On Fulton's Algorithm for Computing Intersection Multiplicities

Steffen Marcus¹ Marc Moreno Maza² Paul Vrbik²

¹University of Utah ²University of Western Ontario

March 9, 2012

Let $f_1, \ldots, f_n \in k[x_1, \ldots, k_n]$ such that $V(f_1, \ldots, f_n) \subset \overline{k}[x_1, \ldots, k_n]$ is zero-dimensional. The intersection multiplicity $I(p; f_1, \ldots, f_n)$ at $p \in V(f_1, \ldots, f_n)$

• specifies the weights of the weighted sum in Bézout's Theorem,

Let $f_1, \ldots, f_n \in k[x_1, \ldots, k_n]$ such that $V(f_1, \ldots, f_n) \subset \overline{k}[x_1, \ldots, k_n]$ is zero-dimensional. The intersection multiplicity $I(p; f_1, \ldots, f_n)$ at $p \in V(f_1, \ldots, f_n)$

- specifies the weights of the weighted sum in Bézout's Theorem,
- \bullet is not natively computable by $\operatorname{Maple},$

Let $f_1, \ldots, f_n \in k[x_1, \ldots, k_n]$ such that $V(f_1, \ldots, f_n) \subset \overline{k}[x_1, \ldots, k_n]$ is zero-dimensional. The intersection multiplicity $I(p; f_1, \ldots, f_n)$ at $p \in V(f_1, \ldots, f_n)$

- specifies the weights of the weighted sum in Bézout's Theorem,
- is not natively computable by MAPLE,
- while it is computable by SINGULAR and MAGMA only when all coordinates of p are in k.

Let $f_1, \ldots, f_n \in k[x_1, \ldots, k_n]$ such that $V(f_1, \ldots, f_n) \subset \overline{k}[x_1, \ldots, k_n]$ is zero-dimensional. The intersection multiplicity $I(p; f_1, \ldots, f_n)$ at $p \in V(f_1, \ldots, f_n)$

- specifies the weights of the weighted sum in Bézout's Theorem,
- is not natively computable by MAPLE,
- while it is computable by SINGULAR and MAGMA only when all coordinates of p are in k.

We are interested in removing this algorithmic limitation.

Let $f_1, \ldots, f_n \in k[x_1, \ldots, k_n]$ such that $V(f_1, \ldots, f_n) \subset \overline{k}[x_1, \ldots, k_n]$ is zero-dimensional. The intersection multiplicity $I(p; f_1, \ldots, f_n)$ at $p \in V(f_1, \ldots, f_n)$

- specifies the weights of the weighted sum in Bézout's Theorem,
- is not natively computable by MAPLE,
- while it is computable by SINGULAR and MAGMA only when all coordinates of p are in k.

We are interested in removing this algorithmic limitation.

 We will combine Fulton's Algorithm approach and the theory of regular chains.

Let $f_1, \ldots, f_n \in k[x_1, \ldots, k_n]$ such that $V(f_1, \ldots, f_n) \subset \overline{k}[x_1, \ldots, k_n]$ is zero-dimensional. The intersection multiplicity $I(p; f_1, \ldots, f_n)$ at $p \in V(f_1, \ldots, f_n)$

- specifies the weights of the weighted sum in Bézout's Theorem,
- is not natively computable by MAPLE,
- while it is computable by SINGULAR and MAGMA only when all coordinates of p are in k.

We are interested in removing this algorithmic limitation.

- We will combine Fulton's Algorithm approach and the theory of regular chains.
- Our algorithm is complete in the bivariate case.

Let $f_1, \ldots, f_n \in k[x_1, \ldots, k_n]$ such that $V(f_1, \ldots, f_n) \subset \overline{k}[x_1, \ldots, k_n]$ is zero-dimensional. The intersection multiplicity $I(p; f_1, \ldots, f_n)$ at $p \in V(f_1, \ldots, f_n)$

- specifies the weights of the weighted sum in Bézout's Theorem,
- is not natively computable by MAPLE,
- while it is computable by SINGULAR and MAGMA only when all coordinates of p are in k.

We are interested in removing this algorithmic limitation.

- We will combine Fulton's Algorithm approach and the theory of regular chains.
- Our algorithm is complete in the bivariate case.
- We propose algorithmic criteria for reducing the case of *n* variables to the bivariate one. Experimental results are also reported.

The case of two plane curves

Given an arbitrary field \mathbf{k} and two bivariate polynomials $f,g\in k[x,y]$, consider the affine algebraic curves C:=V(f) and D:=V(g) in $\mathbb{A}^2=\overline{\mathbf{k}}^2$, where $\overline{\mathbf{k}}$ is the algebraic closure of k. Let p be a point in the intersection.

Definition

The intersection multiplicity of p in V(f,g) is defined to be

$$I(p; f, g) = \dim_{\overline{k}}(\mathcal{O}_{\mathbb{A}^2, p}/\langle f, g \rangle)$$

where $\mathcal{O}_{\mathbb{A}^2,p}$ and $\dim_{\overline{k}}(\mathcal{O}_{\mathbb{A}^2,p}/\langle f,g\rangle)$ are the local ring at p and the dimension of the vector space $\mathcal{O}_{\mathbb{A}^2,p}/\langle f,g\rangle$.

The case of two plane curves

Given an arbitrary field \mathbf{k} and two bivariate polynomials $f,g\in k[x,y]$, consider the affine algebraic curves C:=V(f) and D:=V(g) in $\mathbb{A}^2=\overline{\mathbf{k}}^2$, where $\overline{\mathbf{k}}$ is the algebraic closure of k. Let p be a point in the intersection.

Definition

The intersection multiplicity of p in V(f,g) is defined to be

$$I(p; f, g) = \dim_{\overline{k}}(\mathcal{O}_{\mathbb{A}^2, p}/\langle f, g \rangle)$$

where $\mathcal{O}_{\mathbb{A}^2,p}$ and $\dim_{\overline{k}}(\mathcal{O}_{\mathbb{A}^2,p}/\langle f,g\rangle)$ are the local ring at p and the dimension of the vector space $\mathcal{O}_{\mathbb{A}^2,p}/\langle f,g\rangle$.

Remark

As pointed out by Fulton in his book *Algebraic Curves*, the intersection multiplicities of the plane curves C and D satisfy a series of 7 properties which uniquely define I(p; f, g) at each point $p \in V(f, g)$. Moreover, the proof is constructive, which leads to an algorithm.

Fulton's Properties

The intersection multiplicity of two plane curves at a point satisfies and is uniquely determined by the following.

- (2-1) I(p; f, g) is a non-negative integer for any C, D, and p such that C and D have no common component at p. We set $I(p; f, g) = \infty$ if C and D have a common component at p.
- (2-2) I(p; f, g) = 0 if and only if $p \notin C \cap D$.
- (2-3) I(p; f, g) is invariant under affine change of coordinates on \mathbb{A}^2 .
- (2-4) I(p; f, g) = I(p; g, f)
- I(p; f, g) is greater or equal to the product of the multiplicity of p in f and g, with equality occurring if and only if C and D have no tangent lines in common at p.
- (2-6) I(p; f, gh) = I(p; f, g) + I(p; f, h) for all $h \in k[x, y]$.
- (2-7) I(p; f, g) = I(p; f, g + hf) for all $h \in k[x, y]$.

Fulton's Algorithm

```
Algorithm 1: IM_2(p; f, g)
```

```
Input: p = (\alpha, \beta) \in \mathbb{A}^2(\mathbf{k}) and f, g \in \mathbf{k}[y \succ x] such that \mathbf{gcd}(f, g) \in \mathbf{k}
Output: I(p; f, g) \in \mathbb{N} satisfying (2-1)–(2-7)
if f(p) \neq 0 or g(p) \neq 0 then
     return_0:
r, s = \deg(f(x, \beta)), \deg(g(x, \beta)); assume s > r.
if r=0 then
    write f = (y - \beta) \cdot h and g(x, \beta) = (x - \alpha)^m (a_0 + a_1(x - \alpha) + \cdots);
     return m + IM_2(p; h, g);
      IM_2(p; (y - \beta) \cdot h, g) = IM_2(p; (y - \beta), g) + IM_2(p; h, g)
      IM_2(p; (y - \beta), g) = IM_2(p; (y - \beta), g(x, \beta)) = IM_2(p; (y - \beta), (x - \alpha)^m) = m
```

if r > 0 then

```
h \leftarrow \operatorname{monic}(g) - (x - \alpha)^{s-r} \operatorname{monic}(f);
return IM_2(p; f, h);
```

Our goal: extending Fulton's Algorithm

Limitations of Fulton's Algorithm

Fulton's Algorithm

- does not generalize to n > 2, that is, to n polynomials $f_1, \ldots, f_n \in k[x_1, \ldots, x_n]$ since $k[x_1, \ldots, x_{n-1}]$ is no longer a PID.
- is limited to computing the IM at a single point with rational coordinates, that is, with coordinates in the base field k. (Approaches based on standard or Gröbner bases suffer from the same limitation)

Our goal: extending Fulton's Algorithm

Limitations of Fulton's Algorithm

Fulton's Algorithm

- does not generalize to n > 2, that is, to n polynomials $f_1, \ldots, f_n \in k[x_1, \ldots, x_n]$ since $k[x_1, \ldots, x_{n-1}]$ is no longer a PID.
- is limited to computing the IM at a single point with rational coordinates, that is, with coordinates in the base field k. (Approaches based on standard or Gröbner bases suffer from the same limitation)

Our contributions

- We adapt Fulton's Algorithm such that it can work at any point of $V(f_1, f_2)$, rational or not.
- For n > 2, we propose an algorithmic criterion to reduce the n-variate case to that of n 1 variables.

A first algorithmic tool: regular chains (1/2)

Definition

 $T \subset k[x_n > \cdots > x_1]$ is a triangular set if $T \cap k = \emptyset$ and $\operatorname{mvar}(p) \neq \operatorname{mvar}(q)$ for all $p, q \in T$ with $p \neq q$.

For all $t \in T$ write $\operatorname{init}(t) := \operatorname{lc}(t, \operatorname{mvar}(t))$ and $h_T := \prod_{t \in T} \operatorname{init}(t)$. The saturated ideal of T is:

$$\operatorname{sat}(T) = \langle T \rangle : h_T^{\infty}.$$

Theorem (J.F. Ritt, 1932)

Let $V \subset \overline{k}^n$ be an irreducible variety and $F \subset k[x_1, \ldots, x_n]$ s.t. V = V(F). Then, one can compute a (reduced) triangular set $T \subset \langle F \rangle$ s.t.

$$(\forall g \in \langle \mathbf{F} \rangle) \text{ prem}(g, T) = 0.$$

Therefore, we have

$$V = V(\operatorname{sat}(T)).$$

A first algorithmic tool: regular chains (2/2)

Definition (M. Kalkbrner, 1991 - L. Yang, J. Zhang 1991)

T is a regular chain if $T = \emptyset$ or $T := T' \cup \{t\}$ with mvar(t) maximum s.t.

- T' is a regular chain,
- init(t) is regular modulo sat(T')

Kalkbrener triangular decomposition

For all $F \subset k[x_1, \ldots, x_n]$, one can compute a family of regular chains T_1, \ldots, T_e of $k[x_1, \ldots, x_n]$, called a Kalkbrener triangular decomposition of V(F), such that we have

$$V(F) = \bigcup_{i=1}^{e} V(\operatorname{sat}(T_i)).$$

A second algorithmic tool: the D5 Principle

Original version (Della Dora, Discrescenzo & Duval)

Let $f, g \in k[x_1]$ such that f is squarefree. Without using irreducible factorization, one can compute $f_1, \ldots, f_e \in k[x_1]$ such that

- $f = f_1 \dots f_e$ holds and,
- for each $i = 1 \cdots e$, either $g \equiv 0 \mod f_i$ or g is invertible modulo f_i .

Multivariate version

Let $T \subset k[x_1, ..., x_n]$ be a regular chain such that $\operatorname{sat}(T)$ is zero-dimensional, thus $\operatorname{sat}(T) = \langle T \rangle$ holds. Let $f \in k[x_1, ..., x_n]$.

The operation Regularize (f, T) computes regular chains

 $T_1, \ldots, T_e \subset k[x_1, \ldots, x_n]$ such that

- $V(T) = V(T_1) \cup \cdots \cup V(T_e)$ holds and,
- for each $i = 1 \cdots e$, either $V(T_i) \subseteq V(f)$ or $V(T_i) \cap V(f) = \emptyset$ holds.

Moreover, only polynomial GCDs and resultants need to be computed, that is, irreducible factorization is not required.

Dealing with non-rational points

Working with regular chains

To deal with non-rational points, we extend Fulton's Algorithm to compute $\mathrm{IM}_2(T;f_1,f_2)$, where $T\subset k[x_1,x_2]$ is a regular chain such that we have $V(T)\subseteq V(f_1,f_2)$.

- This makes sense thanks to the theorem below, which is non-trivial since intersection multiplicity is really a local property.
- For an arbitray zero-dimensional regular chain T, we apply the D5
 Principle to Fulton's Algorithm in order to reduce to the case of the
 theorem.

Theorem

Recall that $V(f_1, f_2)$ is zero-dimensional. Let $T \subset k[x_1, x_2]$ be a regular chain such that we have $V(T) \subset V(f_1, f_2)$ and the ideal $\langle T \rangle$ is maximal. Then $\mathsf{IM}_2(p; f_1, f_2)$ is the same at any point $p \in V(T)$.

A third tool toward our algorithm: Taylor series

Fulton's Algorithm works with Taylor series

We observe that this algorithm works the Taylor series of f_1 , f_2 at a rational point p. To extend this idea when working with V(T), instead of a point p, we introduce two new variables y_1 and y_2 representing $x_1 - \alpha$ and $x_2 - \beta$ respectively, for an arbitrary point $(\alpha, \beta) \in V(T)$. These variables are simply used as place holders in the following definition, where $f \in \{f_1, f_2\}$.

Definition

Let $F \in k[x_1, x_2][y_1, y_2]$ and $T \subset k[x_1, x_2]$ be a regular chain such that we have $V(T) \subset V(f_1, f_2)$. We say that F is an expansion of f about V(T) if at every point $(\alpha, \beta) \in V(T)$ we have

$$F(\alpha,\beta)(x_1-\alpha,x_2-\beta)=f(x_1,x_2).$$

The fundamental example is

$$F = \sum_{j} \left(\sum_{i} \frac{f_{i,j}}{\partial x_{i}^{i}} y_{1}^{i} \right) y_{2}^{j}$$
 where $f_{i,j} = \frac{1}{i!j!} \frac{\partial^{i+j} f}{\partial x_{i}^{i} \partial y_{j}^{i}}$.

Our Algorithm in the bivariate case

```
Input: F^1 and F^2 as described in the previous slide.
Output: Finitely many pairs (T_i, m_i) where T_i \subset k[x_1, x_2] are regular chains and m_i \in \mathbb{Z}^+ such that \forall p \in V(T^i)
         I(p; f_1, f_2) = m_i
for (F_1^1, T) \in \text{Regularize}(F_1^1, T) do
      if F_1^1 \not\in \langle T \rangle then
            output(T, 0):
      else
            \begin{array}{ll} \text{for} & \left(T,F_1^2\right) \in \operatorname{Regularize}\left(F_1^2,T\right) \text{ do} \\ & \mid & \text{if} \quad F_1^2 \not \in \langle T \rangle \text{ then} \end{array}
                    output(T,0);
                  else
                         for (T, a_{F^1}) \in \mathsf{LT}\left(F^1_{< y_2}, T\right) do
```

Reducing the *n*-dimensional case to the n-1 case (1/5)

Definition

The intersection multiplicity of p in $V(f_1,\ldots,f_n)$ is given by $I(p;f_1,\ldots,f_n):=\dim_{\overline{k}}\left(\mathcal{O}_{\mathbb{A}^n,p}/\left\langle f_1,\ldots,f_n\right\rangle\right).$ where $\mathcal{O}_{\mathbb{A}^n,p}$ and $\dim_{\overline{k}}(\mathcal{O}_{\mathbb{A}^n,p}/\left\langle f_1,\ldots,f_n\right\rangle)$ are respectively the local ring at the point p and the dimension of the vector space $\mathcal{O}_{\mathbb{A}^n,p}/\left\langle f_1,\ldots,f_n\right\rangle$.

The next theorem reduces the *n*-dimensional case to n-1, under assumptions which state that f_n does not contribute to $I(p; f_1, \ldots, f_n)$.

Reducing the *n*-dimensional case to the n-1 case (1/5)

Definition

The intersection multiplicity of p in $V(f_1,\ldots,f_n)$ is given by $I(p;f_1,\ldots,f_n):=\dim_{\overline{k}}\left(\mathcal{O}_{\mathbb{A}^n,p}\big/\left\langle f_1,\ldots,f_n\right\rangle\right)$. where $\mathcal{O}_{\mathbb{A}^n,p}$ and $\dim_{\overline{k}}(\mathcal{O}_{\mathbb{A}^n,p}\big/\left\langle f_1,\ldots,f_n\right\rangle)$ are respectively the local ring at the point p and the dimension of the vector space $\mathcal{O}_{\mathbb{A}^n,p}\big/\left\langle f_1,\ldots,f_n\right\rangle$.

The next theorem reduces the *n*-dimensional case to n-1, under assumptions which state that f_n does not contribute to $I(p; f_1, \ldots, f_n)$.

Theorem

Assume that $h_n = V(f_n)$ is non-singular at p. Let v_n be its tangent hyperplane at p. Assume that h_n meets each component (through p) of the curve $C = V(f_1, \ldots, f_{n-1})$ transversely (that is, the tangent cone $TC_p(C)$ intersects v_n only at the point p). Let $h \in k[x_1, \ldots, x_n]$ be the degree 1 polynomial defining v_n . Then, we have

$$I(p; f_1, \ldots, f_n) = I(p; f_1, \ldots, f_{n-1}, h).$$

Reducing the *n*-dimensional case to the n-1 case (2/5)

The theorem again:

Theorem

Assume that $h_n = V(f_n)$ is non-singular at p. Let v_n be its tangent hyperplane at p. Assume that h_n meets each component (through p) of the curve $C = V(f_1, \ldots, f_{n-1})$ transversely (that is, the tangent cone $TC_p(C)$ intersects v_n only at the point p). Let $h \in k[x_1, \ldots, x_n]$ be the degree 1 polynomial defining v_n . Then, we have

$$I(p; f_1, \ldots, f_n) = I(p; f_1, \ldots, f_{n-1}, h).$$

How to use this theorem in practise?

Assume that the coefficient of x_n in h is non-zero, thus $h=x_n-h'$, where $h'\in k[x_1,\ldots,x_{n-1}]$. Hence, we can rewrite the ideal $\langle f_1,\ldots,f_{n-1},h\rangle$ as $\langle g_1,\ldots,g_{n-1},h\rangle$ where g_i is obtained from f_i by substituting x_n with h'. Then, we have

$$I_n(p; f_1, \ldots, f_n) = I_{n-1}(p|_{x_1, \ldots, x_{n-1}}; g_1, \ldots, g_{n-1}).$$

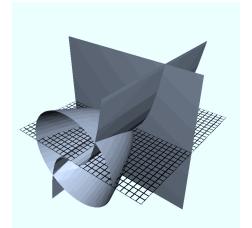
Reducing the *n*-dimensional case to the n-1 case (3/5)

Example

Consider the system

$$f_1 = x, \quad f_2 = x + y^2 - z^2, \quad f_3 := y - z^3$$

near the origin $o := (0,0,0) \in V(f_1,f_2,f_3)$



Reducing the *n*-dimensional case to the n-1 case (4/5)

Example

Recall the system

$$f_1=x, \quad f_2=x+y^2-z^2, \quad f_3:=y-z^3$$
 near the origin $o:=(0,0,0)\in V(f_1,f_2,f_3).$

Computing the IM using the definition

Let us compute a basis for $\mathcal{O}_{\mathbb{A}^3,o}/\langle f_1,f_2,f_3\rangle$ as a vector space over \overline{k} .

Setting
$$x = 0$$
 and $y = z^3$, we must have $z^2(z^4 + 1) = 0$ in $\mathcal{O}_{\mathbb{A}^3} = \overline{k}[x, y, z]_{(z, y, z)}$.

Since $z^4 + 1$ is a unit in this local ring, we see that

$$\mathcal{O}_{\mathbb{A}^3,o}/\left\langle \mathit{f}_1,\mathit{f}_2,\mathit{f}_3\right\rangle = \left\langle 1,z\right\rangle$$

as a vector space, so $I(o; f_1, f_2, f_3) = 2$.

Reducing the *n*-dimensional case to the n-1 case (4/5)

Example

Recall the system again

$$f_1 = x$$
, $f_2 = x + y^2 - z^2$, $f_3 := y - z^3$

near the origin $o := (0,0,0) \in V(f_1,f_2,f_3)$.

Computing the IM using the reduction

We have

$$C := V(x, x + y^2 - z^2) = V(x, (y - z)(y + z)) = TC_o(C)$$

and we have

$$h = y$$
.

Thus C and $V(f_3)$ intersect transversally at the origin. Therefore, we have $I_3(p; f_1, f_2, f_3) = I_2((0,0); x, x - z^2) = 2$.

Reducing the *n*-dimensional case to the n-1 case (5/5)

In practise, this reduction from n to n-1 variables does not always apply. For instance, this is the case for Oika 2:

$$x^2 + y + z - 1 = x + y^2 + z - 1 = x + y + z^2 - 1 = 0.$$

Figure: The real points of $V(x^2 + y + z - 1, x + y^2 + z - 1, x + y + z^2 - 1)$.

Reducing the *n*-dimensional case to the n-1 case (6/5)

Recall the system

$$x^{2} + y + z - 1 = x + y^{2} + z - 1 = x + y + z^{2} - 1 = 0.$$

If one uses the first equation, that is $x^2 + y + z - 1 = 0$, to eliminate z from the other two, we obtain two bivariate polynomials $f, g \in k[x, y]$.

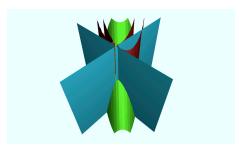


Figure: The real points of $V(x^2 + y + z - 1, x + y^2 - x^2 - y, x - y + x^4 + 2x^2y - 2x^2 + y^2)$ near the origin.

Reducing the *n*-dimensional case to the n-1 case (7/5)

At any point of $p \in V(h, f, g)$ the tangent cone of the curve V(f, g) is independent of z; in some sense it is "vertical". On the other hand, at any point of $p \in V(h, f, g)$ the tangent space of V(h) is not vertical.

Thus, the previous theorem applies without computing any tangent cones.

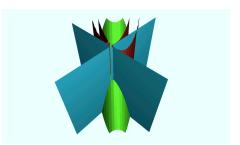
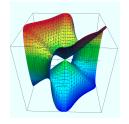
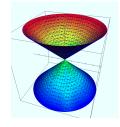


Figure: The real points of $V(x^2 + y + z - 1, x + y^2 - x^2 - y, x - y + x^4 + 2x^2y - 2x^2 + y^2)$ near the origin.

Tangent cone computation without standard bases





Assume $\overline{k} = \mathbb{C}$ and none of the $V(f_i)$ is singular at p. For each component \mathcal{G} through p of $\mathcal{C} = V(f_1, \ldots, f_{n-1})$,

- There exists a neighbourhood B of p such that $V(f_i)$ is not singular at all $q \in (B \cap \mathcal{G}) \setminus \{p\}$, for i = 1, ..., n 1.
- Let $v_i(q)$ be the tangent hyperplane of $V(f_i)$ at q. Regard $v_1(q) \cap \cdots \cap v_{n-1}(q)$ as a parametric variety with q as parameter.
- Then, $TC_p(\mathcal{G}) = v_1(q) \cap \cdots \cap v_{n-1}(q)$ when q approaches p, which we compute by a variable elimination process.

Finally, $TC_p(C)$ is the union of all the $TC_p(G)$. This approach avoids standard basis computation and extends easily for working with V(T) instead of p.

TriangularizeWithMultiplicity

We specify TriangularizeWithMultiplicity for the bivariate case.

Input $f,g \in \mathbf{k}[x,y]$ such that V(f,g) is zero-dimensional.

Output Finitely many pairs $[(T_1, m_1), \ldots, (T_\ell, m_\ell)]$ of the form $(T_i :: Regular Chain, m_i :: nonnegint)$ such that for all $p \in V(T_i)$

$$\mathrm{I}(p;f,g)=m_i \ \mathrm{and} \ V(f,g)=V(T_1) \uplus \cdots \uplus V(T_\ell).$$

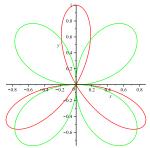
Implementating TriangularizeWithMultiplicity is done by

- first calling Triangularize (which encode the points of V(f,g) with regular chains, and
- secondly calling $IM_2(T; f, g)$ for all $T \in Triangularize(f, g)$.

This approach allows optimizations such that using the Jacobian criterion to quickly discover points of IM equal to 1.

>
$$Fs := \left[\left(x^2 + y^2 \right)^2 + 3x^2y - y^3, \left(x^2 + y^2 \right)^3 - 4x^2y^2 \right]$$
:

> plots[implicitplot](Fs,x=-2..2,y=-2..2);



- > R := PolynomialRing([x, y], 101):
- > rcs := Triangularzie (Fs, R, normalized = 'yes'):
- > seq (TriangularizeWithMultiplicity (Fs, T, R), T in rcs):

$$\begin{bmatrix} 1, \begin{cases} x - 1 = 0 \\ y + 14 = 0 \end{bmatrix} \end{bmatrix}, \begin{bmatrix} 1, \begin{cases} x + 1 = 0 \\ y + 14 = 0 \end{bmatrix} \end{bmatrix}, \begin{bmatrix} 1, \begin{cases} x - 47 = 0 \\ y - 14 = 0 \end{bmatrix} \end{bmatrix}, \begin{bmatrix} 1, \begin{cases} x + 47 = 0 \\ y - 14 = 0 \end{bmatrix} \end{bmatrix}, \begin{bmatrix} 1, \begin{cases} x + 47 = 0 \\ y - 14 = 0 \end{bmatrix} \end{bmatrix}, \begin{bmatrix} 1, \begin{cases} x + 47 = 0 \\ y - 14 = 0 \end{bmatrix} \end{bmatrix}, \begin{bmatrix} 1, \begin{cases} x + 47 = 0 \\ y - 14 = 0 \end{bmatrix} \end{bmatrix}, \begin{bmatrix} 1, \begin{cases} x + 47 = 0 \\ y - 14 = 0 \end{bmatrix} \end{bmatrix}$$

- > $Fs := [x^2 + y + z 1, x + y^2 + z 1, x + y + z^2 1]$:
- > R := PolynomialRing([x, y, z], 101):
- > TriangularizeWithMultiplicity (Fs, T, R):

$$\begin{bmatrix}
1, & x - z = 0 \\
y - z = 0 \\
z^2 + 2z - 1 = 0
\end{bmatrix}, \begin{bmatrix}
2, & x = 0 \\
y = 0 \\
z - 1 = 0
\end{bmatrix}, \begin{bmatrix}
1, & x = 0 \\
y - 1 = 0 \\
z = 0
\end{bmatrix}, \begin{bmatrix}
2, & x - 1 = 0 \\
z - 1 = 0
\end{bmatrix}$$

Experiments

System	Dim	$Time(\triangle ize)$	#rc's	Time(rc_im)
$\langle 1, 3 \rangle$	888	9.7	20	19.2
$\langle 1, 4 \rangle$	1456	226.0	8	9.023
$\langle 1, 5 \rangle$	1595	169.4	8	25.4
$\langle 3, 5 \rangle$	1413	22.5	27	28.6
$\langle 4, 5 \rangle$	1781	218.4	9	13.9
$\langle 5,1 \rangle$	1759	113.0	10	15.8
$\langle 6, 8 \rangle$	1680	99.7	12	37.6
$\langle 6, 9 \rangle$	2560	299.3	10	22.9
$\langle 6, 10 \rangle$	1320	131.9	7	8.4
$\langle 6, 11 \rangle$	1440	59.8	17	27.5
$\langle 7, 8 \rangle$	1152	32.8	12	16.2
$\langle 7,9 \rangle$	756	18.5	16	11.2
$\langle 7, 10 \rangle$	595	8.1	17	13.0
$\langle 7, 11 \rangle$	648	9.2	25	11.1
$\langle 8,9 \rangle$	1984	374.5	10	11.3
$\langle 8, 10 \rangle$	1362	232.5	7	9.3
$\langle 8, 11 \rangle$	1256	49.6	17	45.7
$\langle 9, 10 \rangle$	2080	504.9	12	34.812
$\langle 9, 11 \rangle$	1792	115.1	16	17.2
$\langle 10, 11 \rangle$	1180	40.9	17	21.3