)), g):

closure_of_Image_of_y = Eliminationideal(sat {x ¥ z});

closuve_of_ Image_of_r =4 x4—8>¢3y+9x2y2—8xzyz—Sxy3+8xy22+y4—2yaz
+3y222—2y23+z4—8x2y+8><22+8xy2—8xyz—2y3+2y22—2y22+4x2

—4xy+y7)

Figure: Closure of Image(7).

@ We retrieve the polynomial defining the implicit representation of S

@ According to the so-called Elimination Theorem (see the book Ideals,
varieties and Algorithms) the algebraic set of the elimination ideal
ITCK[zy < <zp]wrt zq,...,2, (for some 1 < k < n) is equal
to the Zariski closure of the projection of V(Z) onto 1, ..., xk.



Summary 1

e Computing Zariski closures of constructible sets (that is, systems of
polynomial equations and inequation) and semi-algebraic sets (that is,
systems of polynomial equations and inequalities) appear naturally in
practice: reachable sets, projection of constructible sets and
semi-algebraic sets.

o Grobner basis techniques can deal with the case of constructible sets.

e We are mainly interested here with the real case, that is,
semi-algebraic sets .



Topological closure and limit points

Let (X, 7) be a topological space and S C X be a subset.
Topological closure

The closure of S, denoted S, is the intersection of all closed sets
containing S.

Limit point
e A point p € X is a limit point of S if every neighbourhood of p
contains at least one point of S different from p itself.

@ The limit points of S which do not belong to S are called non-trivial,
denoted by lim(5S).

Properties
o If X is a metric space, the point p is a limit point of S if and only if
there exists a sequence (x,,,n € N) of points of S\ {p} such that

limy, 00 Tn =p .

o We have S = S U lim(9).




Zariski topology and the Euclidean topology

The relation between the two topologies
e With K = C, the affine space A® is endowed with both topologies.
@ The basic open sets of the Euclidean topology are the open balls.

@ The basic open sets of Zariski topology are the
complements of hypersurfaces .

e Thus, a Zariski closed (resp. open) set is closed (resp. open) in the
Euclidean topology on A%,

e That is, Zariski topology is coarser than the Euclidean topology.

The relation between the two closures (D. Mumford)
o Let V C A% be an irreducible affine variety.
o Let U C V be nonempty and open in Zariski topology induced on V.

Then, U has the same closure in both topologies. In fact, we have

v=U" =T".




Limit points: a first example

o Let S be the zero-set of a polynomial system and S be the
topological closure .S in the Euclidean topology.

o It can be proved that the set-theoretic difference S\ S can be
obtained via a limit computation process illustrated below

Consider S below together with a Puiseux series expansion around z = 0:

) _ s
— 2= =1
S = 253?_ zy4 = O0 and Z i i4/5
z#0 140
Then we have:
x(t) 0 B 0
limg o [ y(t) | =1 0 and S\S=1[ 0




Limit points: a second example

Consider S below together with a Puiseux series expansion around z = 0:

Z:C—yzzo x:t;/ls/5
S:=¢{ y°—22=0 and yii
z2#0 =
t#£0
Then we have:
x(t) +o0
limgo [ y() | =1 0 and S\ S =10




The Puiseux series solutions of a regular chain (1/2)

Regular chains in a nutshell

@ Regular chains generalize the concept of triangular system from linear
algebra to polynomial algebra.

@ Thus, they are polynomial systems with a triangular shape and
additional algebraic properties which support a
back substitution process .

e Every (non-constant) bivariate polynomial forms a regular chain.

The solutions of a regular chain

@ Like Grobner bases, regular chains can be used to compute and
describe the solutions of polynomial systems over algebraically closed
fields, say C.

@ Regular chains can also be used to solve over real closed fields, say R
but also Puiseux series.




The Puiseux series solutions of a regular chain (2/2)

with(AlgebraicGeometryTools) :

R := PolynomialRing([x, y, z]):

rc := Chain([-z"2+y, x*z-y~2], Empty(R), R):
br := RegularChainBranches(rc, R, [z]);

vV V. V Vv

2 3
br := [[z=T,y=T, x=T1]]
> rc := Chain([y~2*z+y+1, (z+2)*z*x"2+(y+1)*(x+1)], Empty(R),R):
> RegularChainBranches(rc, R, [z]);

2 2
(T-2) (T +4) (T -9T - 54)
[[z=T,y=-T-1, x= 1,
432
5 11 4 3 2
[z=T,y=-T-1, x=-1/432 T +-—-T +5/432 T -5/216 T + 1/12 T - 1/2]]

432



Limit points: yet another example

R:= PolynomialRing([x, y, z]) : vc :== Chain([-yA3 + yA2 + zA5, zA4* x + yA3 - yA2], Empty(R), R) :
Display(rc, R);

2 x+ y3 — y2 =0
VY47 =0
20
RegularChainBranches(rc, R, [ z]);

LS (1% 4 2 Rootop(_Z2 + 1)), x=

p— 2 —
Z—T,y—2

% 72 (-7 + 6 T*° Rootof(_Z% + 1) + 10 T*°

+3)

z2=T"y= f% T2 (1° + 2 RootOf (_Z* + 1)), x = (1%° 46 T RootOf(_2* + 1)

~10 '1'1078)], [2=Ty=T"+1,x=-T(T""+2 7"+ 1)]]

Ip == LimitPoints(rc, R) : Display(Ip, R);

bd
Il

N
I
© o ©
<
|
—
I
o

Figure: Computation of (non-trivial) limit points with the RegularChains library



Limit points: statement of our quest

Let R := {ta(x1,22), ..., th(x1,...,2p)}

We regard t; as a univariate polynomial w.r.t. z;, fori =2,... n:
We denote by h; the leading coefficient (also called initial) of ¢; w.r.t.
xi, and assume that h; depends on x; only; hence we have

t, = hl(xl)xgll + Cd,-—l(xl, e ,:Ei_l)x;-iiil + - teo(zr,y ... mimy)
Consider the system

tn(z1,...,2,) =0

W(R): =<} -
to(x1,29) =0
(ha -+ hn)(x1) # 0
Main Goal
@ Where do the points of W(R) go when x1 approaches a root of
By« hy?

@ In other words, we want to compute the points which belong to the
topological closure of W (R) but to W (R) itself.




Limit points: yet again another example

[ R PolynomiaiRmg([x ¥ z])
vo= Chain([yA(3)-2% ¥A(3)+ yA(2) + 2+ (5), 24 (4)* x+ yA(3)-yA(2)], Emptv(R), R): Displav(rc R);

by = RegulavChamBranches(vc R | z], coefficient = complex);
P at ,va - y2 =0

'—y3+,v2+25=0

’ 20
bro= [z: T = % T (-7 + 2 Rootof(_2% + 1)), x = 7% T2 (-7 + 6 T Rootof(_Z7 + 1) + 10 T + 8]}
2=T% y= —% 5 (15 4+ 2 Rootof(_22 + 1)), x= % 2 (12 4 6 T Rooror(_28+1) —10 T — 8)| [z

:T,y:T5+lJx:—T(TlO+2T5+1H]

o b= RegularChainBranches(rc R | z|, coefficient = real);
pri=llz=Ty=T"+La=-T(TP+27°+1)]]

Figure: The command RegularChainBranches computes a parametrization for
the complex and real paths of the quasi-component defined by rc. When
coefficient argument is set as real, then the command RegularChainBranches

computes the real branches.



Application 1: limit of multivariate rational functions

24322 y—a?—y?
2. . JA @2ty :
origin. On the right: the three paths of discriminant variety of ¢ going through

the point (0,0,-1).

Figure: On the left: the surface defined by ¢ := = z around the



Application 2: tangent cone computations

Figure: The tangent cone of the “fish” given by f :=y? — 22 (z +4) = 0 at the
origin consists of two tangent lines: y =2x and y = —2x.



Application 3: computing intersection multiplicities

> Fi=[(2? + y)? + 32%y — o3, (2% + y?)% — 4a%y?]
> plots[implicitplot](F's,z = —2..2,y = —2..2) :

\

> R := PolynomialRing ([z, y], 101) :
> TriangularizeWithMultiplicity (F, R);

M)

The command RegularChains:-TriangularizeWithMultiplicity computes the
intersection multiplicities for each point of V(F). In the above Maple

session, computations are performed modulo a prime number for the only
reason of keeping output expressions small. The same calculations can be
performed with the TriangularizeWithMultiplicity command over the reals.



Summary 2

@ The theory of regular chains allows us to reduce the question of
computing limit points of constructible sets and semi-algebraic sets to
that of computing limit points of zero sets of regular chains.

o We will restrict ourselves here to regular chains in dimension 1, that
is, where only one variable is free.

@ Then, the above question can be solved by computing the Puiseux
series solutions of regular chains.
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