
On Fulton's Algorithm for ComputingIntersetion MultipliitiesSte�en Marus1 and Mar Moreno Maza2 and Paul Vrbik2
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2 Department of Computer Siene, University of Western OntarioAbstrat. As pointed out by Fulton in his Intersetion Theory, the in-tersetion multipliities of two plane urves V (f) and V (g) satisfy a seriesof 7 properties whih uniquely de�ne I(p; f, g) at eah point p ∈ V (f, g).Moreover, the proof of this remarkable fat is onstrutive, whih leadsto an algorithm, that we all Fulton's Algorithm. This onstrution, how-ever, does not generalize to n polynomials f1, . . . , fn. Another pratiallimitation, when targeting a omputer implementation, is the fat thatthe oordinates of the point p must be in the �eld of the oe�ients of
f1, . . . , fn. In this paper, we adapt Fulton's Algorithm suh that it anwork at any point of V (f, g), rational or not. In addition, we proposealgorithmi riteria for reduing the ase of n variables to the bivariateone. Experimental results are also reported.1 IntrodutionIntuitively, the intersetion multipliity of two plane urves ounts the number oftimes these urves interset. There are more formal ways to de�ne this number.The following one is ommonly used, see for instane [9, 11, 12, 6, 18℄. Given anarbitrary �eld k and two bivariate polynomials f, g ∈ k[x, y], onsider the a�nealgebrai urves C := V (f) and D := V (g) in A2 = k

2, where k is the algebrailosure of k. Let p be a point in the intersetion. The intersetion multipliity of
p in V (f, g) is de�ned to be

I(p; f, g) := dimk(OA2,p/ 〈f, g〉)where OA2,p and dimk(OA2,p/ 〈f, g〉) are the loal ring at p and the dimension ofthe vetor spae OA2,p/ 〈f, g〉. The intersetion multipliity of two plane urvesat a point admits many properties. Among them are the seven below, whih areproved in [9, Setion 3-3℄ as well as in [11, 12℄.(2-1) I(p; f, g) is a non-negative integer for any C, D, and p suh that C and Dhave no ommon omponent at p. We set I(p; f, g) =∞ if C and D have aommon omponent at p.(2-2) I(p; f, g) = 0 if and only if p /∈ C ∩D.(2-3) I(p; f, g) is invariant under a�ne hange of oordinates on A2.(2-4) I(p; f, g) = I(p; g, f).



(2-5) I(p; f, g) is greater or equal to the produt of the multipliity (see [9, �3.1℄)of p in f and g, with equality ourring if and only if C and D have notangent lines in ommon at p.(2-6) I(p; f, gh) = I(p; f, g) + I(p; f, h) for all h ∈ k[x, y].(2-7) I(p; f, g) = I(p; f, g + hf) for all h ∈ k[x, y].Remarkably, Properties (2-1) through (2-7) uniquely determine I(p; f, g). Thisobservation is made by Fulton in [9, Setion 3-3℄ where he exhibits an algorithmfor omputing I(p; f, g) using (2-1) through (2-7) as rewrite rules.In order to obtain a pratial implementation of this algorithm, a main ob-stale must be overome. To understand it, let us �rst reall that omputeralgebra systems e�iently manipulate multivariate polynomials whenever theiroe�ients are in the �eld of rational numbers or in a prime �eld. In partiu-lar, popular algorithms for deomposing the algebrai variety V (f1, . . . , fn) with
f1, . . . , fn ∈ k[x1, . . . , xn] rely only on operations in the �eld k, thus avoidingto manipulate non-rational numbers, that is, elements of k \ k. For instane,algorithms suh as those of [4℄ represent the variety V (f1, . . . , fn) (whih is asubset of kn) with �nitely many regular hains T1, . . . , Te of k[x1, . . . , xn] suhthat we have

V (f1, . . . , fn) = V (T1) ∪ · · · ∪ V (Te). (1)Now, observe that the intersetion multipliity I(p; f1, . . . , fn) of f1, . . . , fn at apoint p is truly a loal notion, while eah of the V (Ti) may onsist of more thanone point, even if Ti generates a maximal ideal of k[x1, . . . , xn]. Therefore, inorder to use regular hains for omputing intersetion multipliities, one needsto be able to ompute �simultaneously� all the I(p; f1, . . . , fn) for p ∈ V (Ti)In Setion 5 we propose an algorithm ahieving the following task in thebivariate ase: given M ⊂ k[x, y] a maximal ideal, ompute the ommon valueof all I(p; f, g) for p ∈ V (M). In Setion 6, we relax the assumption ofM beingmaximal and require only that a zero-dimensional regular hain T ⊂ k[x, y]generates M. However, in this ase, the values of I(p; f, g) for p ∈ V (T ) maynot be all the same. This situation is handled via splitting tehniques as in [4℄.Thus, for n = 2, we obtain a proedure TriangularizeWithMultipliity(f1, . . . , fn)whih returns �nitely many pairs (T1,m1), . . . , (Te,me) where T1, . . . , Te ⊂ k[x1,
. . . , xn] are regular hains and m1, . . . ,me are non-negative integers satisfyingEquation (1) and for eah i = 1, . . . , e, we have

(∀p ∈ V (Ti)) I(p; f1, . . . , fn) = mi. (2)We are also interested in generalizing Fulton's Algorithm to n multivariatepolynomials in n variables�our ultimate goal being an algorithm that realizesthe above spei�ation for n ≥ 2.We denote by An the n-dimensional a�ne spae over k. Let f1, . . . , fn ∈ k[x1,
. . . , xn] be n polynomials generating a zero-dimensional ideal with (neessarily�nite) zero set V (f1, . . . , fn) ⊂ An. Let p be a point in the intersetion V (f1) ∩
· · ·∩V (fn), that is, V (f1, . . . , fn). The intersetion multipliity of p in V (f1, . . . ,
fn) is the generalization of the 2-variable ase (as in [6, 18℄)

I(p; f1, . . . , fn) := dimk (OAn,p/ 〈f1, . . . , fn〉) ,



where OAn,p and dimk(OAn,p/ 〈f1, . . . , fn〉) are (respetively) the loal ring atthe point p and the dimension of the vetor spae OAn,p/ 〈f1, . . . , fn〉.Among the key points in the proof of Fulton's algorithmi onstrution is that
k[x1] is a prinipal ideal domain. Fulton uses Property (2-7) in an eliminationproess similar to that of the Eulidean Algorithm. Sine k[x1, . . . , xn−1] is nolonger a PID for n ≥ 3, there is no natural generalization of (2-1) through (2-7)to the n-variate setting (up to our knowledge) that would lead to an algorithmfor omputing I(p; f1, . . . , fn).To overome this obstale, at least for some pratial examples, we proposean algorithmi riterion to redue the n-variate ase to that of n− 1 variables.This redution requires two hypotheses: V (fn) is non-singular at p, and thetangent one of V (f1, . . . , fn−1) at p and the tangent hyperplane of V (fn) at pmeet only at the point p. The seond hypothesis ensures that eah omponentof the urve V (f1, . . . , fn−1) meets the hypersurfae V (fn) without tangeny at
p. This transversality assumption yields a redution from n to n − 1 variablesproved with Theorem 1.In Setion 7, we disuss this redution in detail. In partiular, we proposea tehnique whih, in some ases, replaes f1, . . . , fn by polynomials g1, . . . , gngenerating the same ideal and for whih the hypotheses of the redution hold.Finally, in Setion 8 we give details on implementing the algorithms herein andin Setion 9 we report on our experimentation for both the bivariate ase andthe tehniques of Setion 7.We onlude this introdution with a brief review of related works. In [5℄,the Authors report on an algorithm with the same spei�ation as the aboveTriangularizeWithMultipliity(f1, . . . , fn). Their algorithm requires, however, thatthe number of input polynomials is 2. In [17℄, the Authors outline an algorithmwith similar spei�ations as ours. However, this algorithm is not omplete,even in the bivariate ase, in the sense that it may not ompute the intersetionmultipliities of all regular hains in a triangular deomposition of V (f1, . . . , fn).In addition, our approah is novel thanks to an important feature whihmakes it more attrative in terms of performane. We �rst ompute a triangulardeomposition of V (f1, . . . , fn) (by any available method) thus without trying to�preserve� any multipliity information. Then, one V (f1, . . . , fn) is deomposedwe work �loally� at eah regular hain. This enables us to quikly disover points
p of intersetion multipliity one by heking whether the Jaobian matrix of f1,
. . . , fn is invertible at p. We have observed experimentally that this strategyleads to massive speedup.2 Regular ChainsIn this setion, we reall the notions of a regular hain. From now on we assumethat the variables of the polynomial ring k[x1, . . . , xn] are ordered as xn > · · · >
x1. For a non-onstant f ∈ k[x1, . . . , xn], the main variable of f is the largestvariable appearing in f , while the initial of f is the leading oe�ient of fw.r.t. the main variable of f . Let T ⊂ k[x1, . . . , xn] be a set of n non onstant



polynomials. We say that T is triangular if the main variables of the elementsof T are pairwise di�erent. Let ti be the polynomial of T with main variable xi.We say that T is a (zero-dimensional) regular hain if, for i = 2, . . . , n the initialof ti is invertible modulo the ideal 〈t1, . . . , ti−1〉. Regular hains are also de�nedin positive dimension, see [1, 15℄.For any maximal ideal M of k[x1, . . . ,xn] there exists a regular hain TgeneratingM, see [14℄. Therefore, for any zero-dimensional ideal I of k[x1, . . . ,
xn] there exist �nitely many regular hains T1, . . . , Te ⊂ k[x1, . . . , xn] suhthat we have V (I) = V (T1) ∪ · · · ∪ V (Te). Various algorithms, among themthose published in [20, 10, 14, 19, 4℄, ompute suh deompositions. The Trian-gularize ommand of the RegularChains library [16℄ in Maple implements thedeomposition algorithm of [4℄. This library also implements another algorithmof [4℄ that we will use in this paper and whih is spei�ed hereafter. For aregular hain T ⊂ k[x1, . . . , xn] and a polynomial p ∈ k[x1, . . . , xn], the opera-tion Regularize(p, T ) returns regular hains T1, . . . , Te ⊂ k[x1, . . . , xn] suh thatwe have V (T ) = V (T1) ∪ · · · ∪ V (Te) and for all i = 1, . . . , e we have either
V (p) ∩ V (Ti) = ∅ or V (T ) ⊂ V (p). We will make use of the following resultwhih an easily be derived from [4℄: if Regularize(p, T ) returns T1, . . . , Te, thenwe have

(∀p ∈ V (Ti)) Regularize(p, Ti) = Ti. (3)3 Intersetion MultipliityAs above, let f1, . . . , fn ∈ k[x1, . . . , xn] be n polynomials in n variables suh thatthe ideal 〈f1, . . . , fn〉 they generate is zero-dimensional. Let p ∈ V (f1, . . . , fn)and denote the maximal ideal at p byMp. When needed, denote the oordinatesof p by (α1, . . . , αn), so that we haveMp = 〈x1 − α1, . . . , xn − αn〉.De�nition 1. The intersetion multipliity of p in V (f1, . . . , fn) is given bythe length of OAn,p/ 〈f1, . . . , fn〉 as an OAn,p-module.Sine we onsider An as de�ned over the algebraially losed �eld k, we know(see, for instane, [8℄) that the length of this module is equal to its dimensionas a k vetor spae, whih is preisely the de�nition of Setion 1. Our algorithmdepends on the fat that the intersetion multipliity satis�es a generalized ol-letion of properties similar to (2-1) through (2-7) for the bi-variate ase. Theyare the following:(n-1) I(p; f1, . . . , fn) is a non-negative integer.(n-2) I(p; f1, . . . , fn) = 0 if and only if p /∈ V (f1, . . . , fn).(n-3) I(p; f1, . . . , fn) is invariant under a�ne hange of oordinates on An.(n-4) I(p; f1, . . . , fn) = I(p; fσ(1), . . . , fσ(n)) for any σ ∈ Sn.(n-5) I(p; (x1−α1)
m1 , . . . , (xn−αn)

mn) = m1 · · ·mn, for all non-negative integers
m1, . . . ,mn.(n-6) If g, h ∈ k[x1, . . . , xn] make f1, . . . , fn−1, gh a zero-dimensional, then I(p; f1,
. . . , fn−1, gh) = I(p; f1, . . . , fn−1, g) + I(p; f1, . . . , fn−1, h) holds.



(n-7) I(p; f1, . . . , fn−1, g) = I(p; f1, . . . , fn−1, g + h) for all h ∈ 〈f1, . . . , fn−1〉.In order to redue the ase of n variables (and n polynomials) to that of n−1variables (see Setion 7) we require an additional property when n > 2. Of ourse,the assumptions neessary for this property may not hold for every polynomialsystem. However, we disuss in Setion 7 a tehnique that an overome thislimitation for some pratial examples.(n-8) Assume the hypersurfae hn = V (fn) is non-singular at p. Let vn be itstangent hyperplane at p. Assume furthermore that hn meets eah omponentof the urve C = V (f1, . . . , fn−1) transversely, that is, the tangent one
TCp(C) intersets vn only at the point p. Let h ∈ k[x1, . . . , xn] be the degree1 polynomial de�ning vn. Then, we have

I(p; f1, . . . , fn) = I(p; f1, . . . , fn−1, hn).Reall that the tangent one TCp(C) an be thought of as the set of tangentsgiven by limiting the seants to C passing through p. If g1, . . . , gs ∈ k[x1, . . . , xn]are polynomials generating the radial of the ideal 〈f1, . . . , fn−1〉, then TCp(C)is also given by TCp(C) = 〈in(g1), . . . , in(gs)〉 where in(gi), for i = 1, . . . , s, isthe initial form of gi, that is, the homogeneous omponent of gi of the lowestdegree.Theorem 1. I(p; f1, . . . , fn) satis�es the properties (n-1) through (n-8).Proof. For the �rst seven properties, adapting the proofs of [9, 12℄ is routine,exept for (n-6), and we omit them for spae onsideration. For (n-6) and (n-8),as well as the others, the reader is refered to our tehnial report with the sametitle and available in the Computing Researh Repository (CoRR).4 Expansion of a Polynomial Family about at anAlgebrai SetThe tools introdued herein help build an algorithm for omputing the interse-tion multipliity of f1, . . . , fn at any point of V (f1, . . . , fn), whenever the ideal
〈f1, . . . , fn〉 is zero-dimensional and when, for n > 2, ertain hypothesis are met.Let y1, . . . , yn be n new variables with ordering yn > · · · > y1. Let F 1,
. . . , Fn ∈ k[x1, . . . , xn, y1, . . . , yn] be polynomials in x1, . . . , xn, y1, . . . , yn withoe�ients in k. We order the monomials in y1, . . . , yn (resp. x1, . . . , xn) withthe lexiographial term order indued by yn > · · · > y1 (resp. xn > · · · > x1).We denote by SF 1 , . . . , SFn the respetive monomial supports (i.e. the set ofmonomials with non-zero oe�ients) of F 1, . . . , Fn, regarded as polynomials inthe variables y1, . . . , yn and with oe�ients in k[x1, . . . , xn]. Let i be any integerindex in 1, . . . , n. Write

F i =
∑

µ∈S
Fi

F i
µµ, (4)



where all F i
µ are polynomials of k[x1, . . . , xn]. In partiular, the F i

1 represent F i
µwhen µ = y01 · · · y

0
n = 1. Denote by F i

<yn
the polynomial of k[x1, . . . , xn][y1, . . . ,

yn−1] de�ned by
F i
<yn

=
∑

µ ∈ Si
Fdeg(µ, yn) = 0

F i
µµ.Let I be a (proper) ideal of k[x1, . . . , xn]. We denote by NF(f, I) the normalform of f w.r.t. the redued lexiographial Gröbner basis of I for xn > · · · > x1.Let p ∈ An with oordinates α = (α1, . . . , αn). For a monomial µ = ye11 · · · y

en
n ,we denote by shift(µ, α) the polynomial of k[x1, . . . , xn] de�ned by

shift(µ, α) = (x1 − α1)
e1 · · · (xn − αn)

en .We denote byMα the maximal ideal of k[x1, . . . , xn] generated by x1 − α1, . . . ,
xn − αn. When no onfusion is possible, we simply write F and f instead of F iand fi. We denote by eval(F, α) the polynomial

eval(F, α) =
∑

µ∈SF

NF(Fµ,Mα) shift(µ, α) (5)in k[x1, . . . , xn]. We all this the speialization of F at α. Let W ⊂ An be analgebrai set over k, that is, the zero set V (P ) in A
n of some P ⊂ k[x1, . . . , xn].Finally, onsider a family (fα, α ∈ W ) of polynomials of k[x1, . . . , xn].We say that F is an expansion of f about W if for every point α of W wehave f = eval(F,α). More generally, we say that F is an expansion of thepolynomial family (fα, α ∈ W ) about W if for every point α of W we have

fα = eval(F,α). We onlude this setion with a fundamental example ofthe onepts introdued below. For µ = ye1 · · · yen , we denote by c(f, µ) thepolynomial of k[x1, . . . , xn] de�ned by c(f, µ) = 1
e1!···en!

∂e1+···+enf

∂x
e1
1

···∂x
en
n

. (One shouldreognize these as the oe�ients in a Taylor expansion.) Let SC(f) be the setof the ye1 · · · yen monomials suh that ei ≤ deg(f, xi) holds for all i = 1, . . . , e.Then, the polynomial C(f) =
∑

µ∈SC(f) c(f, µ)µ is an expansion of f about W .5 Computing Intersetion Multipliities of BivariateSystems: Irreduible CaseWe follow the notations introdued in Setion 4. Let F 1, . . . , Fn be the expan-sions of f1, . . . , fn about an algebrai set W ⊂ A
n. In this setion, we assume

W = V (M) holds for a maximal idealM of k[x1, . . . , xn] and that n = 2 holds.Theorem 2. The intersetion multipliity of f1, f2 is the same at any pointof V (M); we denote it by I(M; f1, f2). Moreover, Algorithm 1 omputes thismultipliity from F 1, F 2 by performing arithmeti operations in k[x1, x2] only.



Algorithm 1: IM2(M;F 1, F 2)Input: F 1, F 2 ∈ k[x1, x2, y1, y2] andM⊂ k[x1, x2] maximal suh that F 1, F 2are expansions of f1, f2 ∈ k[x1, x2] about V (M) and 〈f1, f2〉 is azero-dimensional ideal.Output: I(M; f1, f2).1 if NF(F 1
1 ,M) 6= 0 then2 return 0;3 if NF(F 2
1 ,M) 6= 0 then4 return 0;5 r := deg(F 1

<y2
modM, y1);6 s := deg(F 2

<y2
modM, y1);7 if r = 0 then8 return tdeg(F 2

<y2
modM, y1) + IM2(M;

F1
−F1

<y2

y2
, F 2);9 if s = 0 then10 return tdeg(F 1

<y2
modM, y1) + IM2(M;F 1,

F2
−F2

<y2

y2
);11 a1 := lc(F 1

<y2
modM, y1);12 a2 := lc(F 2

<y2
modM, y1);13 if r ≤ s then14 let b1 ∈ k[x1, x2] suh that a1 b1 ≡ 1 modM;15 H := F 2 − a2b1y

s−r
1 F 1;16 return IM2(M;F 1, H);17 let b2 ∈ k[x1, x2] suh that a2 b2 ≡ 1 modM;18 H := F 1 − a1b2y

r−s
1 F 2;19 return IM2(M;H,F 2);This �rst laim in Theorem 2 should not surprise the expert reader. Thelength of the module OAn,p/ 〈f1, . . . , fn〉 over a non-algebraially losed �eldis not neessarily equal to the dimension as a k vetor spae, though lengthequals dimension when the �eld is algebraially losed. The dimension, however,remains the same over both k and k.Proof. We show that IM2(M;F 1, F 2), as returned by Algorithm 1, omputes

I(p; f1, f2) uniformly for all p ∈ V (M) and performs operations in k[x1, xn]only. Algorithm orretness and termination follows from three laims.Claim 1: If I(p; f1, f2) = 0 holds for some p ∈ V (M), then IM2(M;F 1, F 2)orretly returns 0.Claim 2: If I(p; f1, f2) > 0 holds for all p ∈ V (M), and if either deg(F 1
<y2

modM,
y1) = 0 or deg(F 2

<y2
modM, y1) = 0 holds, then IM2(M;F 1, F 2) orretlyinvokes IM2(M;G1, G2) where eah Gi ∈ k[x1, x2, y1, y2] is an expansion ofa polynomial family about V (M) suh that min(deg(G1, y2), deg(G

2, y2)) <
min(deg(F 1, y2), deg(F

2, y2)).Claim 3: If I(p; f1, f2) > 0 holds for all point p ∈ V (M), and if deg(F 1
<y2

modM,
y1) > 0 and deg(F 2

<y2
modM, y1) > 0 both hold, then the all IM2(M;F 1, F 2)



orretly invokes IM2(M;G1, G2) where eah Gi ∈ k[x1, x2, y1, y2] is an ex-pansions of a polynomial family about V (M) suh that min(deg(G1
<y2

, y1),
deg(G2

<y2
, y1) is stritly less than min(deg(F 1

<y2
, y1), deg(F

2
<y2

, y1).Proof (of Claim 1). Assume that there is p ∈ V (M) suh that I(p; f1, f2) = 0holds. From (2-2), this implies that we have p 6∈ V (f1, f2). SineM is maximal,we dedue that W ∩ V (f) = ∅ holds. Thus, the intersetion multipliity of f1, f2is null at any point of V (M). Moreover, deiding whether this latter fat holdsamounts to testing whether one of NF(F 1
1 ,M), NF(F 2

1 ,M) is zero or not, whihan be omputed in k[x1, x2] with a regular hain generatingM.Remark 1. From now on, we assume that I(p; f1, f2) > 0 holds for all p ∈ V (M).SineM is maximal, this implies that W ⊆ V (F 1
1 ) and W ⊆ V (F 2

1 ) both hold.Besides, the idealM is one of the assoiated primes of 〈f1, f2〉 ⊂ k[x1, x2].Proof (of Claim 2). Assume that either
deg

(

F 1
<y2

modM, y1
)

= 0 or deg
(

F 2
<y2

modM, y1
)

= 0holds. Sine the role of f1 and f2 an be exhanged, using (2-4), we assume that
deg(F 1

<y2
modM, y1) = 0 holds. Consider any point α = (α1, α2) of V (M).Sine F 1

1 is null moduloM, the relation deg(F 1
<y2

modM, y1) = 0 implies thatthe whole polynomial F 1
<y2

is atually null moduloM. Thus, the speialization
eval(F 1, α) an be divided by x2 − α2. Applying (2-6), we have

I(p; f1, f2) = I(p;x2 − α2, f2) + I(p; f1
x2−α2

, f2), (6)where I(p;x2 − α2, f2) is the trailing degree of f2 evaluated at x2 = α2 (via(2-5)). Sine F 1, F 2 are expansions of f1, f2 about V (M), Equation (6) yields
IM2(M;F 1, F 2) = tdeg(F 2

<y2
modM, y1) + IM2(M;

F 1
−F 1

<y2

y2
, F 2) (7)where tdeg(F 1

<y2
modM, y1) is the trailing degree of F 1

<y2
regarded as a poly-nomial in y1 with oe�ients in the �eld k[x1, x2]/M.Proof (of Claim 3). We assume that

deg(F 1
<y2

modM, y1) > 0 and deg(F 2
<y2

modM, y1) > 0both hold. Sine the role of f1 and f2 an be exhanged, using (2-4),
deg(F 1

<y2
modM, y1) ≤ deg(F 2

<y2
modM, y1)is assumed to hold. Let a1, a2 ∈ k[x1, x2] be polynomials and r ≤ s be positiveintegers suh that a1yr1 and a2y

s
1 are the leading terms of F 1

<y2
and F 2

<y2
regardedas polynomials in y1 with oe�ients in k[x1, x2]/M. Sine W ∩ V (a1) = ∅ holdsthere exists a polynomial b1 ∈ k[x1, x2] suh that we have a1 b1 ≡ 1 modM.De�ne H := F 2−a2b1y

s−r
1 F 1. Clearly, this an expansion of a polynomial family

(hα, α ∈ V (M)) about V (M) suh that we have eval(H,α) = hα where
hα := f2 − a2(α)b1(α)(x1 − α1)

s−rf1. (8)Using (2-7), we have I(p; f1, f2) = I(p; f1, hα), for all p ∈ V (M), yielding
IM2(M;F 1, F 2) = IM2(M;F 1, H). (9)



6 Computing Intersetion Multipliities of BivariateSystems: Zero-Dimensional CaseThe generalization from irreduible zero-dimensional algebrai sets V (M) toarbitrary ones relies on standard tehniques for omputing triangular deompo-sition of polynomial systems (see for instane [20, 10, 14, 19, 4℄).Algorithm 2 is the adaptation of Algorithm 1 for n = 2 variables. In thisalgorithm we use two yet unmentioned methods: LT and Tdeg, and one yetunmentioned language onstrut: output. Similar to Regularize, the all LT(F i,
T ), or leading term of F i modulo 〈T 〉, returns a list of pairs, (C, aF i ), where
C ⊂ k[x1, x2] is a regular hain and aF i is the lexiographial leading term of
F i when viewed as a polynomial in y1 < y2 with oe�ients in k[x1, x2]/〈C〉;moreover the union of V (C)'s form a partition of V (T ). The spei�ation forTDeg �trailing degree� is analogue. Finally, as we are returning a sequene weuse the language onstrut output(x, y) to indiate that (x, y) has been addedto the sequene that will ultimately be returned.Theorem 3. Algorithm 2 terminates and works orretly.Proof. We distinguish two ases: Algorithm 2 does not split the omputationsand does split the omputations. In this proof, C1, . . . , Ce ⊂ designate regularhains of k[x1, . . . , xn] suh that V (T ) is the disjoint union of V (C1),. . . ,V (Ce).Non-splitting ase: Assume that IM2(T ;F

1, F 2) omputed by Algorithm 2does not split the omputation, thus returning a single pair (T,m). Using Rela-tion (3), one an hek that IM2(Ci;F
1, F 2) returns (Ci,m), for eah i = 1, . . . , e.Assume that C1, . . . , Ce generate maximal ideals. One an hek that, when itdoes not split, Algorithm 2 performs the same omputation as Algorithm 1. Byvirtue of Theorem 2, Algorithm 1 works orretly with input maximal ideals, thuseah all IM2(Ci;F

1, F 2) orretly returns (Ci,m). Consequently, IM2(T ;F
1, F 2)orretly returns (T,m) also, sine is the disjoint union of V (C1),. . . ,V (Ce).Splitting ase: From now on, assume now that the all IM2(T ;F

1, F 2) om-puted by Algorithm 2 splits and returns pairs (C1,m1), . . . , (Ce,me), wherewe no longer assume that C1, . . . , Ce generate maximal ideals. From the non-splitting ase and Relation (3), we know that eah all IM2(Ci;F
1, F 2) orretlyreturns (Ci,m). We onlude again with the fat that V (T )7 Redution to the bivariate aseWe return to the n-variate ase, using the same notations as in Setions 3. Wedisuss how this n-variate ase an be redued to the bivariate one, for whihAlgorithm 2 omputes the intersetion multipliity of two plane urves (withoutommon omponents) at any point of their intersetion.We start by onsidering Property (n-8) of Setion 3. Let p ∈ V (f1, . . . , fn).Assume the hypersurfae hn = V (fn) is non-singular at p. Let vn be its tangenthyperplane at p. Assume furthermore that the tangent one TCp(C) intersets



Algorithm 2: IM2(T ;F
1, F 2)Input: F 1 and F 2 as given in Algorithm 1Output: Finitely many pairs (Ti,mi) where Ti ⊂ k[x1, . . . , xn] are regularhains and mi ∈ Z

+ suh that Equation (1) holds and for all
p ∈ V (T i) we have I(p; f1, . . . , fn) = mi.1 for T ∈ Regularize

(

F 1
1 , T

) do2 if F 1
1 6∈ 〈T 〉 then3 output(T, 0);4 else5 for T ∈ Regularize

(

F 2
1 , T

) do6 if F 2
1 6∈ 〈T 〉 then7 output(T, 0);8 else9 for (T, aF1) ∈ LT

(

F 1
<y2

, T
) do10 for (T, aF2) ∈ LT

(

F 2
<y2

, T
) do/* Wlog deg(F 1

<y2
) ≤ deg(F 2

<y2
) */11 if aF1 ∈ 〈T 〉 then12 for (T, d) ∈ TDeg

(

F 2
<y2

, T
) do13 for (T, i) ∈ IM2(T,

F1
−F1

<y2

y2
, F 2) do14 output(T, (d+ i));15 else16 H ← F 2 − aF2 · Inverse

(

a1
F , T

)

· F 1;17 output(IM2(T, F
1,H)

);
vn only at the point p. Let h ∈ k[x1, . . . , xn] be the degree 1 polynomial de�ning
vn. Finally, reall (Theorem 1) that I(p; f1, . . . , fn) = I(p; f1, . . . , fn−1, h) holds.Up to re-numbering the variables, we an assume that the oe�ient of xnin h is non-zero, thus h = xn − h′, where h′ ∈ k[x1, . . . , xn−1]. Hene, we anrewrite the ideal 〈f1, . . . , fn−1, h〉 as 〈g1, . . . , gn−1, h〉 where gi is obtained from
fi by substituting xn with h′. If instead of a point p, we have a zero-dimensionalregular hain T ⊂ k[x1, . . . , xn], we use the tehniques developed in Setions 5and 6 to redue to the ase of a point. Assuming x1 < · · · < xn, this leads to
I(p; f1, . . . , fn) = I(T ∩ k[x1, . . . , xn−1]; g1, . . . , gn−1).In pratie, this redution from n to n − 1 variables does not always apply.For instane, this is the ase for Ojika 2 ⊆ k[x, y, z]:

x2 + y + z − 1 = x+ y2 + z − 1 = x+ y + z2 − 1 = 0. (10)However, using the equation x2+y+z−1 = 0 to eliminate z from the other two,we obtain two bivariate polynomials f, g ∈ k[x, y]. At any point of p ∈ V (h, f, g)the tangent one of the urve V (f, g) is independent of z; in some sense it is



�vertial�. Moreover, at any point of p ∈ V (h, f, g) the tangent spae of V (h) isnot vertial. Thus, the redution applies without omputing any tangent ones.We onlude this setion by explaining how the tangent one TCp(C) is om-puted when the above trik does not apply. For simpliity, assume k = C andassume that none of the V (fi) are singular at p. For eah omponent G through
p of C = V (f1, . . . , fn−1), we proeed as follows: There exists a neighborhood Bof p suh that V (fi) is not singular at all q ∈ (B ∩ G) \ {p}, for i = 1, . . . , n− 1.Let vi(q) be the tangent hyperplane of V (fi) at q. Regard v1(q) ∩ · · · ∩ vn−1(q)as a parametri variety with the oordinates of q as parameters. Then, we have
TCp(G) = v1(q) ∩ · · · ∩ vn−1(q) when q approahes p, whih we ompute by avariable elimination proess. Finally, TCp(C) is the union of all the TCp(G). Thisapproah avoids standard basis omputation and extends easily for working withthe zero set V (T ) of a zero-dimensional regular hain T instead of a point p.8 ImplementationWe have done an implementation inMaple that depends heavily on the Regular-Chains library. As this implementation is su�iently di�erent from the theoretialalgorithm it is meaningful to disuss how we realized it.These di�erenes an be traed bak to a ommon origin: the data stru-ture simulating the expansions F i de�ned in Setion 4 for the purpose of thealgorithms of Setions 5 and 6. Reall that the expansions F 1, . . . , Fn belongto k[x1, . . . , xn, y1, . . . , yn] where x1, . . . , xn are the variables of the input poly-nomials f1, . . . , fn and where y1, . . . , yn are essentially �plaeholders�. But ouralgorithms fundamentally treat F 1, . . . , Fn as vetors, performing only additionsand subtrations on them.While these expansions F 1, . . . , Fn are a nie trik to manipulate �simultane-ously� Taylor expansions at several points of a variety, a naïve implementationould su�er from performane bottlenek (hardly surprisingly when doubling thenumber of variables). In partiular, we observe that during the exeution of thealgorithms, all the partial derivatives of f1, . . . , fn may not be needed. Therefore,one may wish to take advantage of lazy or delayed evaluation.A struture utilizing delayed omputation is well suited for this. To demon-strate why, suppose that F i is a data struture implementing F i suh that F i(a1,
. . . , an) = F i

µ for µ = ya1

1 · · · y
an
n . To determine F i(a1, . . . , an + 1) one mustonly ompute 1

an+1
∂Fi(ai,...,an)

∂xn
. Combining this rule with F i (a1, . . . , an−1, 0) =

F i (a1, . . . , an−1) and F i(0) = fi gives a reursive funtion whose output mathesour spei�ation. We all these �lazy Taylor expansions� (LTEs).Moreover these LTEs have a very useful property: F i (a1, . . . , an−1) ≡ F i
<yn

.They are also surprisingly straightforward to implement in Maple.Notie that the �data struture� for the LTEs are in fat proedures. There-fore any method proessing LTEs, like Subtrat for instane, will take as inputproedures and return a proedure. This notion may be unusual but requiresvery little overhead (pratially undetetable in our experiments). We outlinethe remaining important methods for our algorithms:



Division by yn:
F i(a1, . . . , an)

yn
= F i(a1, . . . , an + 1)Multipliation by µ: Let F i(a1, . . . , an) = 0 if there is i for whih ai < 0, then

F i(a1, . . . , an) ·
(

yb11 · · · y
bn
n

)

= F i(a1 − b1, . . . , an − bn)Substitute yn = h1y1 + · · · + hn−1yn−1. For every b1, . . . , bn with bn > 0,
F(b1, . . . , bn)← 0 and

F(a1 + k1, . . . , an−1 + kn−1)← F(a1, . . . , an−1)+

∑

k1+···+kn−1=bn

(

bn
k1, . . . , kn−1

)

hk1

1 · · ·h
kn−1

n−1 .Using these LTEs along with areful, and repeated, invoations of the Regu-larChains[Regularize℄ ommand, our algorithms an be realized.9 ExperimentsWe have fully implemented the bivariate ase, that is, Algorithm 2, on top of theRegularChains library inMaple. As this is the base ase for the n-variate algo-rithm it is of paramount importane that it runs fast and orretly. The n-variateimplementation is a work in progress and there is large room for improvements.We hoose to study systems taken from [2℄ and [13℄�a suite of examples usedfor benhmarking and testing bivariate system solvers. All timings are given inseonds and the base �eld has harateristi 962592769 in all ases. It should benoted that, despite 962592769 being a so-alled FFT-prime, we are not using theFastArithmetiTools pakage of the RegularChains library. This is beause oururrent implementation is only generi and works in any harateristi. However,some of the systems in [13℄ are too hallenging for being diretly solved in har-ateristi zero without using an approah based on modular, or other advaned,tehniques. Results are in Table 1.We are happy with the results of these experiments for two reasons. First,we ould not �nd an instane where Triangularize produed regular hains forwhih our algorithm IM2 ould not orretly and expeditiously determine theintersetion multipliities. Seondly, applying Property (2-5) from Setion 1 toour bivariate ode admits a speedup fator in the hundreds. Indeed this propertyenables us to determine if the intersetion multipliity is one simply by hekingthe invertibility of the Jaobian of f1, f2 modulo the urrent regular hain.Our n-variate implementation is based on the tehniques disussed in Se-tion 7. As with the bivariate ase, our experiments are done in harateristi962592769. We have taken examples from [7℄ (a paper on intersetion multipli-ity) and from [3℄ (a test suite for benhmarking homotopy solvers). Observe that



Table 1. (LEFT) Input Polynomials (after speialization to bivariate). (RIGHT)Experimental results for the bivariate ase. Dimension is alulated by Maple'sPolynomialIdeals:-NumberOfSolutions ommand whih gives the number of solutionsounted with multipliity. Time(△ize) is time required by RegularChains:-Triangularizeto deompose the system into N=#r's many regular hains and Time(r_im) =Time(r_im(rc1)) + · · ·+ Time(r_im(rcN )): the total time for r_im, our imple-mentation of Algorithm 3, to determine intersetion multipliities of an entire system.
Label Name terms degree
1 hard_one 30 37
2 L6_irles 4 24
3 spiral29_24 63 52
4 tryme 38 59
5 hallenge_12 49 30
6 hallenge_12_1 64 40
7 ompat_surf 52 18
8 degree_6_surf 467 42
9 mignotte_xy 81 64
10 SA_4_4_eps 63 33
11 spider 292 36

System Dim Time(△ize) #r's Time(r_im)
〈1, 3〉 888 9.7 20 19.2
〈1, 4〉 1456 226.0 8 9.023
〈1, 5〉 1595 169.4 8 25.4
〈3, 5〉 1413 22.5 27 28.6
〈4, 5〉 1781 218.4 9 13.9
〈5, 1〉 1759 113.0 10 15.8
〈6, 8〉 1680 99.7 12 37.6
〈6, 9〉 2560 299.3 10 22.9
〈6, 10〉 1320 131.9 7 8.4
〈6, 11〉 1440 59.8 17 27.5
〈7, 8〉 1152 32.8 12 16.2
〈7, 9〉 756 18.5 16 11.2
〈8, 9〉 1984 374.5 10 11.3
〈8, 10〉 1362 232.5 7 9.3
〈8, 11〉 1256 49.6 17 45.7
〈9, 11〉 1792 115.1 16 17.2
〈10, 11〉 1180 40.9 17 21.3Table 2. Experimental results for the n-variate ase. Dimension is again the dimen-sion of the vetor spae k[x1, . . . , xn]/〈f1, . . . , fn〉 and Points is the degree of the variety

V (f1, . . . , fn). △ize and r_im are the same as in Table 1. Cones and COV give (re-spetively) the time to alulate the tangent ones or to do a hange of variables ofthe system. Finally, Total is the sum of the previous three olumns and Suess isthe number of points (ounted with multipliity) for whih the bivariate redution wassuess full over the dimension of of the vetor spae k[x1, . . . , xn]/〈f1, . . . , fn〉.Name Dim Points △ize Cones COV r_im Total SuessNbody5 99 49 1.60 0.00 0.06 1.90 2.00 51/99mth191 27 18 0.56 5400.00 0.04 0.01 5400.00 23/27ojika2 8 5 0.20 8.20 0.13 0.47 8.80 8/8E-Arnold1 45 30 0.89 1100.00 0.01 1800.00 2900.00 45/45ShiftedCubes 27 25 0.66 0.00 0.00 0.52 0.52 27/27
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