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ien
e, University of Western OntarioAbstra
t. As pointed out by Fulton in his Interse
tion Theory, the in-terse
tion multipli
ities of two plane 
urves V (f) and V (g) satisfy a seriesof 7 properties whi
h uniquely de�ne I(p; f, g) at ea
h point p ∈ V (f, g).Moreover, the proof of this remarkable fa
t is 
onstru
tive, whi
h leadsto an algorithm, that we 
all Fulton's Algorithm. This 
onstru
tion, how-ever, does not generalize to n polynomials f1, . . . , fn. Another pra
ti
allimitation, when targeting a 
omputer implementation, is the fa
t thatthe 
oordinates of the point p must be in the �eld of the 
oe�
ients of
f1, . . . , fn. In this paper, we adapt Fulton's Algorithm su
h that it 
anwork at any point of V (f, g), rational or not. In addition, we proposealgorithmi
 
riteria for redu
ing the 
ase of n variables to the bivariateone. Experimental results are also reported.1 Introdu
tionIntuitively, the interse
tion multipli
ity of two plane 
urves 
ounts the number oftimes these 
urves interse
t. There are more formal ways to de�ne this number.The following one is 
ommonly used, see for instan
e [9, 11, 12, 6, 18℄. Given anarbitrary �eld k and two bivariate polynomials f, g ∈ k[x, y], 
onsider the a�nealgebrai
 
urves C := V (f) and D := V (g) in A2 = k

2, where k is the algebrai

losure of k. Let p be a point in the interse
tion. The interse
tion multipli
ity of
p in V (f, g) is de�ned to be

I(p; f, g) := dimk(OA2,p/ 〈f, g〉)where OA2,p and dimk(OA2,p/ 〈f, g〉) are the lo
al ring at p and the dimension ofthe ve
tor spa
e OA2,p/ 〈f, g〉. The interse
tion multipli
ity of two plane 
urvesat a point admits many properties. Among them are the seven below, whi
h areproved in [9, Se
tion 3-3℄ as well as in [11, 12℄.(2-1) I(p; f, g) is a non-negative integer for any C, D, and p su
h that C and Dhave no 
ommon 
omponent at p. We set I(p; f, g) =∞ if C and D have a
ommon 
omponent at p.(2-2) I(p; f, g) = 0 if and only if p /∈ C ∩D.(2-3) I(p; f, g) is invariant under a�ne 
hange of 
oordinates on A2.(2-4) I(p; f, g) = I(p; g, f).



(2-5) I(p; f, g) is greater or equal to the produ
t of the multipli
ity (see [9, �3.1℄)of p in f and g, with equality o

urring if and only if C and D have notangent lines in 
ommon at p.(2-6) I(p; f, gh) = I(p; f, g) + I(p; f, h) for all h ∈ k[x, y].(2-7) I(p; f, g) = I(p; f, g + hf) for all h ∈ k[x, y].Remarkably, Properties (2-1) through (2-7) uniquely determine I(p; f, g). Thisobservation is made by Fulton in [9, Se
tion 3-3℄ where he exhibits an algorithmfor 
omputing I(p; f, g) using (2-1) through (2-7) as rewrite rules.In order to obtain a pra
ti
al implementation of this algorithm, a main ob-sta
le must be over
ome. To understand it, let us �rst re
all that 
omputeralgebra systems e�
iently manipulate multivariate polynomials whenever their
oe�
ients are in the �eld of rational numbers or in a prime �eld. In parti
u-lar, popular algorithms for de
omposing the algebrai
 variety V (f1, . . . , fn) with
f1, . . . , fn ∈ k[x1, . . . , xn] rely only on operations in the �eld k, thus avoidingto manipulate non-rational numbers, that is, elements of k \ k. For instan
e,algorithms su
h as those of [4℄ represent the variety V (f1, . . . , fn) (whi
h is asubset of kn) with �nitely many regular 
hains T1, . . . , Te of k[x1, . . . , xn] su
hthat we have

V (f1, . . . , fn) = V (T1) ∪ · · · ∪ V (Te). (1)Now, observe that the interse
tion multipli
ity I(p; f1, . . . , fn) of f1, . . . , fn at apoint p is truly a lo
al notion, while ea
h of the V (Ti) may 
onsist of more thanone point, even if Ti generates a maximal ideal of k[x1, . . . , xn]. Therefore, inorder to use regular 
hains for 
omputing interse
tion multipli
ities, one needsto be able to 
ompute �simultaneously� all the I(p; f1, . . . , fn) for p ∈ V (Ti)In Se
tion 5 we propose an algorithm a
hieving the following task in thebivariate 
ase: given M ⊂ k[x, y] a maximal ideal, 
ompute the 
ommon valueof all I(p; f, g) for p ∈ V (M). In Se
tion 6, we relax the assumption ofM beingmaximal and require only that a zero-dimensional regular 
hain T ⊂ k[x, y]generates M. However, in this 
ase, the values of I(p; f, g) for p ∈ V (T ) maynot be all the same. This situation is handled via splitting te
hniques as in [4℄.Thus, for n = 2, we obtain a pro
edure TriangularizeWithMultipli
ity(f1, . . . , fn)whi
h returns �nitely many pairs (T1,m1), . . . , (Te,me) where T1, . . . , Te ⊂ k[x1,
. . . , xn] are regular 
hains and m1, . . . ,me are non-negative integers satisfyingEquation (1) and for ea
h i = 1, . . . , e, we have

(∀p ∈ V (Ti)) I(p; f1, . . . , fn) = mi. (2)We are also interested in generalizing Fulton's Algorithm to n multivariatepolynomials in n variables�our ultimate goal being an algorithm that realizesthe above spe
i�
ation for n ≥ 2.We denote by An the n-dimensional a�ne spa
e over k. Let f1, . . . , fn ∈ k[x1,
. . . , xn] be n polynomials generating a zero-dimensional ideal with (ne
essarily�nite) zero set V (f1, . . . , fn) ⊂ An. Let p be a point in the interse
tion V (f1) ∩
· · ·∩V (fn), that is, V (f1, . . . , fn). The interse
tion multipli
ity of p in V (f1, . . . ,
fn) is the generalization of the 2-variable 
ase (as in [6, 18℄)

I(p; f1, . . . , fn) := dimk (OAn,p/ 〈f1, . . . , fn〉) ,



where OAn,p and dimk(OAn,p/ 〈f1, . . . , fn〉) are (respe
tively) the lo
al ring atthe point p and the dimension of the ve
tor spa
e OAn,p/ 〈f1, . . . , fn〉.Among the key points in the proof of Fulton's algorithmi
 
onstru
tion is that
k[x1] is a prin
ipal ideal domain. Fulton uses Property (2-7) in an eliminationpro
ess similar to that of the Eu
lidean Algorithm. Sin
e k[x1, . . . , xn−1] is nolonger a PID for n ≥ 3, there is no natural generalization of (2-1) through (2-7)to the n-variate setting (up to our knowledge) that would lead to an algorithmfor 
omputing I(p; f1, . . . , fn).To over
ome this obsta
le, at least for some pra
ti
al examples, we proposean algorithmi
 
riterion to redu
e the n-variate 
ase to that of n− 1 variables.This redu
tion requires two hypotheses: V (fn) is non-singular at p, and thetangent 
one of V (f1, . . . , fn−1) at p and the tangent hyperplane of V (fn) at pmeet only at the point p. The se
ond hypothesis ensures that ea
h 
omponentof the 
urve V (f1, . . . , fn−1) meets the hypersurfa
e V (fn) without tangen
y at
p. This transversality assumption yields a redu
tion from n to n − 1 variablesproved with Theorem 1.In Se
tion 7, we dis
uss this redu
tion in detail. In parti
ular, we proposea te
hnique whi
h, in some 
ases, repla
es f1, . . . , fn by polynomials g1, . . . , gngenerating the same ideal and for whi
h the hypotheses of the redu
tion hold.Finally, in Se
tion 8 we give details on implementing the algorithms herein andin Se
tion 9 we report on our experimentation for both the bivariate 
ase andthe te
hniques of Se
tion 7.We 
on
lude this introdu
tion with a brief review of related works. In [5℄,the Authors report on an algorithm with the same spe
i�
ation as the aboveTriangularizeWithMultipli
ity(f1, . . . , fn). Their algorithm requires, however, thatthe number of input polynomials is 2. In [17℄, the Authors outline an algorithmwith similar spe
i�
ations as ours. However, this algorithm is not 
omplete,even in the bivariate 
ase, in the sense that it may not 
ompute the interse
tionmultipli
ities of all regular 
hains in a triangular de
omposition of V (f1, . . . , fn).In addition, our approa
h is novel thanks to an important feature whi
hmakes it more attra
tive in terms of performan
e. We �rst 
ompute a triangularde
omposition of V (f1, . . . , fn) (by any available method) thus without trying to�preserve� any multipli
ity information. Then, on
e V (f1, . . . , fn) is de
omposedwe work �lo
ally� at ea
h regular 
hain. This enables us to qui
kly dis
over points
p of interse
tion multipli
ity one by 
he
king whether the Ja
obian matrix of f1,
. . . , fn is invertible at p. We have observed experimentally that this strategyleads to massive speedup.2 Regular ChainsIn this se
tion, we re
all the notions of a regular 
hain. From now on we assumethat the variables of the polynomial ring k[x1, . . . , xn] are ordered as xn > · · · >
x1. For a non-
onstant f ∈ k[x1, . . . , xn], the main variable of f is the largestvariable appearing in f , while the initial of f is the leading 
oe�
ient of fw.r.t. the main variable of f . Let T ⊂ k[x1, . . . , xn] be a set of n non 
onstant



polynomials. We say that T is triangular if the main variables of the elementsof T are pairwise di�erent. Let ti be the polynomial of T with main variable xi.We say that T is a (zero-dimensional) regular 
hain if, for i = 2, . . . , n the initialof ti is invertible modulo the ideal 〈t1, . . . , ti−1〉. Regular 
hains are also de�nedin positive dimension, see [1, 15℄.For any maximal ideal M of k[x1, . . . ,xn] there exists a regular 
hain TgeneratingM, see [14℄. Therefore, for any zero-dimensional ideal I of k[x1, . . . ,
xn] there exist �nitely many regular 
hains T1, . . . , Te ⊂ k[x1, . . . , xn] su
hthat we have V (I) = V (T1) ∪ · · · ∪ V (Te). Various algorithms, among themthose published in [20, 10, 14, 19, 4℄, 
ompute su
h de
ompositions. The Trian-gularize 
ommand of the RegularChains library [16℄ in Maple implements thede
omposition algorithm of [4℄. This library also implements another algorithmof [4℄ that we will use in this paper and whi
h is spe
i�ed hereafter. For aregular 
hain T ⊂ k[x1, . . . , xn] and a polynomial p ∈ k[x1, . . . , xn], the opera-tion Regularize(p, T ) returns regular 
hains T1, . . . , Te ⊂ k[x1, . . . , xn] su
h thatwe have V (T ) = V (T1) ∪ · · · ∪ V (Te) and for all i = 1, . . . , e we have either
V (p) ∩ V (Ti) = ∅ or V (T ) ⊂ V (p). We will make use of the following resultwhi
h 
an easily be derived from [4℄: if Regularize(p, T ) returns T1, . . . , Te, thenwe have

(∀p ∈ V (Ti)) Regularize(p, Ti) = Ti. (3)3 Interse
tion Multipli
ityAs above, let f1, . . . , fn ∈ k[x1, . . . , xn] be n polynomials in n variables su
h thatthe ideal 〈f1, . . . , fn〉 they generate is zero-dimensional. Let p ∈ V (f1, . . . , fn)and denote the maximal ideal at p byMp. When needed, denote the 
oordinatesof p by (α1, . . . , αn), so that we haveMp = 〈x1 − α1, . . . , xn − αn〉.De�nition 1. The interse
tion multipli
ity of p in V (f1, . . . , fn) is given bythe length of OAn,p/ 〈f1, . . . , fn〉 as an OAn,p-module.Sin
e we 
onsider An as de�ned over the algebrai
ally 
losed �eld k, we know(see, for instan
e, [8℄) that the length of this module is equal to its dimensionas a k ve
tor spa
e, whi
h is pre
isely the de�nition of Se
tion 1. Our algorithmdepends on the fa
t that the interse
tion multipli
ity satis�es a generalized 
ol-le
tion of properties similar to (2-1) through (2-7) for the bi-variate 
ase. Theyare the following:(n-1) I(p; f1, . . . , fn) is a non-negative integer.(n-2) I(p; f1, . . . , fn) = 0 if and only if p /∈ V (f1, . . . , fn).(n-3) I(p; f1, . . . , fn) is invariant under a�ne 
hange of 
oordinates on An.(n-4) I(p; f1, . . . , fn) = I(p; fσ(1), . . . , fσ(n)) for any σ ∈ Sn.(n-5) I(p; (x1−α1)
m1 , . . . , (xn−αn)

mn) = m1 · · ·mn, for all non-negative integers
m1, . . . ,mn.(n-6) If g, h ∈ k[x1, . . . , xn] make f1, . . . , fn−1, gh a zero-dimensional, then I(p; f1,
. . . , fn−1, gh) = I(p; f1, . . . , fn−1, g) + I(p; f1, . . . , fn−1, h) holds.



(n-7) I(p; f1, . . . , fn−1, g) = I(p; f1, . . . , fn−1, g + h) for all h ∈ 〈f1, . . . , fn−1〉.In order to redu
e the 
ase of n variables (and n polynomials) to that of n−1variables (see Se
tion 7) we require an additional property when n > 2. Of 
ourse,the assumptions ne
essary for this property may not hold for every polynomialsystem. However, we dis
uss in Se
tion 7 a te
hnique that 
an over
ome thislimitation for some pra
ti
al examples.(n-8) Assume the hypersurfa
e hn = V (fn) is non-singular at p. Let vn be itstangent hyperplane at p. Assume furthermore that hn meets ea
h 
omponentof the 
urve C = V (f1, . . . , fn−1) transversely, that is, the tangent 
one
TCp(C) interse
ts vn only at the point p. Let h ∈ k[x1, . . . , xn] be the degree1 polynomial de�ning vn. Then, we have

I(p; f1, . . . , fn) = I(p; f1, . . . , fn−1, hn).Re
all that the tangent 
one TCp(C) 
an be thought of as the set of tangentsgiven by limiting the se
ants to C passing through p. If g1, . . . , gs ∈ k[x1, . . . , xn]are polynomials generating the radi
al of the ideal 〈f1, . . . , fn−1〉, then TCp(C)is also given by TCp(C) = 〈in(g1), . . . , in(gs)〉 where in(gi), for i = 1, . . . , s, isthe initial form of gi, that is, the homogeneous 
omponent of gi of the lowestdegree.Theorem 1. I(p; f1, . . . , fn) satis�es the properties (n-1) through (n-8).Proof. For the �rst seven properties, adapting the proofs of [9, 12℄ is routine,ex
ept for (n-6), and we omit them for spa
e 
onsideration. For (n-6) and (n-8),as well as the others, the reader is refered to our te
hni
al report with the sametitle and available in the Computing Resear
h Repository (CoRR).4 Expansion of a Polynomial Family about at anAlgebrai
 SetThe tools introdu
ed herein help build an algorithm for 
omputing the interse
-tion multipli
ity of f1, . . . , fn at any point of V (f1, . . . , fn), whenever the ideal
〈f1, . . . , fn〉 is zero-dimensional and when, for n > 2, 
ertain hypothesis are met.Let y1, . . . , yn be n new variables with ordering yn > · · · > y1. Let F 1,
. . . , Fn ∈ k[x1, . . . , xn, y1, . . . , yn] be polynomials in x1, . . . , xn, y1, . . . , yn with
oe�
ients in k. We order the monomials in y1, . . . , yn (resp. x1, . . . , xn) withthe lexi
ographi
al term order indu
ed by yn > · · · > y1 (resp. xn > · · · > x1).We denote by SF 1 , . . . , SFn the respe
tive monomial supports (i.e. the set ofmonomials with non-zero 
oe�
ients) of F 1, . . . , Fn, regarded as polynomials inthe variables y1, . . . , yn and with 
oe�
ients in k[x1, . . . , xn]. Let i be any integerindex in 1, . . . , n. Write

F i =
∑

µ∈S
Fi

F i
µµ, (4)



where all F i
µ are polynomials of k[x1, . . . , xn]. In parti
ular, the F i

1 represent F i
µwhen µ = y01 · · · y

0
n = 1. Denote by F i

<yn
the polynomial of k[x1, . . . , xn][y1, . . . ,

yn−1] de�ned by
F i
<yn

=
∑

µ ∈ Si
Fdeg(µ, yn) = 0

F i
µµ.Let I be a (proper) ideal of k[x1, . . . , xn]. We denote by NF(f, I) the normalform of f w.r.t. the redu
ed lexi
ographi
al Gröbner basis of I for xn > · · · > x1.Let p ∈ An with 
oordinates α = (α1, . . . , αn). For a monomial µ = ye11 · · · y

en
n ,we denote by shift(µ, α) the polynomial of k[x1, . . . , xn] de�ned by

shift(µ, α) = (x1 − α1)
e1 · · · (xn − αn)

en .We denote byMα the maximal ideal of k[x1, . . . , xn] generated by x1 − α1, . . . ,
xn − αn. When no 
onfusion is possible, we simply write F and f instead of F iand fi. We denote by eval(F, α) the polynomial

eval(F, α) =
∑

µ∈SF

NF(Fµ,Mα) shift(µ, α) (5)in k[x1, . . . , xn]. We 
all this the spe
ialization of F at α. Let W ⊂ An be analgebrai
 set over k, that is, the zero set V (P ) in A
n of some P ⊂ k[x1, . . . , xn].Finally, 
onsider a family (fα, α ∈ W ) of polynomials of k[x1, . . . , xn].We say that F is an expansion of f about W if for every point α of W wehave f = eval(F,α). More generally, we say that F is an expansion of thepolynomial family (fα, α ∈ W ) about W if for every point α of W we have

fα = eval(F,α). We 
on
lude this se
tion with a fundamental example ofthe 
on
epts introdu
ed below. For µ = ye1 · · · yen , we denote by c(f, µ) thepolynomial of k[x1, . . . , xn] de�ned by c(f, µ) = 1
e1!···en!

∂e1+···+enf

∂x
e1
1

···∂x
en
n

. (One shouldre
ognize these as the 
oe�
ients in a Taylor expansion.) Let SC(f) be the setof the ye1 · · · yen monomials su
h that ei ≤ deg(f, xi) holds for all i = 1, . . . , e.Then, the polynomial C(f) =
∑

µ∈SC(f) c(f, µ)µ is an expansion of f about W .5 Computing Interse
tion Multipli
ities of BivariateSystems: Irredu
ible CaseWe follow the notations introdu
ed in Se
tion 4. Let F 1, . . . , Fn be the expan-sions of f1, . . . , fn about an algebrai
 set W ⊂ A
n. In this se
tion, we assume

W = V (M) holds for a maximal idealM of k[x1, . . . , xn] and that n = 2 holds.Theorem 2. The interse
tion multipli
ity of f1, f2 is the same at any pointof V (M); we denote it by I(M; f1, f2). Moreover, Algorithm 1 
omputes thismultipli
ity from F 1, F 2 by performing arithmeti
 operations in k[x1, x2] only.



Algorithm 1: IM2(M;F 1, F 2)Input: F 1, F 2 ∈ k[x1, x2, y1, y2] andM⊂ k[x1, x2] maximal su
h that F 1, F 2are expansions of f1, f2 ∈ k[x1, x2] about V (M) and 〈f1, f2〉 is azero-dimensional ideal.Output: I(M; f1, f2).1 if NF(F 1
1 ,M) 6= 0 then2 return 0;3 if NF(F 2
1 ,M) 6= 0 then4 return 0;5 r := deg(F 1

<y2
modM, y1);6 s := deg(F 2

<y2
modM, y1);7 if r = 0 then8 return tdeg(F 2

<y2
modM, y1) + IM2(M;

F1
−F1

<y2

y2
, F 2);9 if s = 0 then10 return tdeg(F 1

<y2
modM, y1) + IM2(M;F 1,

F2
−F2

<y2

y2
);11 a1 := lc(F 1

<y2
modM, y1);12 a2 := lc(F 2

<y2
modM, y1);13 if r ≤ s then14 let b1 ∈ k[x1, x2] su
h that a1 b1 ≡ 1 modM;15 H := F 2 − a2b1y

s−r
1 F 1;16 return IM2(M;F 1, H);17 let b2 ∈ k[x1, x2] su
h that a2 b2 ≡ 1 modM;18 H := F 1 − a1b2y

r−s
1 F 2;19 return IM2(M;H,F 2);This �rst 
laim in Theorem 2 should not surprise the expert reader. Thelength of the module OAn,p/ 〈f1, . . . , fn〉 over a non-algebrai
ally 
losed �eldis not ne
essarily equal to the dimension as a k ve
tor spa
e, though lengthequals dimension when the �eld is algebrai
ally 
losed. The dimension, however,remains the same over both k and k.Proof. We show that IM2(M;F 1, F 2), as returned by Algorithm 1, 
omputes

I(p; f1, f2) uniformly for all p ∈ V (M) and performs operations in k[x1, xn]only. Algorithm 
orre
tness and termination follows from three 
laims.Claim 1: If I(p; f1, f2) = 0 holds for some p ∈ V (M), then IM2(M;F 1, F 2)
orre
tly returns 0.Claim 2: If I(p; f1, f2) > 0 holds for all p ∈ V (M), and if either deg(F 1
<y2

modM,
y1) = 0 or deg(F 2

<y2
modM, y1) = 0 holds, then IM2(M;F 1, F 2) 
orre
tlyinvokes IM2(M;G1, G2) where ea
h Gi ∈ k[x1, x2, y1, y2] is an expansion ofa polynomial family about V (M) su
h that min(deg(G1, y2), deg(G

2, y2)) <
min(deg(F 1, y2), deg(F

2, y2)).Claim 3: If I(p; f1, f2) > 0 holds for all point p ∈ V (M), and if deg(F 1
<y2

modM,
y1) > 0 and deg(F 2

<y2
modM, y1) > 0 both hold, then the 
all IM2(M;F 1, F 2)




orre
tly invokes IM2(M;G1, G2) where ea
h Gi ∈ k[x1, x2, y1, y2] is an ex-pansions of a polynomial family about V (M) su
h that min(deg(G1
<y2

, y1),
deg(G2

<y2
, y1) is stri
tly less than min(deg(F 1

<y2
, y1), deg(F

2
<y2

, y1).Proof (of Claim 1). Assume that there is p ∈ V (M) su
h that I(p; f1, f2) = 0holds. From (2-2), this implies that we have p 6∈ V (f1, f2). Sin
eM is maximal,we dedu
e that W ∩ V (f) = ∅ holds. Thus, the interse
tion multipli
ity of f1, f2is null at any point of V (M). Moreover, de
iding whether this latter fa
t holdsamounts to testing whether one of NF(F 1
1 ,M), NF(F 2

1 ,M) is zero or not, whi
h
an be 
omputed in k[x1, x2] with a regular 
hain generatingM.Remark 1. From now on, we assume that I(p; f1, f2) > 0 holds for all p ∈ V (M).Sin
eM is maximal, this implies that W ⊆ V (F 1
1 ) and W ⊆ V (F 2

1 ) both hold.Besides, the idealM is one of the asso
iated primes of 〈f1, f2〉 ⊂ k[x1, x2].Proof (of Claim 2). Assume that either
deg

(

F 1
<y2

modM, y1
)

= 0 or deg
(

F 2
<y2

modM, y1
)

= 0holds. Sin
e the role of f1 and f2 
an be ex
hanged, using (2-4), we assume that
deg(F 1

<y2
modM, y1) = 0 holds. Consider any point α = (α1, α2) of V (M).Sin
e F 1

1 is null moduloM, the relation deg(F 1
<y2

modM, y1) = 0 implies thatthe whole polynomial F 1
<y2

is a
tually null moduloM. Thus, the spe
ialization
eval(F 1, α) 
an be divided by x2 − α2. Applying (2-6), we have

I(p; f1, f2) = I(p;x2 − α2, f2) + I(p; f1
x2−α2

, f2), (6)where I(p;x2 − α2, f2) is the trailing degree of f2 evaluated at x2 = α2 (via(2-5)). Sin
e F 1, F 2 are expansions of f1, f2 about V (M), Equation (6) yields
IM2(M;F 1, F 2) = tdeg(F 2

<y2
modM, y1) + IM2(M;

F 1
−F 1

<y2

y2
, F 2) (7)where tdeg(F 1

<y2
modM, y1) is the trailing degree of F 1

<y2
regarded as a poly-nomial in y1 with 
oe�
ients in the �eld k[x1, x2]/M.Proof (of Claim 3). We assume that

deg(F 1
<y2

modM, y1) > 0 and deg(F 2
<y2

modM, y1) > 0both hold. Sin
e the role of f1 and f2 
an be ex
hanged, using (2-4),
deg(F 1

<y2
modM, y1) ≤ deg(F 2

<y2
modM, y1)is assumed to hold. Let a1, a2 ∈ k[x1, x2] be polynomials and r ≤ s be positiveintegers su
h that a1yr1 and a2y

s
1 are the leading terms of F 1

<y2
and F 2

<y2
regardedas polynomials in y1 with 
oe�
ients in k[x1, x2]/M. Sin
e W ∩ V (a1) = ∅ holdsthere exists a polynomial b1 ∈ k[x1, x2] su
h that we have a1 b1 ≡ 1 modM.De�ne H := F 2−a2b1y

s−r
1 F 1. Clearly, this an expansion of a polynomial family

(hα, α ∈ V (M)) about V (M) su
h that we have eval(H,α) = hα where
hα := f2 − a2(α)b1(α)(x1 − α1)

s−rf1. (8)Using (2-7), we have I(p; f1, f2) = I(p; f1, hα), for all p ∈ V (M), yielding
IM2(M;F 1, F 2) = IM2(M;F 1, H). (9)



6 Computing Interse
tion Multipli
ities of BivariateSystems: Zero-Dimensional CaseThe generalization from irredu
ible zero-dimensional algebrai
 sets V (M) toarbitrary ones relies on standard te
hniques for 
omputing triangular de
ompo-sition of polynomial systems (see for instan
e [20, 10, 14, 19, 4℄).Algorithm 2 is the adaptation of Algorithm 1 for n = 2 variables. In thisalgorithm we use two yet unmentioned methods: LT and Tdeg, and one yetunmentioned language 
onstru
t: output. Similar to Regularize, the 
all LT(F i,
T ), or leading term of F i modulo 〈T 〉, returns a list of pairs, (C, aF i ), where
C ⊂ k[x1, x2] is a regular 
hain and aF i is the lexi
ographi
al leading term of
F i when viewed as a polynomial in y1 < y2 with 
oe�
ients in k[x1, x2]/〈C〉;moreover the union of V (C)'s form a partition of V (T ). The spe
i�
ation forTDeg �trailing degree� is analogue. Finally, as we are returning a sequen
e weuse the language 
onstru
t output(x, y) to indi
ate that (x, y) has been addedto the sequen
e that will ultimately be returned.Theorem 3. Algorithm 2 terminates and works 
orre
tly.Proof. We distinguish two 
ases: Algorithm 2 does not split the 
omputationsand does split the 
omputations. In this proof, C1, . . . , Ce ⊂ designate regular
hains of k[x1, . . . , xn] su
h that V (T ) is the disjoint union of V (C1),. . . ,V (Ce).Non-splitting 
ase: Assume that IM2(T ;F

1, F 2) 
omputed by Algorithm 2does not split the 
omputation, thus returning a single pair (T,m). Using Rela-tion (3), one 
an 
he
k that IM2(Ci;F
1, F 2) returns (Ci,m), for ea
h i = 1, . . . , e.Assume that C1, . . . , Ce generate maximal ideals. One 
an 
he
k that, when itdoes not split, Algorithm 2 performs the same 
omputation as Algorithm 1. Byvirtue of Theorem 2, Algorithm 1 works 
orre
tly with input maximal ideals, thusea
h 
all IM2(Ci;F

1, F 2) 
orre
tly returns (Ci,m). Consequently, IM2(T ;F
1, F 2)
orre
tly returns (T,m) also, sin
e is the disjoint union of V (C1),. . . ,V (Ce).Splitting 
ase: From now on, assume now that the 
all IM2(T ;F

1, F 2) 
om-puted by Algorithm 2 splits and returns pairs (C1,m1), . . . , (Ce,me), wherewe no longer assume that C1, . . . , Ce generate maximal ideals. From the non-splitting 
ase and Relation (3), we know that ea
h 
all IM2(Ci;F
1, F 2) 
orre
tlyreturns (Ci,m). We 
on
lude again with the fa
t that V (T )7 Redu
tion to the bivariate 
aseWe return to the n-variate 
ase, using the same notations as in Se
tions 3. Wedis
uss how this n-variate 
ase 
an be redu
ed to the bivariate one, for whi
hAlgorithm 2 
omputes the interse
tion multipli
ity of two plane 
urves (without
ommon 
omponents) at any point of their interse
tion.We start by 
onsidering Property (n-8) of Se
tion 3. Let p ∈ V (f1, . . . , fn).Assume the hypersurfa
e hn = V (fn) is non-singular at p. Let vn be its tangenthyperplane at p. Assume furthermore that the tangent 
one TCp(C) interse
ts



Algorithm 2: IM2(T ;F
1, F 2)Input: F 1 and F 2 as given in Algorithm 1Output: Finitely many pairs (Ti,mi) where Ti ⊂ k[x1, . . . , xn] are regular
hains and mi ∈ Z

+ su
h that Equation (1) holds and for all
p ∈ V (T i) we have I(p; f1, . . . , fn) = mi.1 for T ∈ Regularize

(

F 1
1 , T

) do2 if F 1
1 6∈ 〈T 〉 then3 output(T, 0);4 else5 for T ∈ Regularize

(

F 2
1 , T

) do6 if F 2
1 6∈ 〈T 〉 then7 output(T, 0);8 else9 for (T, aF1) ∈ LT

(

F 1
<y2

, T
) do10 for (T, aF2) ∈ LT

(

F 2
<y2

, T
) do/* Wlog deg(F 1

<y2
) ≤ deg(F 2

<y2
) */11 if aF1 ∈ 〈T 〉 then12 for (T, d) ∈ TDeg

(

F 2
<y2

, T
) do13 for (T, i) ∈ IM2(T,

F1
−F1

<y2

y2
, F 2) do14 output(T, (d+ i));15 else16 H ← F 2 − aF2 · Inverse

(

a1
F , T

)

· F 1;17 output(IM2(T, F
1,H)

);
vn only at the point p. Let h ∈ k[x1, . . . , xn] be the degree 1 polynomial de�ning
vn. Finally, re
all (Theorem 1) that I(p; f1, . . . , fn) = I(p; f1, . . . , fn−1, h) holds.Up to re-numbering the variables, we 
an assume that the 
oe�
ient of xnin h is non-zero, thus h = xn − h′, where h′ ∈ k[x1, . . . , xn−1]. Hen
e, we 
anrewrite the ideal 〈f1, . . . , fn−1, h〉 as 〈g1, . . . , gn−1, h〉 where gi is obtained from
fi by substituting xn with h′. If instead of a point p, we have a zero-dimensionalregular 
hain T ⊂ k[x1, . . . , xn], we use the te
hniques developed in Se
tions 5and 6 to redu
e to the 
ase of a point. Assuming x1 < · · · < xn, this leads to
I(p; f1, . . . , fn) = I(T ∩ k[x1, . . . , xn−1]; g1, . . . , gn−1).In pra
ti
e, this redu
tion from n to n − 1 variables does not always apply.For instan
e, this is the 
ase for Ojika 2 ⊆ k[x, y, z]:

x2 + y + z − 1 = x+ y2 + z − 1 = x+ y + z2 − 1 = 0. (10)However, using the equation x2+y+z−1 = 0 to eliminate z from the other two,we obtain two bivariate polynomials f, g ∈ k[x, y]. At any point of p ∈ V (h, f, g)the tangent 
one of the 
urve V (f, g) is independent of z; in some sense it is



�verti
al�. Moreover, at any point of p ∈ V (h, f, g) the tangent spa
e of V (h) isnot verti
al. Thus, the redu
tion applies without 
omputing any tangent 
ones.We 
on
lude this se
tion by explaining how the tangent 
one TCp(C) is 
om-puted when the above tri
k does not apply. For simpli
ity, assume k = C andassume that none of the V (fi) are singular at p. For ea
h 
omponent G through
p of C = V (f1, . . . , fn−1), we pro
eed as follows: There exists a neighborhood Bof p su
h that V (fi) is not singular at all q ∈ (B ∩ G) \ {p}, for i = 1, . . . , n− 1.Let vi(q) be the tangent hyperplane of V (fi) at q. Regard v1(q) ∩ · · · ∩ vn−1(q)as a parametri
 variety with the 
oordinates of q as parameters. Then, we have
TCp(G) = v1(q) ∩ · · · ∩ vn−1(q) when q approa
hes p, whi
h we 
ompute by avariable elimination pro
ess. Finally, TCp(C) is the union of all the TCp(G). Thisapproa
h avoids standard basis 
omputation and extends easily for working withthe zero set V (T ) of a zero-dimensional regular 
hain T instead of a point p.8 ImplementationWe have done an implementation inMaple that depends heavily on the Regular-Chains library. As this implementation is su�
iently di�erent from the theoreti
alalgorithm it is meaningful to dis
uss how we realized it.These di�eren
es 
an be tra
ed ba
k to a 
ommon origin: the data stru
-ture simulating the expansions F i de�ned in Se
tion 4 for the purpose of thealgorithms of Se
tions 5 and 6. Re
all that the expansions F 1, . . . , Fn belongto k[x1, . . . , xn, y1, . . . , yn] where x1, . . . , xn are the variables of the input poly-nomials f1, . . . , fn and where y1, . . . , yn are essentially �pla
eholders�. But ouralgorithms fundamentally treat F 1, . . . , Fn as ve
tors, performing only additionsand subtra
tions on them.While these expansions F 1, . . . , Fn are a ni
e tri
k to manipulate �simultane-ously� Taylor expansions at several points of a variety, a naïve implementation
ould su�er from performan
e bottlene
k (hardly surprisingly when doubling thenumber of variables). In parti
ular, we observe that during the exe
ution of thealgorithms, all the partial derivatives of f1, . . . , fn may not be needed. Therefore,one may wish to take advantage of lazy or delayed evaluation.A stru
ture utilizing delayed 
omputation is well suited for this. To demon-strate why, suppose that F i is a data stru
ture implementing F i su
h that F i(a1,
. . . , an) = F i

µ for µ = ya1

1 · · · y
an
n . To determine F i(a1, . . . , an + 1) one mustonly 
ompute 1

an+1
∂Fi(ai,...,an)

∂xn
. Combining this rule with F i (a1, . . . , an−1, 0) =

F i (a1, . . . , an−1) and F i(0) = fi gives a re
ursive fun
tion whose output mat
hesour spe
i�
ation. We 
all these �lazy Taylor expansions� (LTEs).Moreover these LTEs have a very useful property: F i (a1, . . . , an−1) ≡ F i
<yn

.They are also surprisingly straightforward to implement in Maple.Noti
e that the �data stru
ture� for the LTEs are in fa
t pro
edures. There-fore any method pro
essing LTEs, like Subtra
t for instan
e, will take as inputpro
edures and return a pro
edure. This notion may be unusual but requiresvery little overhead (pra
ti
ally undete
table in our experiments). We outlinethe remaining important methods for our algorithms:



Division by yn:
F i(a1, . . . , an)

yn
= F i(a1, . . . , an + 1)Multipli
ation by µ: Let F i(a1, . . . , an) = 0 if there is i for whi
h ai < 0, then

F i(a1, . . . , an) ·
(

yb11 · · · y
bn
n

)

= F i(a1 − b1, . . . , an − bn)Substitute yn = h1y1 + · · · + hn−1yn−1. For every b1, . . . , bn with bn > 0,
F(b1, . . . , bn)← 0 and

F(a1 + k1, . . . , an−1 + kn−1)← F(a1, . . . , an−1)+

∑

k1+···+kn−1=bn

(

bn
k1, . . . , kn−1

)

hk1

1 · · ·h
kn−1

n−1 .Using these LTEs along with 
areful, and repeated, invo
ations of the Regu-larChains[Regularize℄ 
ommand, our algorithms 
an be realized.9 ExperimentsWe have fully implemented the bivariate 
ase, that is, Algorithm 2, on top of theRegularChains library inMaple. As this is the base 
ase for the n-variate algo-rithm it is of paramount importan
e that it runs fast and 
orre
tly. The n-variateimplementation is a work in progress and there is large room for improvements.We 
hoose to study systems taken from [2℄ and [13℄�a suite of examples usedfor ben
hmarking and testing bivariate system solvers. All timings are given inse
onds and the base �eld has 
hara
teristi
 962592769 in all 
ases. It should benoted that, despite 962592769 being a so-
alled FFT-prime, we are not using theFastArithmeti
Tools pa
kage of the RegularChains library. This is be
ause our
urrent implementation is only generi
 and works in any 
hara
teristi
. However,some of the systems in [13℄ are too 
hallenging for being dire
tly solved in 
har-a
teristi
 zero without using an approa
h based on modular, or other advan
ed,te
hniques. Results are in Table 1.We are happy with the results of these experiments for two reasons. First,we 
ould not �nd an instan
e where Triangularize produ
ed regular 
hains forwhi
h our algorithm IM2 
ould not 
orre
tly and expeditiously determine theinterse
tion multipli
ities. Se
ondly, applying Property (2-5) from Se
tion 1 toour bivariate 
ode admits a speedup fa
tor in the hundreds. Indeed this propertyenables us to determine if the interse
tion multipli
ity is one simply by 
he
kingthe invertibility of the Ja
obian of f1, f2 modulo the 
urrent regular 
hain.Our n-variate implementation is based on the te
hniques dis
ussed in Se
-tion 7. As with the bivariate 
ase, our experiments are done in 
hara
teristi
962592769. We have taken examples from [7℄ (a paper on interse
tion multipli
-ity) and from [3℄ (a test suite for ben
hmarking homotopy solvers). Observe that



Table 1. (LEFT) Input Polynomials (after spe
ialization to bivariate). (RIGHT)Experimental results for the bivariate 
ase. Dimension is 
al
ulated by Maple'sPolynomialIdeals:-NumberOfSolutions 
ommand whi
h gives the number of solutions
ounted with multipli
ity. Time(△ize) is time required by RegularChains:-Triangularizeto de
ompose the system into N=#r
's many regular 
hains and Time(r
_im) =Time(r
_im(rc1)) + · · ·+ Time(r
_im(rcN )): the total time for r
_im, our imple-mentation of Algorithm 3, to determine interse
tion multipli
ities of an entire system.
Label Name terms degree
1 hard_one 30 37
2 L6_
ir
les 4 24
3 spiral29_24 63 52
4 tryme 38 59
5 
hallenge_12 49 30
6 
hallenge_12_1 64 40
7 
ompa
t_surf 52 18
8 degree_6_surf 467 42
9 mignotte_xy 81 64
10 SA_4_4_eps 63 33
11 spider 292 36

System Dim Time(△ize) #r
's Time(r
_im)
〈1, 3〉 888 9.7 20 19.2
〈1, 4〉 1456 226.0 8 9.023
〈1, 5〉 1595 169.4 8 25.4
〈3, 5〉 1413 22.5 27 28.6
〈4, 5〉 1781 218.4 9 13.9
〈5, 1〉 1759 113.0 10 15.8
〈6, 8〉 1680 99.7 12 37.6
〈6, 9〉 2560 299.3 10 22.9
〈6, 10〉 1320 131.9 7 8.4
〈6, 11〉 1440 59.8 17 27.5
〈7, 8〉 1152 32.8 12 16.2
〈7, 9〉 756 18.5 16 11.2
〈8, 9〉 1984 374.5 10 11.3
〈8, 10〉 1362 232.5 7 9.3
〈8, 11〉 1256 49.6 17 45.7
〈9, 11〉 1792 115.1 16 17.2
〈10, 11〉 1180 40.9 17 21.3Table 2. Experimental results for the n-variate 
ase. Dimension is again the dimen-sion of the ve
tor spa
e k[x1, . . . , xn]/〈f1, . . . , fn〉 and Points is the degree of the variety

V (f1, . . . , fn). △ize and r
_im are the same as in Table 1. Cones and COV give (re-spe
tively) the time to 
al
ulate the tangent 
ones or to do a 
hange of variables ofthe system. Finally, Total is the sum of the previous three 
olumns and Su

ess isthe number of points (
ounted with multipli
ity) for whi
h the bivariate redu
tion wassu

ess full over the dimension of of the ve
tor spa
e k[x1, . . . , xn]/〈f1, . . . , fn〉.Name Dim Points △ize Cones COV r
_im Total Su

essNbody5 99 49 1.60 0.00 0.06 1.90 2.00 51/99mth191 27 18 0.56 5400.00 0.04 0.01 5400.00 23/27ojika2 8 5 0.20 8.20 0.13 0.47 8.80 8/8E-Arnold1 45 30 0.89 1100.00 0.01 1800.00 2900.00 45/45ShiftedCubes 27 25 0.66 0.00 0.00 0.52 0.52 27/27



the redu
tion te
hniques of Se
tion 7 apply su

essfully for 3 examples and par-tially for 2 examples. We also note that tangent 
one 
omputations are 
urrentlya bottlene
k. A new algorithm for this task is work in progress.A
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