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Does the parametrization reach all points of the surface? (1/8)

Figure: Steiner’s Roman surface

https://upload.wikimedia.org/wikipedia/commons/e/ea/Steiner%27s_Roman_Surface.gif

An implicit formula of Steiner’s Roman surface S is f = 0, where:

f := 4x4 − 8 yx3 + 9x2y2 − 8 yzx2 − 5 y3x+ 8 y2zx+ y4

−2 y3z + 3 y2z2 − 2 yz3 + z4 − 8 yx2 + 8 zx2 + 8 y2x
−8xyz − 2 y3 + 2 y2z − 2 yz2 + 4x2 − 4 yx+ y2.

(1)

https://upload.wikimedia.org/wikipedia/commons/e/ea/Steiner%27s_Roman_Surface.gif


Does the parametrization reach all points of the surface? (2/8)

With q(s, t) := s2 + t2 + s− t+ 1, consider also the following map

~r : R2 → R3

(s, t) 7→
(

s2

q(s,t) ,
s2+t2

q(s,t) ,
s2+s t+s+t

q(s,t)

)
,

(2)

Do we have Image(~r) = S?

A preliminary question is whether q(s, t) vanishes or not.

Figure: RegularChains:-RealTriangularize proves q(s, t) has no real points.



Does the parametrization reach all points of the surface? (3/8)

Let us verify that the image of the map ~r is contained in the surface S.

Figure: The command Difference computes the points in the image of ~r that
do not belong to surface S, which is empty.



Does the parametrization reach all points of the surface? (4/8)

Disproving Image(~r) = S can be done by specialization

Computing Image(~r) ∩ {y = 1} yields

2x2 + 2x z + z2 − 3x− 2 z + 1 = 0

While computing S ∩ {y = 1} brings more:

(2x2 − 2x z + z2 − x) (2x2 + 2x z + z2 − 3x− 2 z + 1) = 0



Does the parametrization reach all points of the surface? (5/8)



Does the parametrization reach all points of the surface? (6/8)

Figure: The points on Steiner surface S and the plane y = 1 which do not belong
to the intersection of the image of the parametrization ~r and the plane y = 1.

Observe that these calculations are done over the reals!



Does the parametrization reach all points of the surface? (7/8)

The next question

1 Therefore, Image(~r) = S does not hold!

2 Next question: can we recover from S what Image(~r) is missing?

3 if the missing point are Image(~r) \ Image(~r), then the answer is yes.

The closure of a constructible set

1 Denote by Image(~r) the closure of Image(~r) in the Euclidean
topology (over C).

2 Thanks to a theorem of David Mumford, Image(~r) is also the closure
of Image(~r) in Zariski topology.

3 Thus Image(~r) is the intersection of all algebraic sets containing
Image(~r).

4 By the way, Gröbner basis techniques can capture Zariski closures
over algebraically closed fields.



Does the parametrization reach all points of the surface? (8/8)

Figure: Closure of Image(~r).

We retrieve the polynomial defining the implicit representation of S

According to the so-called Elimination Theorem (see the book Ideals,
varieties and Algorithms) the algebraic set of the elimination ideal
I ⊂ K[x1 < · · · < xn] w.r.t. x1, . . . , xk (for some 1 ≤ k < n) is equal
to the Zariski closure of the projection of V (I) onto x1, . . . , xk.



Summary 1

Computing Zariski closures of constructible sets (that is, systems of
polynomial equations and inequation) and semi-algebraic sets (that is,
systems of polynomial equations and inequalities) appear naturally in
practice: reachable sets, projection of constructible sets and
semi-algebraic sets.

Gröbner basis techniques can deal with the case of constructible sets.

We are mainly interested here with the real case, that is,
semi-algebraic sets .



Topological closure and limit points

Let (X, τ) be a topological space and S ⊆ X be a subset.

Topological closure

The closure of S, denoted S, is the intersection of all closed sets
containing S.

Limit point

A point p ∈ X is a limit point of S if every neighbourhood of p
contains at least one point of S different from p itself.

The limit points of S which do not belong to S are called non-trivial,
denoted by lim(S).

Properties

If X is a metric space, the point p is a limit point of S if and only if
there exists a sequence (xn, n ∈ N) of points of S \ {p} such that
limn→∞ xn = p .

We have S = S ∪ lim(S).



Zariski topology and the Euclidean topology

The relation between the two topologies

With K = C, the affine space As is endowed with both topologies.

The basic open sets of the Euclidean topology are the open balls.

The basic open sets of Zariski topology are the
complements of hypersurfaces .

Thus, a Zariski closed (resp. open) set is closed (resp. open) in the
Euclidean topology on As.

That is, Zariski topology is coarser than the Euclidean topology.

The relation between the two closures (D. Mumford)

Let V ⊆ As be an irreducible affine variety.

Let U ⊆ V be nonempty and open in Zariski topology induced on V .

Then, U has the same closure in both topologies. In fact, we have

V = U
Z
= U

E
.



Limit points: a first example

Let S be the zero-set of a polynomial system and S be the
topological closure S in the Euclidean topology.

It can be proved that the set-theoretic difference S \ S can be
obtained via a limit computation process illustrated below

Consider S below together with a Puiseux series expansion around z = 0:

S :=


z x− y2 = 0
y5 − z4 = 0
z 6= 0

and


x = t8/5

t

y = t4/5

z = t
t 6= 0

Then we have:

limt→0

 x(t)
y(t)
z(t)

 =

 0
0
0

 and S \ S =

 0
0
0





Limit points: a second example

Consider S below together with a Puiseux series expansion around z = 0:

S :=


z x− y2 = 0
y5 − z2 = 0
z 6= 0

and


x = t−1/5

y = t2/5

z = t
t 6= 0

Then we have:

limt→0

 x(t)
y(t)
z(t)

 =

 ±∞0
0

 and S \ S = ∅



The Puiseux series solutions of a regular chain (1/2)

Regular chains in a nutshell

Regular chains generalize the concept of triangular system from linear
algebra to polynomial algebra.

Thus, they are polynomial systems with a triangular shape and
additional algebraic properties which support a
back substitution process .

Every (non-constant) bivariate polynomial forms a regular chain.

The solutions of a regular chain

Like Gröbner bases, regular chains can be used to compute and
describe the solutions of polynomial systems over algebraically closed
fields, say C.

Regular chains can also be used to solve over real closed fields, say R
but also Puiseux series.



The Puiseux series solutions of a regular chain (2/2)

> with(AlgebraicGeometryTools):

> R := PolynomialRing([x, y, z]):

> rc := Chain([-z^2+y, x*z-y^2], Empty(R), R):

> br := RegularChainBranches(rc, R, [z]);

2 3

br := [[z = T, y = T , x = T ]]

> rc := Chain([y^2*z+y+1, (z+2)*z*x^2+(y+1)*(x+1)], Empty(R),R):

> RegularChainBranches(rc, R, [z]);

2 2

(T - 2) (T + 4) (T - 9 T - 54)

[[z = T, y = -T - 1, x = --------------------------------],

432

5 11 4 3 2

[z = T, y = -T - 1, x = -1/432 T + --- T + 5/432 T - 5/216 T + 1/12 T - 1/2]]

432



Limit points: yet another example

Figure: Computation of (non-trivial) limit points with the RegularChains library



Limit points: statement of our quest

Let R := {t2(x1, x2), . . . , tn(x1, . . . , xn)}
We regard ti as a univariate polynomial w.r.t. xi, for i = 2, . . . , n:
We denote by hi the leading coefficient (also called initial) of ti w.r.t.
xi, and assume that hi depends on x1 only; hence we have

ti = hi(x1)x
di
i + cdi−1(x1, . . . , xi−1)x

di−1
i + · · ·+ c0(x1, . . . , xi−1)

Consider the system

W (R) :=


tn(x1, . . . , xn) = 0
...
t2(x1, x2) = 0
(h2 · · ·hn)(x1) 6= 0

Main Goal

Where do the points of W (R) go when x1 approaches a root of
h2 · · ·hn?

In other words, we want to compute the points which belong to the
topological closure of W (R) but to W (R) itself.



Limit points: yet again another example

Figure: The command RegularChainBranches computes a parametrization for
the complex and real paths of the quasi-component defined by rc. When
coefficient argument is set as real, then the command RegularChainBranches

computes the real branches.



Application 1: limit of multivariate rational functions

Figure: On the left: the surface defined by q := x4+3 x2 y−x2−y2

x2+y2 = z around the
origin. On the right: the three paths of discriminant variety of q going through
the point (0,0,-1).



Application 2: tangent cone computations

Figure: The tangent cone of the “fish” given by f := y2 − x2 (x+ 4) = 0 at the
origin consists of two tangent lines: y = 2x and y = −2x.



Application 3: computing intersection multiplicities

> F :=
[
(x2 + y2)2 + 3x2y − y3, (x2 + y2)3 − 4x2y2

]
:

> plots[implicitplot](Fs, x = −2..2, y = −2..2) :

> R := PolynomialRing ([x, y], 101) :
> TriangularizeWithMultiplicity(F,R);[[

1,

{
x− 1 = 0
y + 14 = 0

]]
,

[[
1,

{
x+ 1 = 0
y + 14 = 0

]]
,

[[
1,

{
x− 47 = 0
y − 14 = 0

]]
,[[

1,

{
x+ 47 = 0
y − 14 = 0

]]
,

[[
14,

{
x = 0
y = 0

]]

(3)

The command RegularChains:-TriangularizeWithMultiplicity computes the
intersection multiplicities for each point of V (F ). In the above Maple
session, computations are performed modulo a prime number for the only
reason of keeping output expressions small. The same calculations can be
performed with the TriangularizeWithMultiplicity command over the reals.



Summary 2

The theory of regular chains allows us to reduce the question of
computing limit points of constructible sets and semi-algebraic sets to
that of computing limit points of zero sets of regular chains.

We will restrict ourselves here to regular chains in dimension 1, that
is, where only one variable is free.

Then, the above question can be solved by computing the Puiseux
series solutions of regular chains.
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