Polynomials over Power Series and their Applications to Symbolic Analysis

Marc Moreno Maza

University of Western Ontario

May 6, 2021

Plan

Plan

Does the parametrization reach all points of the surface? (1/8)

Figure: Steiner's Roman surface

https://upload.wikimedia.org/wikipedia/commons/e/ea/Steiner%27s_Roman_Surface.gif An implicit formula of Steiner's Roman surface S is f = 0, where:

$$f := 4 x^{4} - 8 yx^{3} + 9 x^{2}y^{2} - 8 yzx^{2} - 5 y^{3}x + 8 y^{2}zx + y^{4}$$

$$-2 y^{3}z + 3 y^{2}z^{2} - 2 yz^{3} + z^{4} - 8 yx^{2} + 8 zx^{2} + 8 y^{2}x$$
(1)
$$-8 xyz - 2 y^{3} + 2 y^{2}z - 2 yz^{2} + 4 x^{2} - 4 yx + y^{2}.$$

Does the parametrization reach all points of the surface? (2/8)

• With $q(s,t) := s^2 + t^2 + s - t + 1$, consider also the following map

$$\vec{r}: \quad \mathbb{R}^2 \quad \to \qquad \mathbb{R}^3 \\ (s,t) \quad \mapsto \quad \left(\frac{s^2}{q(s,t)} \ , \ \frac{s^2+t^2}{q(s,t)} \ , \ \frac{s^2+s\,t+s+t}{q(s,t)}\right), \tag{2}$$

- Do we have $\text{Image}(\vec{r}) = S$?
- A preliminary question is whether q(s,t) vanishes or not.

>
$$R \coloneqq PolynomialRing([s, t, x, y, z]): q \coloneqq s^2 + t^2 + s - t + 1:$$

RealTriangularize([q], R);
[]

Figure: RegularChains:-RealTriangularize proves q(s,t) has no real points.

Does the parametrization reach all points of the surface? (3/8)

Let us verify that the image of the map \vec{r} is contained in the surface S.

> $f := 4 \cdot x^4 - 8 \cdot y \cdot x^3 + 9 \cdot x^2 \cdot y^2 - 8 \cdot y \cdot z \cdot x^2 - 5 \cdot y^3 \cdot x + 8$ $y^{2} \cdot z \cdot x + y^{4} - 2 \cdot y^{3} \cdot z + 3 \cdot y^{2} \cdot z^{2} - 2 \cdot y \cdot z^{3} + z^{4} - 8 \cdot y \cdot x^{2} + 8 \cdot z \cdot x^{2} + 8 \cdot y^{2} \cdot x - 8 \cdot x \cdot y \cdot z - 2$ $v^{3} + 2v^{2}v^{2} - 2v^{2}v^{2} + 4v^{2} + 4v^{2} + 4v^{2} + 4v^{2}$ $R \coloneqq PolynomialRing([s, t, x, y, z])$: dec1 := Triangularize([f], R); S := GeneralConstruct(dec1[1], map(Initial, Map(Initial)))Equations (dec1[1], R), R), R); $dec1 := [regular_chain]$ $S := constructible_set$ > $q := s^2 + t^2 + s - t + 1$: $F := [a \cdot x - s^2, a \cdot y - (s^2 + t^2), a \cdot z - (s^2 + s \cdot t + s + t)];$ dec2 = Triangularize(F, R); ImageR = GeneralConstruct(dec2[1], map(Initial, F, R), R); $dec2 := [reaular_chain]$ ImaaeR := constructible_set > LM1 ≔ Difference(ImageR, S, R); IsEmpty(LM1, R); LM1 := constructible settrue

Figure: The command Difference computes the points in the image of \vec{r} that do not belong to surface S, which is empty.

Does the parametrization reach all points of the surface? (4/8)

- Disproving $\text{Image}(\vec{r}) = S$ can be done by specialization
- Computing $\operatorname{Image}(\vec{r}) \cap \{y = 1\}$ yields

$$2x^2 + 2xz + z^2 - 3x - 2z + 1 = 0$$

• While computing $S \cap \{y = 1\}$ brings more:

 $(2x^{2} - 2xz + z^{2} - x)(2x^{2} + 2xz + z^{2} - 3x - 2z + 1) = 0$

Does the parametrization reach all points of the surface? (5/8)

$$\begin{array}{l} > R \coloneqq PolynomialRing([s, t, x, y, z]):\\ q \coloneqq s^{\lambda}2 + t^{\lambda}2 + s - t + 1:\\ F \coloneqq [x^{\lambda}q - s^{\lambda}Q, y^{*}q - (s^{\lambda}2 + t^{\lambda}2), z^{*}q - (s^{\lambda}2 + s^{*}t + s + t)]:\\ dec2 \coloneqq Projection([op(F), y - 1], [], [], [], 3, R): Display(\%, R)\\ \left[\left(\begin{array}{c} 4 x + 2 z - 3 = 0\\ y - 1 = 0\\ 4 z^{2} - 4 z - 1 = 0 \end{array}\right) \left(\begin{array}{c} x = 0\\ y - 1 = 0\\ z - 1 = 0\end{array}\right) \left(\begin{array}{c} 2 x^{2} + (2 z - 3) x + z^{2} - 2 z + 1 = 0\\ y - 1 = 0\\ 4 z^{2} - 4 z < 1 \text{ and } z - 1 \neq 0 \end{array}\right) \end{array}\right)$$

$$\begin{cases} > f \coloneqq 4x^4 - 8yx^3 + (9y^2 + (-8z - 8)y + 8z + 4)x^2 + (-5y^3 + (8z + 8)y^2 + (-8z - 4)y)x \\ + y^4 + y^3 (-2z - 2) + (3z^2 + 2z + 1)y^2 + (-2z^3 - 2z^2)y + z^4 \\ R \vDash PolynomialRing([s, t, x, y, z]) \\ decl \coloneqq RealTriangularize([f, y - 1], R) : Display(decl, R); \\ [2x^2 + (2z - 3)x + z^2 - 2z + 1 = 0 \\ y - 1 = 0 \\ 4z^2 - 4z < 1 \\ \end{cases} \begin{pmatrix} 4x + 2z - 3 = 0 \\ y - 1 = 0 \\ 4z^2 - 4z - 1 = 0 \\ \end{cases}$$

Does the parametrization reach all points of the surface? (6/8)

Difference(dec1, dec2, R): Display(%, R);			
x - 1 = 0	x = 0	2x - 1 = 0	4x - 2z - 1 = 0
y - 1 = 0 ,	y-1=0 ,	$y-1=0 \qquad , \qquad$	y - 1 = 0
z - 1 = 0	<i>z</i> = 0	z - 1 = 0	$4 z^2 - 4 z - 1 = 0$
$2x^{2} + (-1 - 2z)x + z^{2} = 0$			
y - 1 = 0			
$4 z^2 - 4 z < 1$ and $z \neq 0$ and $z - 1 \neq 0$ and $2 z - 1 \neq 0$			

Figure: The points on Steiner surface S and the plane y = 1 which do not belong to the intersection of the image of the parametrization \vec{r} and the plane y = 1.

Observe that these calculations are done over the **reals**!

The next question

- Therefore, $\text{Image}(\vec{r}) = S \text{ does not hold}!$
- 2 Next question: can we recover from S what $Image(\vec{r})$ is missing?
- \bullet if the missing point are $\overline{\text{Image}(\vec{r})} \setminus \text{Image}(\vec{r})$, then the answer is yes.

The closure of a constructible set

- Denote by $\overline{\text{Image}(\vec{r})}$ the closure of $\text{Image}(\vec{r})$ in the Euclidean topology (over \mathbb{C}).
- **2** Thanks to a theorem of David Mumford, $\overline{\text{Image}(\vec{r})}$ is also the closure of $\text{Image}(\vec{r})$ in Zariski topology.
- Thus Image(r) is the intersection of all algebraic sets containing Image(r).
- By the way, Gröbner basis techniques can capture Zariski closures over algebraically closed fields.

Does the parametrization reach all points of the surface? (8/8)

```
> q := s^2 + t^2 + s - t + 1:

R := [x^*q - s^2, y^*q - (s^2 + t^2), z^*q - (s^2 + s^* t + s + t)]:

with (PolynomialIdeals):

sat := Saturate((op(R)), q):

closure_of_Image_of_r := EliminationIdeal(sat, {x, y, z});

closure_of_Image_of_r := (4 x^4 - 8 x^3 y + 9 x^2 y^2 - 8 x^2 y z - 5 x y^3 + 8 x y^2 z + y^4 - 2 y^3 z + 3 y^2 z^2 - 2 y z^3 + z^4 - 8 x^2 y + 8 x^2 z + 8 x y^2 - 8 x y z - 2 y^3 + 2 y^2 z - 2 y z^2 + 4 x^2 - 4 x y + y^2)
```

Figure: Closure of Image(\vec{r}).

- We retrieve the polynomial defining the implicit representation of ${\cal S}$
- According to the so-called *Elimination Theorem* (see the book *Ideals*, varieties and Algorithms) the algebraic set of the elimination ideal $\mathcal{I} \subset \mathbb{K}[x_1 < \cdots < x_n]$ w.r.t. x_1, \ldots, x_k (for some $1 \leq k < n$) is equal to the Zariski closure of the projection of $V(\mathcal{I})$ onto x_1, \ldots, x_k .

- Computing Zariski closures of constructible sets (that is, systems of polynomial equations and inequation) and semi-algebraic sets (that is, systems of polynomial equations and inequalities) appear naturally in practice: reachable sets, projection of constructible sets and semi-algebraic sets.
- Gröbner basis techniques can deal with the case of constructible sets.
- We are mainly interested here with the real case, that is, semi-algebraic sets .

Topological closure and limit points

Let (X, τ) be a topological space and $S \subseteq X$ be a subset.

Topological closure

The <u>closure</u> of S, denoted \overline{S} , is the intersection of all closed sets containing S.

Limit point

- A point $p \in X$ is a *limit point* of S if every neighbourhood of p contains at least one point of S different from p itself.
- The limit points of S which do not belong to S are called non-trivial, denoted by $\lim(S)$.

Properties

• If X is a metric space, the point p is a limit point of S if and only if there exists a sequence $(x_n, n \in \mathbb{N})$ of points of $S \setminus \{p\}$ such that $\lim_{n \to \infty} x_n = p$.

• We have
$$\overline{S} = S \cup \lim(S)$$
.

Zariski topology and the Euclidean topology

The relation between the two topologies

- With $\mathbb{K} = \mathbb{C}$, the affine space \mathbb{A}^s is endowed with both topologies.
- The basic open sets of the Euclidean topology are the open balls.
- The basic open sets of Zariski topology are the complements of hypersurfaces.
- Thus, a Zariski closed (resp. open) set is closed (resp. open) in the Euclidean topology on \mathbb{A}^s .
- That is, Zariski topology is coarser than the Euclidean topology.

The relation between the two closures (D. Mumford)

- Let $V \subseteq \mathbb{A}^s$ be an irreducible affine variety.
- Let $U \subseteq V$ be nonempty and open in Zariski topology induced on V.

Then, \boldsymbol{U} has the same closure in both topologies. In fact, we have

$$V = \overline{U}^Z = \overline{U}^E.$$

Limit points: a first example

- Let S be the zero-set of a polynomial system and \overline{S} be the topological closure S in the Euclidean topology.
- It can be proved that the set-theoretic difference $\overline{S}\setminus S$ can be obtained via a *limit computation process* illustrated below

Consider S below together with a Puiseux series expansion around z = 0:

.9/5

$$S := \begin{cases} z x - y^2 = 0\\ y^5 - z^4 = 0\\ z \neq 0 \end{cases} \quad \text{and} \quad \begin{cases} x = \frac{t^{6/3}}{t}\\ y = t^{4/5}\\ z = t\\ t \neq 0 \end{cases}$$

Then we have:

$$\lim_{t \to 0} \begin{pmatrix} x(t) \\ y(t) \\ z(t) \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \text{ and } \overline{S} \setminus S = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Limit points: a second example

Consider S below together with a Puiseux series expansion around z = 0:

$$S := \begin{cases} z x - y^2 = 0\\ y^5 - z^2 = 0\\ z \neq 0 \end{cases} \text{ and } \begin{cases} x = t^{-1/5}\\ y = t^{2/5}\\ z = t\\ t \neq 0 \end{cases}$$

Then we have:

$$\lim_{t \to 0} \begin{pmatrix} x(t) \\ y(t) \\ z(t) \end{pmatrix} = \begin{pmatrix} \pm \infty \\ 0 \\ 0 \end{pmatrix} \text{ and } \overline{S} \setminus S = \emptyset$$

Regular chains in a nutshell

- Regular chains generalize the concept of *triangular system* from linear algebra to polynomial algebra.
- Thus, they are polynomial systems with a triangular shape and additional algebraic properties which support a back substitution process.
- Every (non-constant) bivariate polynomial forms a regular chain.

The solutions of a regular chain

- Like Gröbner bases, regular chains can be used to compute and describe the solutions of polynomial systems over algebraically closed fields, say C.
- \bullet Regular chains can also be used to solve over real closed fields, say $\mathbb R$ but also Puiseux series.

The Puiseux series solutions of a regular chain (2/2)

Limit points: yet another example

 $\begin{aligned} R &:= PolynomialRing([x, y, z]): rc := Chain([-y^3 + y^2 + z^5, z^4 * x + y^3 - y^2], Empty(R), R): \\ Display(rc, R); \end{aligned}$

$$z4 x + y3 - y2 = 0$$
$$-y3 + y2 + z5 = 0$$
$$z4 \neq 0$$

RegularChainBranches(rc, R, [z]);

 $\begin{bmatrix} z = T^2, y = \frac{1}{2} T^5 (-T^5 + 2 \operatorname{RootOf}(-Z^2 + 1)), x = -\frac{1}{8} T^2 (-T^{20} + 6 T^{15} \operatorname{RootOf}(-Z^2 + 1) + 10 T^{10} + 8) \end{bmatrix}, \begin{bmatrix} z = T^2, y = -\frac{1}{2} T^5 (T^5 + 2 \operatorname{RootOf}(-Z^2 + 1)), x = \frac{1}{8} T^2 (T^{20} + 6 T^{15} \operatorname{RootOf}(-Z^2 + 1) - 10 T^{10} - 8) \end{bmatrix}, \begin{bmatrix} z = T, y = T^5 + 1, x = -T (T^{10} + 2 T^5 + 1) \end{bmatrix}$

lp := LimitPoints(rc, R) : Display(lp, R);

$$\begin{cases} x = 0 \\ y = 0 \\ z = 0 \end{cases}, \begin{cases} x = 0 \\ y - 1 = 0 \\ z = 0 \end{cases}$$

Figure: Computation of (non-trivial) limit points with the RegularChains library

Limit points: statement of our quest

• Let
$$R := \{t_2(x_1, x_2), \dots, t_n(x_1, \dots, x_n)\}$$

- We regard t_i as a univariate polynomial w.r.t. x_i , for i = 2, ..., n:
- We denote by h_i the leading coefficient (also called initial) of t_i w.r.t. x_i , and assume that h_i depends on x_1 only; hence we have

 $t_i = h_i(x_1)x_i^{d_i} + c_{d_i-1}(x_1, \dots, x_{i-1})x_i^{d_i-1} + \dots + c_0(x_1, \dots, x_{i-1})$ • Consider the system

$$W(R) := \begin{cases} t_n(x_1, \dots, x_n) = 0 \\ \vdots \\ t_2(x_1, x_2) = 0 \\ (h_2 \cdots h_n)(x_1) \neq 0 \end{cases}$$

Main Goal

- Where do the points of W(R) go when x_1 approaches a root of $h_2 \cdots h_n$?
- In other words, we want to compute the points which belong to the topological closure of W(R) but to W(R) itself.

Limit points: yet again another example

> R := PolynomialRing([x, y, z]): $rc \coloneqq Chain([y^{(3)}-2^*y^{(3)}+y^{(2)}+z^{(5)},z^{(4)}*x+y^{(3)}-y^{(2)}], Empty(R), R): Display(rc, R);$ br := RegularChainBranches(rc. R. [z], coefficient = complex); $\begin{cases} z^4 x + y^3 - y^2 = 0 \\ -y^3 + y^2 + z^5 = 0 \\ z^4 \neq 0 \end{cases}$ $br := \left[\left[z = T^2, y = \frac{1}{2} T^5 \left(-T^5 + 2 \operatorname{RootOf}(_2 Z^2 + 1) \right), x = -\frac{1}{8} T^2 \left(-T^{20} + 6 T^{15} \operatorname{RootOf}(_2 Z^2 + 1) + 10 T^{10} + 8 \right) \right] \right]$ $\left[z = T^{2}, y = -\frac{1}{2}T^{5}\left(T^{5} + 2 \operatorname{RootOf}(_{Z}^{2} + 1)\right), x = \frac{1}{8}T^{2}\left(T^{20} + 6 T^{15}\operatorname{RootOf}(_{Z}^{2} + 1) - 10 T^{10} - 8\right)\right], \left[z = T^{2}, y = -\frac{1}{2}T^{5}\left(T^{5} + 2 \operatorname{RootOf}(_{Z}^{2} + 1)\right), x = \frac{1}{8}T^{2}\left(T^{20} + 6 T^{15}\operatorname{RootOf}(_{Z}^{2} + 1) - 10 T^{10} - 8\right)\right], \left[z = T^{2}, y = -\frac{1}{2}T^{5}\left(T^{5} + 2 \operatorname{RootOf}(_{Z}^{2} + 1)\right), x = \frac{1}{8}T^{2}\left(T^{20} + 6 T^{15}\operatorname{RootOf}(_{Z}^{2} + 1)\right) - 10T^{10} - 8\right)\right], \left[z = T^{2}, y = -\frac{1}{2}T^{5}\left(T^{5} + 2 \operatorname{RootOf}(_{Z}^{2} + 1)\right), x = \frac{1}{8}T^{2}\left(T^{20} + 6 T^{15}\operatorname{RootOf}(_{Z}^{2} + 1)\right) - 10T^{10} - 8\right)\right]$ $= T, y = T^{5} + 1, x = -T (T^{10} + 2 T^{5} + 1)]$ > br := RegularChainBranches(rc, R, [z], coefficient = real); $br := \left[\left[z = T, y = T^5 + 1, x = -T \left(T^{10} + 2 T^5 + 1 \right) \right] \right]$

Figure: The command RegularChainBranches computes a parametrization for the complex and real paths of the quasi-component defined by rc. When coefficient argument is set as real, then the command RegularChainBranches computes the real branches.

Application 1: limit of multivariate rational functions

Figure: On the left: the surface defined by $q := \frac{x^4+3x^2y-x^2-y^2}{x^2+y^2} = z$ around the origin. On the right: the three paths of discriminant variety of q going through the point (0,0,-1).

Application 2: tangent cone computations

Figure: The tangent cone of the "fish" given by $f := y^2 - x^2 (x + 4) = 0$ at the origin consists of two tangent lines: y = 2x and y = -2x.

Application 3: computing intersection multiplicities

> $F := [(x^2 + y^2)^2 + 3x^2y - y^3, (x^2 + y^2)^3 - 4x^2y^2]$: > plots[implicitplot](Fs, x = -2..2, y = -2..2): (3)> R := PolynomialRing([x, y], 101) :> TriangularizeWithMultiplicity(F, R); $\begin{bmatrix} \begin{bmatrix} 1, \begin{cases} x-1=0\\ y+14=0 \end{bmatrix} \end{bmatrix}, \begin{bmatrix} \begin{bmatrix} 1, \begin{cases} x+1=0\\ y+14=0 \end{bmatrix} \end{bmatrix}, \begin{bmatrix} \begin{bmatrix} 1, \begin{cases} x-47=0\\ y-14=0 \end{bmatrix} \end{bmatrix}, \\ \begin{bmatrix} \begin{bmatrix} 1, \begin{cases} x-47=0\\ y-14=0 \end{bmatrix} \end{bmatrix}, \\ \begin{bmatrix} 14, \begin{cases} x=0\\ y=0 \end{bmatrix} \end{bmatrix} \end{bmatrix}$

The command RegularChains:-TriangularizeWithMultiplicity computes the intersection multiplicities for each point of V(F). In the above Maple session, computations are performed modulo a prime number for the only reason of keeping output expressions small. The same calculations can be performed with the TriangularizeWithMultiplicity command over the reals.

- The theory of regular chains allows us to reduce the question of computing limit points of constructible sets and semi-algebraic sets to that of computing limit points of zero sets of regular chains.
- We will restrict ourselves here to regular chains in dimension 1, that is, where only one variable is free.
- Then, the above question can be solved by computing the Puiseux series solutions of regular chains.